CHAPTER-07 SOLUTIONS

Definition: Homogeneous mixture of solute and solvent

Concentration: Concentration is the term which represents any type of solution

 $X_B = \frac{MORES OF SOURCE}{MOREs of solute + MOREs of solvent}$

$$X_A + X_B = 1$$

 $\begin{array}{l} \text{Dilution}\\ M_1V_1 = M_2V_2; N_1V_1 = N_2V_2\\ \text{I: when acid-acid or base-base mixed}\\ N_R = \frac{N_1V_1 + N_2V_2 + N_3V_3 + \cdots}{V_1 + V_2 + V_3 + \cdots}\\ \text{II: a) complete Neutralisation}\\ N_AV_A = N_BV_B(A \rightarrow Acid; B \rightarrow Base)\\ N_R = \frac{N_AV_A}{V_A + V_B} (N_R \text{ is the normality of salt)}\\ \text{ b) Incomplete Neutralisation}\\ N_R = \frac{|N_AV_A - N_BV_B|}{V_A + V_B}\end{array}$

CII O

COLLIGATIVE PROPERTY

Colligative property of dilute solution depends upon relative number of particles of solute & do not depend upon nature of solute particles.

1. Relative Lowering of a vapour pressure

- 2. Elevation in Boiling point
- 3. Depression in Freezing point
- 4. Osmotic Pressure

essure (<i>n</i>)	Osmosis: Net flow of solvent	*Isotonic solution:	*When $\pi_1 > \pi_2$ or
	molecules from dilute	$\pi = \pi_2$ (Primary	$C_1 > C_2$
	solution to concentrated	condition) At	The solution 1 is
	solution through semi-	constant T; $C_1 = C_2$	called hypertonic
	permeable membrane.	(secondary	solution,
$\mathbf{P_{1}}$	$\pi = hdg$	condition)	solution 2 is
Eic.	For dilute solution:		called hypotonic
.ou	$\pi = i \times CRT$		solution.
)sr			
С			

Azeotropic Mixture: Binary mixtures having	Reverse Osmosis: When
same composition in liquid & vapour phase &	(External Pressure) >
boil at a constant temperature. These mixtures	Osmotic Pressure then

are formed only by non-ideal solutions. They are	solvent molecules move
 a) Minimum boiling azeotrope: Show large positive deviation from Raoult's law. 	nom solution to solvent.
b) Maximum boiling azeotrope: Show large negative deviation from Raoult's law.	
Components of mixture cannot be separated by fractional distillations.	
Henrys Law: According to Henrys Law law at constant temperature.	Cryoscopic constant is maximum for camphor &
Partial pressure of Gas (P) \propto Solubility of gas in liquid.	it is the best solvent for determination of molar
Partial Pressure of Gas (P) \propto Mole fraction of gas dissolved (X).	mass of solute by depression in freezing
$P = K_H \times X(K_H: Henry's constant)$	point.
K_H depends upon natue of gas, temperature & nature of liquid	
$T \uparrow \Rightarrow K_H \uparrow \text{ Solubility } (X) \downarrow$	
Best method to determines molecular weight of macromolecules like protein is osmotic pressure because osmotic pressure can be easily measured at room temperature.	Ethylene Glycol is usually added to water in the radiator to lower its freezing point. It is called anti-freeze. NaCl & $CaCl_2$ does the same work to clear shown from the roads.
 M,F,N, & % by volume, % w/V are temperature dependent terms. K_b & K_f are characteristics property of solvent 	Gases which can react with solvent do not follow Henry's law.
	 > 0.91% W/V NaCl solution is isotonic with blood. > When density ≤ 1 ⇒

When density $> 1 \Rightarrow$ m < M

