1.COMPLEX NUMBERS

1. **DEFINITION:** Complex numbers are definited as expressions of the form a + ib where $a, b \in R$ & $i = \sqrt{-1}$. It is denoted by z i.e. z = a + ib. 'a' is called as real part of z (Re z) and 'b' is called as imaginary part of z (Im z). www.MathsBySuhag.com, www.TekoClasses.com

EVERY COMPLEX NUMBER CAN BE REGARDED AS

Purely real Purely imaginary **Imaginary** if b = 0if a = 0if $b \neq 0$

Note:

- The set R of real numbers is a proper subset of the Complex Numbers. Hence the Complete Number (a) system is $N \subset W \subset I \subset O \subset R \subset C$.
- **(b)** Zero is both purely real as well as purely imaginary but not imaginary.
- $i = \sqrt{-1}$ is called the imaginary unit. Also $i^2 = -1$; $i^3 = -i$; $i^4 = 1$ etc. (c)
- $\sqrt{a} \sqrt{b} = \sqrt{ab}$ only if at least one of either a or b is non-negative. www. Maths By Suhag .com (d)
- 2. **CONJUGATE COMPLEX:**

If z = a + ib then its conjugate complex is obtained by changing the sign of its imaginary part & is denoted by \overline{z} . i.e. $\overline{z} = a - ib$.

Note that: www.MathsBySuhag.com, www.TekoClasses.com

- (ii) $z \overline{z} = 2i \operatorname{Im}(z)$ (iii) $z \overline{z} = a^2 + b^2$ which is real $z + \overline{z} = 2 \operatorname{Re}(z)$
- If z lies in the 1st quadrant then \bar{z} lies in the 4th quadrant and $-\bar{z}$ lies in the 2nd quadrant. (iv)
- **3. ALGEBRAIC OPERATIONS:**

The algebraic operations on complex numbers are similar to those on real numbers treating i as a polynomial. Inequalities in complex numbers are not defined. There is no validity if we say that complex number is positive or negative.

e.g. z > 0, 4 + 2i < 2 + 4i are meaningless.

However in real numbers if $a^2 + b^2 = 0$ then a = 0 = b but in complex numbers,

 $z_1^2 + z_2^2 = 0$ does not imply $z_1 = z_2 = 0$.www.MathsBySuhag.com, www.TekoClasses.com

EQUALITY IN COMPLEX NUMBER:

Two complex numbers $z_1 = a_1 + ib_1$ & $z_2 = a_2 + ib_2$ are equal if and only if their real & imaginary parts coincide.

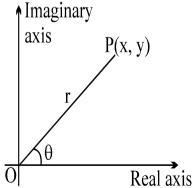
- REPRESENTATION OF A COMPLEX NUMBER IN VARIOUS FORMS: **5.**
- **Cartesian Form (Geometric Representation):**

Every complex number z = x + iy can be represented by a point on the cartesian plane known as complex plane (Argand diagram) by the ordered

length OP is called modulus of the complex number denoted by $|z| & \theta$ is called the argument or amplitude

$$eg . |z| = \sqrt{x^2 + y^2}$$

 $\theta = \tan^{-1} \frac{y}{x}$ (angle made by OP with positive x-axis)



NOTE:(i) |z| is always non negative. Unlike real numbers $|z| = \begin{bmatrix} z & \text{if } z > 0 \\ -z & \text{if } z < 0 \end{bmatrix}$ is **not correct**

- Argument of a complex number is a many valued function. If θ is the argument of a complex number (ii) then $2 n\pi + \theta$; $n \in I$ will also be the argument of that complex number. Any two arguments of a complex number differ by $2n\pi$.
- The unique value of θ such that $-\pi < \theta \le \pi$ is called the principal value of the argument.
- Unless otherwise stated, amp z implies principal value of the argument.
- By specifying the modulus & argument a complex number is defined completely. For the complex number **(v)** 0 + 0 i the argument is not defined and this is the only complex number which is given by its modulus.www.MathsBySuhag.com, www.TekoClasses.com

- There exists a one-one correspondence between the points of the plane and the members of the set of complex numbers.
- **(b) Trignometric / Polar Representation:**

 $z = r (\cos \theta + i \sin \theta)$ where |z| = r; arg $z = \theta$; $\overline{z} = r (\cos \theta - i \sin \theta)$

Note: $\cos \theta + i \sin \theta$ is also written as CiS θ .

Also $\cos x = \frac{e^{ix} + e^{-ix}}{2}$ & $\sin x = \frac{e^{ix} - e^{-ix}}{2}$ are known as Euler's identities.

(c) **Exponential Representation:**

 $z = re^{i\theta}$; |z| = r; $arg z = \theta$; $\overline{z} = re^{-i\theta}$

IMPORTANT PROPERTIES OF CONJUGATE / MODULI / AMPLITUDE: If $z, z_1, z_2 \in C$ then;

 $z + \overline{z} = 2 \operatorname{Re}(z)$; $z - \overline{z} = 2 \operatorname{i} \operatorname{Im}(z)$; $\overline{(\overline{z})} = z$; $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$;

$$\overline{z_1 - z_2} = \overline{z}_1 - \overline{z}_2 \quad ; \quad \overline{z_1 z_2} = \overline{z}_1 \cdot \overline{z}_2 \qquad \overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z}_1}{\overline{z}_2} \quad ; \quad z_2 \neq 0$$

 $|z| \ge 0$; $|z| \ge \text{Re}(z)$; $|z| \ge \text{Im}(z)$; $|z| = |\overline{z}| = |-z|$; $|z| = |z|^2$;

$$|z_1 z_2| = |z_1| \cdot |z_2|$$
 ; $\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}$, $z_2 \neq 0$, $|z^n| = |z|^n$;

 $|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2 \left[|z_1|^2 + |z_2|^2 \right]$ www.MathsBySuhag.com, www.TekoClasses.com

- $|z_1| |z_2| \le |z_1 + z_2| \le |z_1| + |z_2|$ [**TRIANGLE INEQUALITY**] (i) amp $(z_1, z_2) = \text{amp } z_1 + \text{amp } z_2 + 2 \text{ k}\pi$. $k \in I$
- $\operatorname{amp}\left(\frac{z_1}{z}\right) = \operatorname{amp} z_1 \operatorname{amp} z_2 + 2 k\pi \quad ; \quad k \in I$
- $amp(z^n) = n \ amp(z) + 2k\pi$.

(c)

where proper value of k must be chosen so that RHS lies in $(-\pi, \pi]$.

(7) VECTORIAL REPRESENTATION OF A COMPLEX:

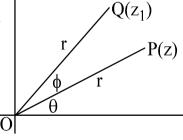
Every complex number can be considered as if it is the position vector of that point. If the point P

represents the complex number z then, $\overrightarrow{OP} = z \& |\overrightarrow{OP}| = |z|$.

- **NOTE** :(i) If $\overrightarrow{OP} = z = r e^{i \theta}$ then $\overrightarrow{OQ} = z_1 = r e^{i (\theta + \phi)} = z \cdot e^{i\phi}$. If \overrightarrow{OP} and \overrightarrow{OQ} are of unequal magnitude then $\overrightarrow{OQ} = \overrightarrow{OP} e^{i\phi}$
- If A, B, C & D are four points representing the complex numbers z_1, z_2

AB | | CD if $\frac{z_4 - z_3}{z_2 - z_1}$ is purely real;

AB \perp CD if $\frac{z_4 - z_3}{z_2 - z_1}$ is purely imaginary]



- (iii) If z_1, z_2, z_3 are the vertices of an equilateral triangle where z_0 is its circumcentre then (a) $z_1^2 + z_2^2 + z_3^2 - z_1 z_2 - z_2 z_3 - z_3 z_1 = 0$ (b) $z_1^2 + z_2^2 + z_3^2 = 3 z_0^2$
- 8. **DEMOIVRE'S THEOREM:**

Statement: $\cos n\theta + i \sin n\theta$ is the value or one of the values of $(\cos \theta + i \sin \theta)^n Y \in Q$. The theorem is very useful in determining the roots of any complex quantity

Note: Continued product of the roots of a complex quantity should be determined using theory of equations.

- 9. CUBE ROOT OF UNITY: (i) The cube roots of unity are 1, $\frac{-1+i\sqrt{3}}{2}$, $\frac{-1-i\sqrt{3}}{2}$.
- (ii) If w is one of the imaginary cube roots of unity then $1 + w + w^2 = 0$. In general $1 + w^r + w^{2r} = 0$; where $r \in I$ but is not the multiple of 3.
- (iii) In polar form the cube roots of unity are:

$$\cos 0 + i \sin 0$$
; $\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}$, $\cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3}$

- (iv) The three cube roots of unity when plotted on the argand plane constitute the verties of an equilateral triangle.www.MathsBySuhag.com , www.TekoClasses.com
- (v) The following factorisation should be remembered:

(a, b, c ∈ R &
$$\omega$$
 is the cube root of unity)
 $a^3 - b^3 = (a - b) (a - \omega b) (a - \omega^2 b)$; $x^2 + x + 1 = (x - \omega) (x - \omega^2)$;
 $a^3 + b^3 = (a + b) (a + \omega b) (a + \omega^2 b)$;
 $a^3 + b^3 + c^3 - 3abc = (a + b + c) (a + \omega b + \omega^2 c) (a + \omega^2 b + \omega c)$

 $10. \hspace{0.5cm} n^{th} \hspace{0.1cm} ROOTS \hspace{0.1cm} OF \hspace{0.1cm} UNITY \hspace{0.1cm} : \hspace{0.1cm} www.MathsBySuhag.com \hspace{0.1cm}, \hspace{0.1cm} www.TekoClasses.com \\$

If 1, α_1 , α_2 , α_3 α_{n-1} are the n, n^{th} root of unity then:

(i) They are in G.P. with common ratio $e^{i(2\pi/n)}$

(ii)
$$1^p + \alpha_1^p + \alpha_2^p + \dots + \alpha_{n-1}^p = 0$$
 if p is not an integral multiple of n
= n if p is an integral multiple of n

- (iii) $(1 \alpha_1) (1 \alpha_2) \dots (1 \alpha_{n-1}) = n$ & $(1 + \alpha_1) (1 + \alpha_2) \dots (1 + \alpha_{n-1}) = 0$ if n is even and 1 if n is odd.
- (iv) $1 \cdot \alpha_1 \cdot \alpha_2 \cdot \alpha_3 \cdot \dots \cdot \alpha_{n-1} = 1$ or -1 according as n is odd or even.

11. THE SUM OF THE FOLLOWING SERIES SHOULD BE REMEMBERED:

(i)
$$\cos \theta + \cos 2 \theta + \cos 3 \theta + \dots + \cos n \theta = \frac{\sin(n\theta/2)}{\sin(\theta/2)} \cos \left(\frac{n+1}{2}\right) \theta.$$

$$(\textbf{ii}) \qquad \sin\theta + \sin 2\theta + \sin 3\theta + \dots + \sin n\theta = \ \frac{\sin(n\theta/2)}{\sin(\theta/2)}\sin\left(\frac{n+1}{2}\right)\theta.$$

Note: If $\theta = (2\pi/n)$ then the sum of the above series vanishes.

12. STRAIGHT LINES & CIRCLES IN TERMS OF COMPLEX NUMBERS:

- (A) If $z_1 & z_2$ are two complex numbers then the complex number $z = \frac{nz_1 + mz_2}{m+n}$ divides the joins of z_1 & z_2 in the ratio m: n.
- **Note:(i)** If a, b, c are three real numbers such that $az_1 + bz_2 + cz_3 = 0$; where a + b + c = 0 and a,b,c are not all simultaneously zero, then the complex numbers z_1 , z_2 & z_3 are collinear.
- (ii) If the vertices A, B, C of a Δ represent the complex nos. z_1, z_2, z_3 respectively, then:
 - (a) Centroid of the \triangle ABC = $\frac{z_1 + z_2 + z_3}{3}$: (b) Orthocentre of the \triangle ABC =

$$\frac{(a \sec A)z_1 + (b \sec B)z_2 + (c \sec C)z_3}{a \sec A + b \sec B + c \sec C} \quad \mathbf{OR} \quad \frac{z_1 \tan A + z_2 \tan B + z_3 \tan C}{\tan A + \tan B + \tan C}$$

- (c) Incentre of the \triangle ABC = $(az_1 + bz_2 + cz_3) \div (a + b + c)$.
- (d) Circumcentre of the \triangle ABC = : $(Z_1 \sin 2A + Z_2 \sin 2B + Z_3 \sin 2C) \div (\sin 2A + \sin 2B + \sin 2C)$.
- **(B)** amp(z) = θ is a ray emanating from the origin inclined at an angle θ to the x-axis.
- (C) |z-a| = |z-b| is the perpendicular bisector of the line joining a to b.
- (**D**) The equation of a line joining $z_1 & z_2$ is given by;
 - $z = z_1 + t (z_1 z_2)$ where t is a perameter.www.MathsBySuhag.com, www.TekoClasses.com
- (E) $z = z_1 (1 + it)$ where t is a real parameter is a line through the point z_1 & perpendicular to oz_1 .
- The equation of a line passing through $z_1 \& z_2$ can be expressed in the determinant form as $\begin{vmatrix} z & \overline{z} & 1 \\ z_1 & \overline{z}_1 & 1 \\ z_2 & \overline{z}_2 & 1 \end{vmatrix}$

= 0. This is also the condition for three complex numbers to be collinear.

(G) Complex equation of a straight line through two given points z_1 & z_2 can be written as $z(\overline{z}_1 - \overline{z}_2) - \overline{z}(z_1 - z_2) + (z_1\overline{z}_2 - \overline{z}_1z_2) = 0$, which on manipulating takes the form as

 $\overline{\alpha}z + \alpha \overline{z} + r = 0$ where r is real and α is a non zero complex constant.

- (H) The equation of circle having centre z_0 & radius ρ is : $|z-z_0|=\rho$ or $z\overline{z}-z_0\overline{z}-\overline{z}_0z+\overline{z}_0z_0-\rho^2=0$ which is of the form $z\overline{z}+\overline{\alpha}z+\alpha\overline{z}+r=0$, r is real centre $-\alpha$ & radius $\sqrt{\alpha\overline{\alpha}-r}$. Circle will be real if $\alpha\overline{\alpha}-r\geq 0$.
- (I) The equation of the circle described on the line segment joining $z_1 & z_2$ as diameter is:

(i)
$$\arg \frac{z - z_2}{z - z_1} = \pm \frac{\pi}{2}$$
 or $(z - z_1)(\overline{z} - \overline{z}_2) + (z - z_2)(\overline{z} - \overline{z}_1) = 0$

Condition for four given points z_1 , z_2 , z_3 & z_4 to be concyclic is, the number $\frac{z_3 - z_1}{z_3 - z_2} \cdot \frac{z_4 - z_2}{z_4 - z_1}$ is real. Hence the equation of a circle through 3 non collinear points z_1 , z_2 & z_3 can be

taken as
$$\frac{(z-z_2)(z_3-z_1)}{(z-z_1)(z_3-z_2)}$$
 is real $\Rightarrow \frac{(z-z_2)(z_3-z_1)}{(z-z_1)(z_3-z_2)} = \frac{(\overline{z}-\overline{z}_2)(\overline{z}_3-\overline{z}_1)}{(\overline{z}-\overline{z}_1)(\overline{z}_3-\overline{z}_2)}$

- 13.(a) Reflection points for a straight line: Two given points P & Q are the reflection points for a given straight line if the given line is the right bisector of the segment PQ. Note that the two points denoted by the complex numbers z_1 & z_2 will be the reflection points for the straight line $\overline{\alpha}z + \alpha \overline{z} + r = 0$ if and only if ; $\overline{\alpha}z_1 + \alpha \overline{z}_2 + r = 0$, where r is real and α is non zero complex constant.
- (b) Inverse points w.r.t. a circle: www.MathsBySuhag.com, www.TekoClasses.com
 Two points P & Q are said to be inverse w.r.t. a circle with centre 'O' and radius ρ, if:
 (i) the point O, P, Q are collinear and on the same side of O.
 Note that the two points z₁ & z₂ will be the inverse points w.r.t. the circle
 z\overline{z}+\overline{\alpha}z+\overline{\alpha}z+r=0 if and only if z₁\overline{z}₂+\overline{\alpha}z₁+\overline{\alpha}z₂+r=0.
- 14. **PTOLEMY'S THEOREM**: www.MathsBySuhag.com, www.TekoClasses.com
 It states that the product of the lengths of the diagonals of a convex quadrilateral inscribed in a circle is equal to the sum of the lengths of the two pairs of its opposite sides.
 i.e. $|z_1 z_3| |z_2 z_4| = |z_1 z_2| |z_3 z_4| + |z_1 z_4| |z_2 z_3|$.
- 15. LOGARITHM OF A COMPLEX QUANTITY:

(i)
$$\operatorname{Log}_{e}(\alpha + i \beta) = \frac{1}{2} \operatorname{Log}_{e}(\alpha^{2} + \beta^{2}) + i \left(2n\pi + \tan^{-1}\frac{\beta}{\alpha}\right) \text{ where } n \in I.$$

(ii) i^i represents a set of positive real numbers given by $e^{-\left(2n\pi + \frac{\pi}{2}\right)}$, $n \in I$.