
1. Let RR:f ®  be a function such that
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)y(f)x(f

3
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, 0)0(f =  and 3)0('f = .  Then

(a) f(x) is a quadratic function
(b) f(x) is continuous but not differentiable
(c) f(x) is  differentiable in R
(d) f(x) is bounded in R

2. If the function f (x) = 
( )1/cos , 0

, 0

xx x
k x
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is continuous at x = 0,

then the value of k is
(a) 1 (b) –1
(c) 0 (d) e

3. If x2 + y2 = a2 and k = 
1
a

, then k is equal to
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4. Let a function RR:f ®  satisfy the equation
f (x + y) = f(x) + f(y) for all x, y, If the function f(x) is
continuous at x = 0, then
(a) f(x) = 0  for all x
(b) f(x) is continuous for all positive real x
(c) f(x) is continuous for all x
(d) None of these
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5. Differential coefficient of 1
2

2tan
1

x
x

-

-
 with respect to

1
2

2sin
1

x
x

-

+
 will be

(a) 1 (b) – 1

(c) – 1/2 (d) x

6. The values of a, b and c which make the function

2

3/ 2

sin(a 1)x sin x , x 0
x

f (x) c , x 0

x bx x , x 0
bx

ì + +ï <
ï
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continuous at x = 0 are

(a)
2
3a -

= , 
2
1c = , b = 0 (b)

2
3a = , 

2
1c = , 0b ¹

(c)
2
3a -

= , 
2
1c = , 0b ¹ (d) None of these

7. Let f(x), g(x) be two continuously differentiable functions
satisfying the relationships f ¢(x) = g(x) and f ²(x) = – f(x).
Let h(x) = [f(x)]2 + [g(x)]2. If h(0) = 5, then h (10)=
(a) 10 (b) 5
(c) 15 (d) None of these

8. The function f(x) = [x]2 – [x2] (where [y] is the greatest integer
function less than or equal to y), is discontinuous at :
(a) all integers
(b) all integers except 0 and 1
(c) all integers except 0
(d) all integers except 1

9. If n2

n2

n )1x(x
xsin)1x(xtanlim)x(f

++

++p
=

¥®
, then

(a) f is continuous at x = 0
(b) f is differentiable at x = 0
(c) f is continuous but not differentiable at x = 0
(d) None of these

10. The value of p for which the function
3

2

3

(4 1)
, 0

sin log 1( )
3

12(log 4) , 0

x
x

x x
f x

p

x

ì -
¹ï

é ùï += ê úí
ê úë ûï

ï =î
may be continuous at x = 0, is
(a) 1 (b) 2
(c) 3 (d) None of these

11. In the mean value theorem 
f (b) f (a) f (c)

b a
-

= ¢
-

, if a = 0,

b = 1/2 and f (x) = x (x – 1) (x – 2), the value of c is –

(a)
15

1
6

- (b) 1 15+

(c)
21

1
6

- (d) 1 21+

12. If (1 1/ )xy x= + , then 22 (2) 1/8
(log 3/ 2 1/ 3)

y +
-

 is equal to –

(a) 3 (b) 4
(c) 1 (d) 2

13. If å
¥

=

=
0n

n
n

,)a(log
!n

x)x(f  then at x = 0, f(x)

(a) has no limit
(b) is discontinuous
(c) is continuous but not differentiable
(d) is differentiable

14. ,
ee
ee.)x(g)x(fLet

x/1x/1

x/1x/1

-

-

+

-
=  where g is a continuous

function then )x(flim
0x®

 does not exist if

(a) g(x) is any constant function
(b) g(x) = x
(c) g(x) = x2

(d) g(x) = x h (x), where h(x) is a polynomial
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15. If f (x) = 1cot
2

x xx x-
- æ ö-

ç ÷è ø
, then f '(1) is equal to

(a) –1 (b) 1
(c) log 2 (d) –log 2

16. Let f : R ® R be a function defined by f (x) = max {x, x3}. The
set of all points where f (x) is NOT differentiable is
(a) {-1, 1} (b) {-1, 0}
(c) {0, 1} (d) {-1, 0, 1}

17. The function x2tan2
)x2(sin)x(f =  is not defined at

x = 
4
p

.  The value of f ÷
ø
ö
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è
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4
 so that f is continuous at x = 

4
p

is

(a) e (b)
e

1

(c) 2 (d) None of these
18. If g is the inverse function of f and '( )f x  = sin x, then

'( )g x  is

(a) { }cosec ( )g x (b) { }sin ( )g x

(c) { }
1

sin ( )g x
- (d) { }cos ( )g x

19.
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2
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)x2(
)xsin1(q
2

x,p

2
x,

xcos3
xsin1

)x(fLet

2
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3

If f(x) is continuous at x = 
2
p

, (p, q) =

(a) (1, 4) (b) ÷
ø
ö

ç
è
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2
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(d) None of these

20. Which of the following functions is differentiable at x = 0?

(a) ( )cos x x+ (b) ( )cos x x-

(c) ( )sin +x x (d) ( )sin -x x

21. Let 
x 2(e 1)f (x)

x xsin log 1
a 4

-
=

æ ö æ ö+ç ÷ ç ÷è ø è ø

 for x ¹ 0, and f(0) = 12. If f is

continuous at x = 0, then the value of a is equal to
(a) 1 (b) –1
(c) 2 (d) 3

22. If the equation ++ -
-

1n
1n

n
n xaxa  ............. + xa1  = 0

1a  ¹  0, n ³  2, has a positive root x = a , then the equation
1n

nxna -  + (n – 1) 2n
1n xa -

-  + ......... + 1a  = 0 has a positive
root, which is
(a) greater than a
(b) smaller than a
(c) greater than or equal to a
(d) equal to a

23. If f (x) = 

[ ]
[ ]

[ ]
[ ]

sin
, for 0

1

cos
2 ;  where [x] denotes the, for 0

, at 0

x
x

x

x
x

x
k x

ì
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greatest integer less than or equal to x, then in order that f
be continuous at x =0, the value of k is
(a) equal to 0 (b) equal to 1
(c) equal to –1 (d) indeterminate

24. If f (x) = ,
|])1xlog(sin|1[

]xtan[
2 ++

p  where [.] denotes the greatest

integer function and |.| stands for the modulus of the function,
then f(x) is
(a) discontinuous IÎ"x
(b) continuous " x
(c) non differentiable " x Î I
(d) a periodic function with fundamental period 1.
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25. If 2 21 1 ( )n n n nx y a x y- + - = - , then 
2

2
1
1

n

n
x dy

dxy
-
-  is

equal to
(a) 1 (b) x/y

(c)
1

1

n

n
x
y

-

- (d) None of these

26. The equation ex–8 + 2x – 17 = 0 has
(a) two real roots (b) one real root
(c) eight real roots (d) four real roots

27. If f '' (x) = – f (x) and g (x) = f ' (x) and
2 2

F( )
2 2
x xx f gæ ö æ öæ ö æ ö= +ç ÷ ç ÷ç ÷ ç ÷è ø è øè ø è ø

 and given that

 F (5) =5, then F (10) is equal to –
(a) 5 (b) 10
(c) 0 (d) 15

28. Choose the correct statements –
(a) If f ' (a+) and f ' (a–) exist finitely at a point, then f is

continuous at x = a.
(b) The function f (x) = 3 tan 5x – 7 is differentiable at all

points in its domain.

(c) The existence of 
x c
lim (f (x) g(x))
®

+  does not imply of

existence of 
x c
lim f (x)
®

 and 
x c
lim g(x)
®

.

(d) All of these
29. Statement-1 : If g (x) is a differentiable function g (1) ¹ 0,

g (–1) ¹ 0 and Rolles theorem is not applicable to

f (x) = 
2x 1

g(x)
-

 in [–1,1], then g (x) has atleast one root in
(–1, 1).
Statement-2 : If f (a) = f (b), then Rolles theorem is applicable
for x Î (a, b).
(a) Statement- 1 is True, Statement-2 is True, Statement-2

is a correct explanation for Statement -1
(b) Statement -1 is True, Statement -2 is True ; Statement-

2 is NOT a correct explanation for Statement - 1
(c) Statement -1 is False, Statement -2 is True
(d) Statement - 1 is True, Statement- 2 is False

30. Statement-1 : f (x) = | x | sin x, is differentiable at x = 0.
Statement-2 : If f (x) is not differentiable and g (x) is
differentiable at x = a, then f (x) . g (x) can still be differentiable
at x = a.
(a) Statement-1 is true, Statement-2 is true, Statement-2 is

a correct explanation for Statement -1
(b) Statement -1 is True, Statement -2 is True ; Statement-

2 is NOT a correct explanation for Statement - 1
(c) Statement -1 is False, Statement -2 is True
(d) Statement - 1 is True, Statement- 2 is False

Total Questions 30 Total Marks 120
Attempted Correct
Incorrect Net Score
Cut-off Score 41 Qualifying Score 60

MATHEMATICS CHAPTERWISE SPEED TEST-79

Success Gap = Net Score – Qualifying Score
Net Score = (Correct × 4) – (Incorrect × 1)

RESPONSE

GRID

25. 26. 27. 28. 29.
30.



1. (c) We have

,
3

)y(f)x(f
3

yxf +
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ø
ö
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è
æ +  f(0) =0 and f ¢ (0) = 3

h
)x(f)hx(flim)x(f

0h

-+
=¢

® h

)x(f
3

h3x3f
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0h
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\ f(x) = 3x + c, Q f(0) = 0 Þ c = 0
\ f(x) = 3x

2. (a) ( ) ( )1/

0 0

1lim cos lim log cos log
® ®

= Þ =x

x x
x k x k

x

0 0

1lim lim logcos log
® ®

Þ =
x x

x k
x

0

1lim 0 log 1.
®

Þ ´ = Þ =e
x

k k
x

3. (b) 2 2 2 2 2 0 /x y a x yy y x y+ = Þ + ¢ = Þ ¢ = -
Þ yy¢ + x = 0

2
2 11 0 yyy y y
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2 2 2 2
1
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1 1 11
11

k a x y x y yy
y

\ = = = =
+ +

+  

xy
y

é ù
¢ = -ê ú

ë û
Q

  2 3/ 22 2

| '' |
(1 )(1 ) 1

y y
yy y

- ¢¢
= =

+ ¢+ ¢ + ¢

4. (c) Since f(x) is continuous at x = 0 \  )0(f)x(flim
0x

=
®

Take any point x = a, then at x = a
)ha(flim)x(flim

0hax
+=

®®

[ ])h(f)a(flim
0h

+=
®   )]y(f)x(f)yx(f[ +=+Q

)0(f)a(f)h(flim)a(f
0h

+=+=
®

)a(f)0a(f =+=

\ f(x) is continuous at x = a. Since x = a is any arbitrary
point, therefore f(x) is continuous for all x.

5. (a) Let   1
2

2tan
1

xu
x

-=
-

...... (i)

and 1
2

2sin
1

xv
x

-=
+

...... (ii)

In equation (i) put, x = tan q

\   1 2 tantan
1

u - qé ù= ê -ë
–1

Þ  u = 2 q   Þ   2du
d

=
q

...... (a)

In equation (ii), put  x = tan q

\ 1
2

2 tansin
1 tan

v - qé ù
= ê ú

+ që û
1sin (sin 2 )-= q

Þ v = 2q  Þ  2dv
d

=
q

........ (b)

From equations (a) and (b),

du
dv

=
12 1
2

du d
d dv

q
´ = ´ =

q
\  Required differential coefficient will be 1.

6. (c) In the definition of the function, ,0b ¹  then f(x) will be
undefined in x > 0.
Q  f(x) is continuous at x = 0,    \ LHL = RHL = f(0)

Þ c
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xbxxlim
x

xsinx)1asin(lim 2/3

2

0x0x
0x0x

=
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<<
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0x0x
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Þ c
)1bx1(bx

1)bx1(lim1)1a(
0x

=
++

-+
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®

Þ a + 2 c
1bx1

1lim
0x

=
++

=
®

Þ a + 2  c
2
1

==   \ 0b,
2
1c,

2
3a ¹=-=

7. (b) Since f’(x) = g(x), f' (x) = g' (x)
Put f' (x) = – f(x). Hence g' (x) = –f(x)
we have h' (x) = 2f(x) f’(x) + 2g(x) g' (x)
= 2[f(x) g(x) + g(x) [–f(x)]] = 2 [f(x) g(x) – f(x) g(x)] = 0
\ h(x) = C, a constant
\ h(0) = C i.e. C = 5
h(x) = 5 for all x. Hence h (10) = 5.

8. (d) f(x) = [x]2 – [x2] = (–1)2 – (0)2 = 0, – 1< x < 0  1x0 2 <<Þ

= 0 – 0 = 0,  0 £ x < 1 and = 1 – 1 = 0, 1 £ x < 3

and = 1 – 3 = –2, 3  £ x < 4
\ From above it is clear that the function is discontinuous at
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9. (d) 0
10

010)0(f =
+

´+
=

n2

n2

n0x0x )1x(x
xsin)1x(xtanlimlim)x(flim

++

++p
=

¥®®® --

2

2

0x x
xtanlim p

=
-®

 )11x,0 x If ( <+® -

p= \  )0(fLHL ¹
\  f(x) is not continuous at x = 0 hence not differentiable also.

10. (d) For f (x) to be continuous at x = 0, we should have

0
lim

¥®   f (x) = f (0) = 12(log 4)3

0
lim

¥®  f (x) = 

3 2

0 2

4 1lim ·
1log 1sin 3

®

æ ö
ç ÷æ ö è ø-

´ç ÷ æ ö æ öè ø +ç ÷ç ÷ è øè ø

x

x

x
p px

x x x
p

= (log 4)3 · 1 · p · 
2

0 2 4
lim 1 1

3 18
®

æ ö
ç ÷
ç ÷- +¼è ø

x

x

x x

= 3p (log 4)3 · Hence p = 4.

11. (c)
f (b) f (a)f (c)

b a
-

=¢
-

Þ 2 3 / 8 0 33c 6c 2
1/ 2 0 4

-
- + = =

-

 Þ 
21

c 1
6

= ±  Þ 
21 1c 1 0,
6 2

æ ö= + Ïç ÷è ø  Þ 
21

c 1
6

= -

12. (a) Let 
11

x

y
x

æ ö= +ç ÷è ø
Taking logarithm of both sides, we get

1log log 1y x
x

é ùæ ö= +ç ÷ê úè øë û

Þ  
2

1 2
1 1 1( ) log 1

1
xy x

y x xx
æ ö æ ö= - + +ç ÷ ç ÷è ø è ø+

           = 
1 1

log 1
1x x

æ ö- + +ç ÷è ø+               ......... (1)

Since,  y (2) = (1 + 1/2)2 = 9/4

so, y1 (2) = (9/4) 
1 3

log
3 2

æ ö- +ç ÷è ø
Again differentiate eq (1) w.r.t (x), we get

2
2 1

2 2
( ) ( ) – [ ( )] 1 1–

( 1)( ( )) (1 )
y x y x y x

x xy x x
=

++
By putting x = 2, we get

2 1
2

(2) (2) – (
( (2))

y y y
y

Now, put value of y (2) and y1(2)

Þ y2 (2) = 
29 1 3 1log

4 3 2 8
æ ö æ ö- + -ç ÷ ç ÷è ø è ø

2

2
1 3 14 (2) 9 log –
8 2 3

yæ ö æ ö+ =ç ÷ ç ÷
è ø è ø

Þ Required expression = 3

13. (d) We have, å å
¥

=

¥

=
==

0n 0n

n
n

n

!n
)alogx()a(log

!n
x)x(f

xalogalogx aee
x

===

alog
h

1alim
h

)0(f)h0(flim)0(Lf e

h

0h0h
=

-
-

=
-

--
=¢

-
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alog
h

1alim
h

)0(f)h0(flim)0(Rf e

h

0h0h
=

-
=

-+
=¢

®®

Since ),0(Rf)0(Lf ¢=¢        \   f(x) is differentiable at x = 0
Since every differentiable function is continuous, therefore,
f(x) is continuous at x = 0.

14. (a) 1
e1
e1lim

ee
eelim

x/2

x/2

0xx/1x/1

x/1x/1

0x
=

+

-
=

+

-
-

-

®-

-

® ++

.1
1e
1elim

ee
eelimand x/2

x/2

0xx/1x/1

x/1x/1

0x
-=

+

-
=

+

-
-- ®-

-

®

Hence )x(flim
0x®

 exists if 
x 0
lim g(x) 0
®

= .

If g(x) = a ¹ 0 (constant) then

x 0 x 0
lim f (x) a and lim f (x) a.
® + ® -

= = -

 Thus )x(flim
0x®

 doesn’t exist in this case.

\ 
x 0
lim f (x)
®

exists in case of (b), (c) and (d) each.

15. (a) Let  f (x) 1cot
2

x xx x-
- æ ö-

= ç ÷è ø

Take out x–x common

f (x)
2

1 1cot
2

x

x
x

x
- æ ö-

= ç ÷è ø

Put xx = tan q

\ f (x) = cot–1
2tan 1

2 tan

ì ü-ï ïq
í ý

qï ïî þ
 = cot–1(– cot 2q)

= p – cot–1 (cot 2q)     [Q tan 2q = 2
2 tan

1 tan
q

- q
]

Þ f (x) = p – 2q = p – 2 tan–1 (xx)



Differentiate w.r.t. x, we get

f '(x) 
2

2 . (1 log )
1

x
x x x

x
= - +

+
\ At  x = 1

f ' (1)
2 (1 0) 1

1 1
-

= + = -
+

.

16. (d) f (x)   =  max. {x, x3}

= 
3

3

; 1

; 1 0
; 0 1

; 1

x x

x x
x x

x x

< -ì
ï

- £ £ï
í £ £ï
ï ³î

\ f ' (x) = 
2

2

1 ; 1

3 ; 1 0
1 ; 0 1

3 ; 1

x

x x
x

x x

< -ì
ï

- £ £ï
í £ £ï
ï ³î

Clearly f is not differentiable at  – 1, 0 and 1.
17. (b) f is  continuous at 4/x p= , if )4/(f)x(flim

4/x
p=

p®
.

Now, x2tan
4/x

2
)x2(sinlimL

p®
=

Þ x2sinlogx2tanlimLlog 2
4/x p®

=

÷
ø
ö

ç
è
æ

¥
¥

=
p® x2cot

x2sinloglim
24/x

2
1

2.x2eccosx2cot2
x2cot2lim 24/x

-=
-

=
p®

or 2/1eL -= \ e/1e)4/(f 2/1 ==p -

18. (a) Given 1( ) ( )f x g x- =

Þ [ ]( )x f g x=
Diff. both side w.r.t (x)

Þ [ ]1 ' ( ) . '( )f g x g x= Þ
1'( )

'( ( ))
g x

f g x
=

Given, '( ) sinf x x=

\ [ ]'( ( )) sin ( )f g x g x=

Þ [ ]1 co sec ( )
'( ( ))

g x
f g x

=

Hence, [ ]'( ) cosec ( )g x g x=

19. (c)
[ ]
[ ]h)2/(cos3

h)2/(sin1lim])2/[(f
2

3

0h -p

-p-
=p

®

-

2
1

hsin3
hcos1lim 2

3

0h
=

-
=

®

20h }]h)2/{(2[
}]h)2/sin{(1[qlim])2/[(f

+p-p

+p-
=p

®

+

8
q

h4
cosh)1(qlim 20h

=
-

=
®

.4q,
2
1p

8
q

2
1p ==Þ==\

20. (d) x  is non-differentiable function at
0x =  as L.H.D = –1 and R.H. D = 1

Q  
, 0
, 0

³ì
= í- <î

x x
x

x x

But cos h  is differentiable
\  Any combination of two such functions will be non-
differentiable . Hence option (a) and (b) are ruled out.
Now, consider sin x x+

'L  = 
0

sinlim
®

- + -
-h

h h
h

      = 
0

sinlim 1 1 1
®

- = - -
-h

h
h  = –2

0

sin
' lim

h

h h
R

h®

+
=

      = 
0

sinlim 1 1 1 2
h

h
h®

+ = + =
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Hence, sin x x-  is differentiable at x = 0.

21. (d)
x 2
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22. (b) Let f (x) = ++ -
-

1n
1n

n
n xaxa  ........... + xa1  = 0

The other given equation,
1n

nxna -  + (n – 1) 2n
1n xa -

-  + ....+ 1a = 0  = f ¢(x)

Given 0a1 ¹  Þ f(0) = 0

Again f (x) has root a,  0)(f =aÞ
\   f (0) = f(a)
\   By Rolle’s theorem,
f ¢(x) = 0 has root between ( )0, a

Hence )x(f ¢  has a positive root smaller than a.
23. (a) If f is continuous at x = 0, then

( ) ( )
0 0

lim ( ) lim 0
- +® ®

= =
x x

f x f x f

( ) ( )
0

0 lim
-®

Þ =
x

f f x

[ ]
[ ]0 0

cos 0
2lim (0 ) lim
0® ®

p
-

= - =
-h h

h
k f h

h

[ ]
[ ]0

cos
2lim

®

p
-

=
-h

h
k

h

[ ]
[ ]0

cos 1
2lim

1®

p
- -

=
- -h

h

h

0

cos
2lim ; 0

1®

pæ ö-ç ÷
è ø= =
-h

k k

24. (b) The denominator of the given function is always defined
Also, tan [x]p = tan n p = 0 [[x] = integer, say n]
\ f(x) = 0  " x
\  f(x) is continuous and differentiable for all x.

25. (c) Put cosnx = a ,  cosny = b

Þ 
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26. (b) Clearly x = 8 satisfies the given equation. Assume that
f (x) = ex – 8 + 2x – 17 = 0 has a real root a other than x = 8. We
may suppose that a > 8 (the case for a < 8 is exactly similar).
Applying Rolle's theorem on [8, a],
we get b Î (8, a), such that f ' (b) = 0.

But f '  (b)  =  eb – 8 + 2, so that  e b–8 = – 2 which is not
possible, Hence there is no real root other than 8.

27. (a) F ( ) .
2 2 2 2
x x x xx f f g gé ùæ ö æ ö æ ö æ ö= +¢ ¢ ¢ç ÷ ç ÷ ç ÷ ç ÷ê úè ø è ø è ø è øë û

Here, g (x) = f ' (x)
and   g' (x) = f '' (x) = – f (x)

so F ( ) 0
2 2 2 2
x x x x

x f g f gæ ö æ ö æ ö æ ö= - =¢ ç ÷ ç ÷ ç ÷ ç ÷è ø è ø è ø è ø
Þ F (x) is constant function
so F (10) = 5

28. (d) (a)
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Similarly,  
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\ f is continuous at x = a

(b) Function is not differentiable at 5x = (2n + 1) 
2
p

only, which are not in domain

(c) Let f (x) = 2
1

x
 and g (x) = – 

2
1

x
,

x 0
lim f (x) g(x)
®

+  exists whatever 
x 0
lim f (x)
®

 and

x 0
lim g(x)
®

 does not exist.

29. (d) Statement 1 : As f (–1) = f (1) and Rolles theorem is not
applicable, then it implies f (x) is either discontinuous
or f ' (x) does not exist at atleast one point in (–1, 1)
Þ g (x) = 0 at atleast one value of x in (–1, 1).
Statement 2 is false. Consider the example in
statement-1.

30. (a) f (x) = | x | sin x

h 0

| 0 h | sin (0 h) 0
L.H.D. lim

h®

- - -
=

h 0

h sin hlim 0
h®

-
= =

h 0

| 0 h | sin (0 h) 0
R.H.D. lim

h®

+ + -
=

f (x) is differentiable at x = 0
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