ELECTROCHEMISTRY

ELECTRODE POTENTIAL

For any electrode \rightarrow oxidiation potential = – Reduction potential

 $E_{cell} = R.P$ of cathode – R.P of anode

 E_{cell}^{on} = R.P. of cathode + O.P of anode

 E_{cell}^{cont} is always a +ve quantity & Anode will be electrode of low R.P E_{cell}^{o} = SRP of cathode – SRP of anode.

O Greater the SRP value greater will be oxidising power.

GIBBS FREE ENERGY CHANGE :

 $\Delta G = - nFE_{cell}$ $\Delta G^{\circ} = - nFE_{cell}^{\circ}$

NERNST EQUATION : (Effect of concentration and temp on emf of cell)

$$\begin{split} &\Delta G = \Delta G^{o} + RT \, \ell n Q \qquad (\text{where Q is raection quotient}) \\ &\Delta G^{o} = - RT \, \ell n \, K_{eq} \\ &E_{cell} = E^{o}_{cell} - \frac{RT}{nF} \, \ell n \, Q \\ &E_{cell} = E^{o}_{cell} - \frac{2.303 RT}{nF} \log Q \\ &E_{cell} = E^{o}_{cell} - \frac{0.0591}{n} \log Q \qquad [At 298 K] \\ &At chemical equilibrium \\ &\Delta G = 0 \qquad ; \qquad E_{cell} = 0. \\ &\log K_{eq} = \frac{nE^{o}_{cell}}{0.0591} \cdot \\ &E^{o}_{cell} = \frac{0.0591}{n} \log K_{eq} \\ &For an electrode M(s)/M^{n+}. \end{split}$$

$$E_{M^{n+}/M} = E^{o}_{M^{n+}/M} - \frac{2.303RT}{nF} \log \frac{1}{[M^{n+}]}.$$

CONCENTRATION CELL :

0

A cell in which both the electrods are made up of same material.

For all concentration cell $E^{\circ}_{cell} = 0$.

(a) Electrolyte Concentration Cell : eg. $Zn(s) / Zn^{2+}(c_1) || Zn^{2+}(c_2) / Zn(s)$ $E = \frac{0.0591}{2} \log \frac{C_2}{C_1}$ (b) **Electrode Concentration Cell: eg.** Pt, $H_2(P_1 \text{ atm}) / H^+(1M) / H_2(P_2 \text{ atm}) / Pt$ $E = \frac{0.0591}{2} \log \left(\frac{P_1}{P_2} \right)$ **DIFFERENT TYPES OF ELECTRODES :** 1. Metal-Metal ion Electrode M(s)/Mⁿ⁺. $M^{n+} + ne^{-} \longrightarrow M(s)$ $E = E^{\circ} + \frac{0.0591}{p} \log[M^{n+}]$ 2. Gas-ion Electrode Pt /H₂(Patm) /H⁺ (XM) as a reduction electrode $H^+(aq) + e^- \longrightarrow \frac{1}{2}H_2(Patm)$ $E = E^{\circ} - 0.0591 \log \frac{P_{H_2} \dot{\overline{2}}}{R_{H_1}}$ Oxidation-reduction Electrode Pt / Fe²⁺, Fe³⁺ 3. as a reduction electrode $Fe^{3+} + e^{-} \longrightarrow Fe^{2+}$ $E = E^{\circ} - 0.0591 \log \frac{[Fe^{2+}]}{Fe^{3+1}}$ 4. Metal-Metal insoluble salt Electrode eq. Aq/AqCl, Clas a reduction electrode $AgCI(s) + e^{-} \longrightarrow Ag(s) + CI^{-}$ $E_{CI^{-}/AqCI/Aq} = E_{CI^{-}/AqCI/Aq}^{0} - 0.0591 \log [CI^{-}].$ ELECTROLYSIS : (a) K⁺, Ca⁺², Na⁺, Mg⁺², Al⁺³, Zn⁺², Fe⁺², H⁺, Cu⁺², Ag⁺, Au⁺³. Increasing order of deposition.

(b) Similarly the anion which is strogner reducing agent(low value of SRP) is liberated first at the anode.

 $SO_4^{2-}, NO_3^-, OH^-, CI^-, Br^-, I^-$

FARADAY'S LAW OF ELECTROLYSIS :

First Law : w = Z it Z = Electrochemical equivalent of substanceW = ZQSecond Law : $\frac{W}{E}$ = constant $\frac{W_1}{E_4} = \frac{W_2}{E_2} = \dots$ WαF $\frac{W}{F} = \frac{i \times t \times current \ efficiency factor}{96500}.$ **Current efficiency** = $\frac{\text{actual mass deposited/produced}}{\text{Theoritical mass deposited/produced}} \times 100$ CONDITION FOR SIMULTANEOUS DEPOSITION OF Cu & Fe AT CATHODE $E^{\circ}_{Cu^{2^+}/Cu} - \frac{0.0591}{2} \log \frac{1}{Cu^{2^+}} = E^{\circ}_{Fe^{2^+}/Fe} - \frac{0.0591}{2} \log \frac{1}{Fe^{2^+}}$ Condition for the simultaneous deposition of Cu & Fe on cathode. CONDUCTANCE : Conductance = $\frac{1}{\text{Resistance}}$ æ Specific conductance or conductivity : æ $K = \frac{1}{2}$ (Reciprocal of specific resistance) K = specific conductance Equivalent conductance : æ $\lambda_{\mathsf{E}} = \frac{\mathsf{K} \times 1000}{\mathsf{Normality}}$ unit : -ohm⁻¹ cm² ea⁻¹ æ Molar conductance : $\lambda_{m} = \frac{K \times 1000}{Molarity}$ unit : -ohm⁻¹ cm² mole⁻¹ specific conductance = conductance × $\frac{\ell}{2}$ KOHLRAUSCH'S LAW :

Variation of λ_{eq} / λ_{M} of a solution with concentration :

(i) Strong electrolyte

 $\lambda_{M}{}^{c}=\,\lambda_{M}^{\infty}\,-\,b\,\sqrt{c}$

(ii) Weak electrolytes : $\lambda_{\infty} = n_{+} \lambda_{+}^{\infty} + n_{-} \lambda_{-}^{\infty}$ where λ is the molar conductivity $n_{+} = No$ of cations obtained after dissociation per formula unit $n_{-} = No$ of anions obtained after dissociation per formula unit APPLICATION OF KOHLRAUSCH LAW :

1. Calculation of λ_{M}^{0} of weak electrolytes :

 $\lambda_{M(CH3COOHI)}^{0} = \lambda_{M(CH3COONa)}^{0} + \lambda_{M(HCI)}^{0} - \lambda_{M(NaCI)}^{0}$

2. To calculate degree of diossociation of a week electrolyte

$$\alpha = \frac{\lambda_m^c}{\lambda_m^0}$$
 ; $K_{eq} = \frac{c\alpha^2}{(1-\alpha)}$

3. Solubility (S) of sparingly soluble salt & their K_{sp}

$$\lambda_{M}^{c} = \lambda_{M}^{\infty} = \kappa \times \frac{1000}{\text{solubility}}$$

 $K_{sp} = S^{2}.$

Transport Number :

$$t_{c} = \left[\frac{\mu_{c}}{\mu_{c} + \mu_{a}}\right], \qquad \quad t_{a} = \left[\frac{\mu_{a}}{\mu_{a} + \mu_{c}}\right].$$

Where $t_c =$ Transport Number of cation & $t_a =$ Transport Number of anion