1. Let R be a relation on the set L of lines defined by $I_1 R I_2$ if I_1 is perpendicular to I_2 , then relation R is

(a) reflexive and symmetric
(b) symmetric and transitive
(c) equivalence relation
(d) symmetric

Answer: d

Explaination: (d), not reflexive, as $I_1 R I_2$ $\Rightarrow I_1 \perp I_1$ Not true Symmetric, true as $I_1 R I_2 \Rightarrow I2R h$ Transitive, false as $I_1 R I_2$, $I_2 R I_3$ $\Rightarrow I_1 \parallel I_3 . I_1 R I_2$.

2. Given triangles with sides T_1 : 3, 4, 5; T_2 : 5, 12, 13; T_3 : 6, 8, 10; T_4 : 4, 7, 9 and a relation R in set of triangles defined as R = {(Δ_1 , Δ_2) : Δ_1 is similar to Δ_2 }. Which triangles belong to the same equivalence class?

(a) T_1 and T_2 (b) T_2 and T_3 (c) T_1 and T_3 (d) T_1 and T_4

Answer: c

Explaination: (c), T_1 and T_3 are similar as their sides are proportional.

3. Given set A = $\{1, 2, 3\}$ and a relation R = $\{(1, 2), (2, 1)\}$, the relation R will be

- (a) reflexive if (1, 1) is added(b) symmetric if (2, 3) is added(c) transitive if (1, 1) is added
- (d) symmetric if (3, 2) is added

Answer: c

Explaination: (c), here $(1,2) \in R$, $(2,1) \notin R$, if transitive (1,1) should belong to R.

4. Given set A = {a, b, c). An identity relation in set A is

(a) R = {(a, b), (a, c)} (b) R = {(a, a), (b, b), (c, c)} (c) R = {(a, a), (b, b), (c, c), (a, c)} (d) R= {(c, a), (b, a), (a, a)}

Answer: b

Explaination: (b), A relation R is an identity relation in set A if for all $a \in A$, (a, a) $\in R$.

5. A relation S in the set of real numbers is defined as $xSy \Rightarrow x - y + \sqrt{3}$ is an irrational number, then relation S is

(a) reflexive

(b) reflexive and symmetric

(c) transitive

(d) symmetric and transitive

Answer: a

Explaination:

(a), reflexive, true as $x S x \Rightarrow x - x + \sqrt{3}$ $= \sqrt{3}$ is an irrational number. Symmetric, false e.g. $x = \sqrt{3}$, y = 2 $xSy \Rightarrow \sqrt{3} - 2 + \sqrt{3} = 2\sqrt{3} - 2$ is an irrational number. but $ySx \Rightarrow 2 - \sqrt{3} + \sqrt{3} = 2$ is not an irrational number. transitive, false e.g. $x = 1 + \sqrt{3}$, y = 5, $z = 2\sqrt{3}$ $xSy \Rightarrow 1 + \sqrt{3} - 5 + \sqrt{3} = 2\sqrt{3} - 4$ is an irrational number. $ySz \Rightarrow 5 - 2\sqrt{3} + \sqrt{3} = 5 - \sqrt{3}$ is an irrational number. But $xSz \Rightarrow 1 + \sqrt{3} - 2\sqrt{3} + \sqrt{3} = 1$ not an irrational number.

6. Set A has 3 elements and the set B has 4 elements. Then the number of injective functions that can be defined from set A to set B is

- (a) 144
- (b) 12
- (c) 24
- (d) 64

Answer: c Explaination: (c), total injective mappings/functions = ${}^{4}P_{3} = 4! = 24$.

7. Given a function If as f(x) = 5x + 4, $x \in R$. If $g : R \to R$ is inverse of function 'f then

(a) g(x) = 4x + 5(b) $g(x) = \frac{5}{4x-5}$ (c) $g(x) = \frac{x-4}{5}$ (d) g(x) = 5x - 4

Answer: c

Explaination: (c), as y = f(x) $\Rightarrow \quad y = 5x + 4$ $\Rightarrow \quad x = \frac{y - 4}{5}$ $\therefore \quad f^{-1}(y) = \frac{y - 4}{5}$ or $f^{-1}(x) = \frac{x - 4}{5}$.

8. Let A = {a, b }. Then number of one-one functions from A to A possible are

(a) 2 (b) 4 (c) 1 (d) 3

Answer: (a)

Explaination: (a), as if n(A) = m, then possible one-one functions from A to A are m!