NURTURE COURSE

QUANTUM NUMBER & ELECTRONIC CONFIGURATION PERIODIC TABLE & PERIODIC PROPERTIES CHEMICAL BONDING

QUANTUM NUMBER & ELECTRONIC Configuration

•	Theory	01
•	EXERCISE-(O-1)	14
•	EXERCISE-(O-2)	16
•	EXERCISE-(S-1)	18
•	EXERCISE-(S-2)	19
•	EXERCISE-JEE(Main)	22
•	EXERCISE-JEE(Advanced)	24
•	ANSWER KEY	25
	PERIODIC TABLE & PERIODIC)
	PROPERTIES	
•	Theory	26
•	EXERCISE-(O-1)	48
•	EXERCISE-(O-2)	52
•	EXERCISE-(S-1)	54
•	EXERCISE-(S-2)	55
•	EXERCISE-JEE(Main)	58
•	EXERCISE-JEE(Advanced)	62
•	ANSWER KEY	63
	CHEMICAL BONDING	
•	Theory	64
•	EXERCISE-(O-1)	86
•	EXERCISE-(O-2)	89
•	EXERCISE-(S-1)	91
•	EXERCISE-(S-2)	92
•	EXERCISE-JEE(Main)	95
•	EXERCISE-JEE(Advanced)	99
•	ANSWER KEY	103

QUANTUM NUMBER & ELECTRONIC CONFIGURATION

MATTER & ITS CLASSIFICATION

ALLEN _

1

ALLEN

Example.1 Which of the following is homogeneous mixture :

(A) Oil + Water	(B) Milk
-----------------	----------

(C) Salt dissolved in water	(D) All of these

Example.2 Which of the following molecule is tetra-atomic :

(A) CH_2Cl_2 (B) NH_3 (C) H_2O (D) Both (B) and (C)

ATOM: An atom is the smallest particle of an element (made up of still smaller particle like electrons, protons, neutrons etc.) which can take part in a chemical reaction. It may or may not exist free in nature.

Name of	Mass	Nature	Amount of charge	Presence in
particle		of charge		the atom
(i) Electron	$9.11 \times 10^{-28} g$	Negatively	-1.602×10^{-19}	Outside
symbol = (e)	$\frac{1}{1837}$ th	charged	Coulomb	the nucleus
Notation $=_{-1}e^{\circ}$	of H-atom		or	
Discoverer			$-4.8 \times 10^{-10} \text{ e.s.u}$	
J.J. Thomson				
(1897)				
(ii) Proton	$1.6725 \times 10^{-24} g$	Positively	$+ 1.602 \times 10^{-19}$	Inside
symbol = (p)		charged	coulomb	the
Notation = $({}_{1}H^{1})$				
			10	nucleus of
Discoverer			$+4.8 \times 10^{-10}$ e.s.u.	an atom
Rutherford (1911)				
(ii) Neutron	$1.675 \times 10^{-24} g$	Neutral	0	Inside
symbol = (n)				the
Notation = $(_0 n^1)$				nucleus of
Discoverer				an atom
J. Chadwick				
(1932)				

Representation of atom : $_{Z}X^{A}$

 $A \rightarrow Mass number : (total number of protons + total number of neutrons present in an atom.)$

 $Z \rightarrow$ Atomic number : (total number of protons present in an atom.)

⇒ *Isotope*: Atoms of given element which have same atomic number but different mass number are called isotope : e.g. $_{1}H^{1}$, $_{1}H^{2}$, $_{1}H^{3}$ etc.

 \Rightarrow *Isobar*: Atoms of different elements with the same mass number but different atomic number.

e.g. $_{18}Ar^{40}$, $_{19}K^{40}$ and $_{20}Ca^{40}$

⇒ *Iso-electronic species*: Species (atom, molecules or ions) having same number of electrons are called iso-electronic e.g H⁻, He, Li⁺ and Be²⁺ have 2 valence electrons each.

Note: Now a days this concept is extended to consider the same valence shell electron also.

- \Rightarrow *Iso-sters* : Species having same number of electrons & same number of atoms. eg. N₂O, CO₂
- \Rightarrow *Iso-diaphers* : Species having same difference in number of neutrons and protons. eg. ${}^{12}_{6}$ C, ${}^{16}_{8}$ O and ${}^{14}_{7}$ N.
- \Rightarrow *Orbital*: An orbital is defined as that zone in space where electron is most likely to be found .The orbitals are characterized by a set of 3 quantum numbers (n,*l*,m).

QUANTUM NUMBERS : Quantum numbers give complete information about an electron or orbital in an atom.

- 1. Principal Quantum number (n) :
- (i) Permissible value of $n \rightarrow 1$ to ∞
- (ii) It represents shell number/energy level
- (iii) The energy states corresponding to different principal quantum numbers are denoted by letters K,L,M, N etc.

n	:	1	2	3	4	5	6
Designation of shell	:	Κ	L	Μ	Ν	0	Р

- (iv) It indicates the distance of an electron from the nucleus.
- (v) It also determines the energy of the electron. In general higher the value of 'n', higher is the energy of a electron.
- (vi) It give an idea of total number of orbitals & electron (which may) present in a shell & that equal to $n^2 \& 2n^2$ respectively.
- 2. Azimuthal Quantum number (l) :
- (i) The values of l depends upon the value of 'n' and possible values are '0' to (n-1).
- (ii) It gives the name of subshells associated with the energy level and number of subshells within an energy level.
- (iii) The different value of 'l' indicates the shape of orbitals and designated as follows :

Value	Notation	Name	Shape
l = 0	S	Sharp	Spherical
l = 1	р	Principal	Dumbell
l = 2	d	Diffused	Double Dumbell
<i>l</i> = 3	f	Fundamental	Complex

(iv) It also determines the energy of orbital along with n.

For a particular energy level/shell energy of subshell is in the following order $\rightarrow s$

node06\B0AH+A\\Kota\EE[Advanced]\Nurture\Chem\Shee\Quantum number,Periodic table & Chemical banding\Eng\01_Theory & Ex.p65

JEE-Chemistry

- (v) It gives the total number of orbitals in a subshell & that equals to (2l + 1) and number of electron in a subshell = 2(2l+1)
- Magnetic Quantum number (m or m_1): *3*.
- The value of m depends upon the value of l and it may have integral value -l to +l including zero. (i)
- It gives the number of orbitals in a given subshell and orientation of different orbitals in space. (ii)

e.g. for n = 4, l = 0 to 3.

l	0	1	2	3
m	0	+1, 0, -1	+2, 1, 0, -1, -2	+3, +2, +1, 0, -1, -2, -3
Possible Orientation	1	3	5	7
Orbitals	S	p_x , p_y , p_z	$d_{z^2}, d_{x^2-y^2}$ d_{xy}, d_{yz}, d_{xz}	Not in syllabus

The orbitals having same value of n and l but different value of m, have same energy in absence of (iii) external electric & magnetic field. These orbitals having same energy of a particular subshell is known as Degenerate orbitals.

```
Spin Quantum number (s) & magnetic spin quantum number (m):
4.
```

- While moving around the nucleus, the electron always spins about its own axis either clockwise or (i) anticlockwise. The magnetic spin quantum number represents the direction of electron spin (rotation) around its own axis (clockwise or anticlockwise).
- There are two possible values of \mathbf{m}_{s} are $+\frac{1}{2}$ & $-\frac{1}{2}$ and represented by the two arrows \uparrow (spin up) (ii)

and \downarrow (spin down).

RULES FOR FILLING ELECTRONS :

1. Pauli's exclusion principle

'No two electrons in an atom can have same values of all the four quantum numbers.

An orbital accommodates two electron with opposite spin. These two electrons have same values of principal, azimuthal and magnetic quantum number but the fourth, i.e. magnetic spin quantum number will be different. i.e.

For

For K, shell (n = 1)

$$l = 0, m = 0$$

For 1st Electron $n = 1, l = 0, m = 0, m_s = +\frac{1}{2}$
For 2nd Electron $n = 1, l = 0, m = 0, m_s = -\frac{1}{2}$

2. Aufbau Principle (Means Building up) :

The electrons are added progressively to the various orbitals in the order of increasing energies starting with the orbital of the lowest energy

1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 4f < 5d < 6p < 7s < 5f < 6d < 7pAlternatively, the order of increase of energy of orbitals can be calculated from (n + l) rule.

- (i) Lower the value of (n + l) for an orbital, the lower will be its energy.
- (ii) If two orbitals have the same (n + l) value, then orbital with lower value of n has the lower energy.

e.g. 2p & 3s

For
$$2p, n = 2, l = 1, (n + l) = 2 + 1 = 3$$

For 3s, n = 3, l = 0, (n + l) = 3 + 0 = 3

Then for 2p, n is lesser than for 3s, so 2p has lower energy than 3s.

(iii) $1s < 2s = 2p < 3s = 3p = 3d < 4s = 4p = 4d = 4f \dots$ energy order of different orbitals for single electron system like H, He⁺, Li⁺² etc.

(A) For single electron or hydrogenic atom(B) Multi electronic atomsEnergy level diagram for few electronic shells :

ALLEN.

node06 \B0AH.A1\Kdra\IEE(Advanced)\Nurture\Chem\Shee\Quantum number,Periodictable & Chemical banding\Eng\01_Theory & Ex.p65

Е

ALLEN

-	-	
Ans.	For	4s, $n = 4$, $l = 0$, $(n + l) = 4$
	For	3p, n = 3, l = 1, (n + l) = 4
	For	4p, n = 4, $l = 1$, (n + l) = 5
	For	3d, $n = 3$, $l = 2$, $(n + l) = 5$
	\Rightarrow	3p < 4s < 3d < 4p increasing order

Example.4 Write the increasing order of energies of 4s, 3p, 4p and 3d.

3. Hund's rule of maximum multiplicity :

This rule deals with the filling of electrons into the orbitals belonging to the same subshell i.e. orbitals of equal energy, called degenerate orbitals.

"Electrons are distributed among the orbitals of a subshell in such a way as to give the maximum number of unpaired electron with parallel spins."

"Pairing of electrons in the orbitals belonging to the same subshell (p, d, f) does not take place until each orbital belonging to that subshell has got one electron each i.e. singly occupied. Moreover, the singly occupied orbitals must have the electrons with the parallel spin multiplicity"

Multiplicity = 2|S| + 1, where S = Total spin.

node06 @0AHANKeteDEEEAdveneed/Nunture/Chem/Sheet/Quentum number,Periodicatable & Chemical bording/Eng/01_Theory & Ex.pd5

ELECTRONIC CONFIGURATION OF ATOMS :

The distribution of electrons in various shells, subshells and orbitals, in an atom of an element, is called its electronic configuration.

Electronic configuration :

Extra stability of Half-filled and fully-filled orbitals.

The electronic configuration of most of the atoms follows the Aufbau's rule. However, in certain elements such as Cr, Cu etc. Where the two subshells (4s and3d) differ slightly in their energies (4s < 3d), an electron shifts from a subshell of lower energy (4s) to a subshell of higher energy (3d), provided such a shift results in all orbitals of the subshell of higher energy getting either completely filled or half-filled.

 $_{24}$ Cr \rightarrow [Ar] 3d⁵, 4s¹ and not [Ar] 3d⁴ 4s²

 $_{29}$ Cu \rightarrow [Ar] 3d¹⁰, 4s¹ and not [Ar] 3d⁹ 4s²

It has been found that there is extra stability associated with these electronic configuration. This stabilization is due to the following two factors.

(i) Symmetrical distribution of electron : It is well known that symmetry leads to stability. The completely filled or half-filled subshell have symmetrical distribution of electron in them and are therefore more stable. This effect is more dominant in d and f-orbitals. This means three or six electrons in p-subshell, 5 or 10 electrons in d-subshell and 7 or 14 in f-subshell forms a stable arrangement.

JEE-Chemistry

(ii) Exchange energy: This stabilizing effect arises whenever two or more electrons with the same spin are present in the degenerate orbitals of a subshell. these electrons tend to exchange their positions and the energy released due to this exchange is called exchange energy. The number of exchanges that can take place is maximum when the subshell is either half filled or fully filled. As result the exchange energy is maximum and so is the stability.

Total exchange pairs = 10

$$\frac{n(n-1)}{2}$$
 \rightarrow Number of exchange pairs

 $n \rightarrow$ Number of electron with parallel spins.

e.g.	↑	1	1	1		
	Only	6 tota	lavel	anga	nossi	hl

Only 6 total exchange possible

Exceptional electronic configuration

S.No.	Element	Z	Configuration
1	Cr	24	$[Ar]4s^13d^5$
2.	Cu	29	$[Ar]4s^{1}3d^{10}$
3.	Nb	41	$[Kr]5s^{1}4d^{4}$
4.	Мо	42	$[\mathrm{Kr}]\mathrm{5s}^{1}\mathrm{4d}^{5}$
5.	Ru	44	$[Kr]5s^{1}4d^{7}$
6.	Rh	45	$[Kr]5s^{1}4d^{7}$
7.	Pd	46	$[Kr]4d^{10}$
8.	Ag	47	$[\mathrm{Kr}]\mathrm{5s}^{1}\mathrm{4d}^{10}$
9.	La	57	$[Xe]6s^25d^1$
10.	Ce	58	$[Xe]6s^24f^15d^1$
11.	Gd	64	$[Xe]6s^24f^75d^1$
12.	Pt	78	$[Xe]6s^{1}4f^{14}5d^{9}$
13.	Au	79	$[Xe]6s^{1}4f^{14}5d^{10}$
14.	Ac	89	$[Rn]7s^{1}6d^{1}$
15.	Th	90	$[Rn]7s^26d^2$

ALLEN

MAGNETIC PROPERTIES :

Paramagnetism :

- (i) The substances which are weakly attracted by magnetic field are paramagnetic and this phenomenon is known as paramagnetism.
- (ii) Their magnetic character is retained till they are in magnetic field and lose their magnetism when removed from magnetic field.

Diamagnetism :

- (i) The substances which are weakly repelled by magnetic field are diamagnetic and this phenomenon is known as diamagnetism.
- (ii) Diamagnetic substances lack unpaired electrons and their spin magnetic moment is zero e.g., NaCl, N_2O_4 etc.

Spin magnetic moment :

The spin magnetic moment of electron (excluding orbit magnetic moment) is given by : $\mu = \sqrt{[n(n+2)]}$ B.M.

Where n is number of unpaired electron in species.

The magnetic moment is expressed in Bohr magneton (B.M.)

- **Example.6** A compound of vanadium has magnetic moment of 1.73 BM. Work out the electronic configuration of vanadium ion in the compound.
- Ans. Vanadium belongs to 3d series with Z = 23. The magnetic moment of 3d series metal is given by spin only formula.

 $\mu = \sqrt{n(n+2)}$ BM (BM = Bohr's magneton)

$$\therefore \qquad \sqrt{1.73} = \sqrt{3}$$

 \Rightarrow n(n+2) = 3 \Rightarrow n = 1

- \Rightarrow Magnetic moment correspond to one unpaired electron.
- \Rightarrow Electronic configuration of vanadium atom $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^3$.

For one unpaired electron 4 electron must be removed in which first 2 electron are lost from 4s orbital (outermost).

Electronic configuration of V⁺⁴

 $1s^2 2s^2 2p^6 3s^2 3p^6 4s^0 3d^1$

Nodal Planes of different orbitals :

Nodal plane is a plane at which the probability of finding an electron becomes zero.

Orbital	Nodal plane	Orbital	Nodal plane			
S	None	d _{xv}	XZ & YZ planes			
p _x	YZ plane	d _{vz}	XZ & XY planes			
p _y	XZ plane	d _{xz}	XY & YZ planes			
p _z	XY plane	$d_{x^2-y^2}$	Planes perpendicular to XY plane, passing			
			through origin (nucleus) and inclined at 45° to X & Y axis.			
		d_{z^2}	None (two nodal cones are available)			

node06\160AH.A1\Kata\EE[Advanced]\Nunture\Chem\Shee\Quantum number,Periodictable & Chemical banding\Eng\01_Theory & Ex.pd5

Е

eg.

SCREENING EFFECT (s) AND EFFECTIVE NUCLEAR CHARGE (Z_{eff})

- (a) Valence shell electron suffer force of attraction due to nucleus and force of repulsion due to inner shell electrons.
- (b) The decrease in force of attraction on valence electron due to inner shell electron is called screening effect or shielding effect.(i.e. total repulsive force is called shielding effect.)
- (c) Due to screening effect, valence shell electron experiences less force of attraction by nucleus.
- (d) Due to screening effect, net attractive force felt by the electron is measured by effective nuclear charge, Z_{eff}
- (e) If nuclear charge = Z, then effective nuclear charge = $Z \sigma$ (Where σ 'sigma' is called screening constant/sheilding constant)

So, $Z_{eff} = Z - \sigma$

<u>CALCULATION OF σ </u> (using slater's rule)

To calculate the shielding constant (σ) :

(a) Write the electronic configuration of the element in the following order and groupings :

(1s), (2s, 2p), (3s, 3p), (3d), (4s, 4p), (4d), (4f), (5s, 5p), etc.

For s and p electrons :

(b) Electrons in any group to the right of the (ns, np) group contribute nothing to the shielding constant.

(n-shell no. of the electron for which σ is calculated)

- (c) All of the other electrons in the (ns, np) group, shield the concern electron to an extent of 0.35 each. (Except for the 1s orbital for which value is 0.30).
- (d) All electrons in the (n-1) shell shield to an extent of 0.85 each.
- (e) All electrons (n-2) or lower group shield completely; that is, their contribution is 1.00 each.

For d and f electrons :

- (f) Electrons in any group to the right of the nd or nf group contribute nothing to the shielding constant.
- (g) All the other electrons in the nd or nf group, shield the valence electron to an extent of 0.35 each.
- (h) All electrons in groups lying to the left of the nd or nf group contribute 1.00.

ALLEN

	(Effective Nuclear charge of elements of second period)							
Element	nt Electronic		σ of ns & np	σ (n-1)	Total	Effective		
	Configaration		electron	orbital	Screeing	nuclear		
					Constant	charge#		
			(a)	(b)	(a + b)	Z*=Z – σ		
₃ Li	$1s^2 2s^1$	3	_	0.85×2=1.70	1.70	1.30		
₄ Be	$1s^2, 2s^2$	4	1× 0.35=0.35	0.85×2=1.70	2.05	1.95		
${}_5\mathbf{B}$	$1s^2, 2s^2, 2p^1$	5	2× 0.35=0.70	0.85×2=1.70	2.40	2.60		
₆ C	$1s^2, 2s^2, 2p^2$	6	3× 0.35=1.05	0.85×2=1.70	2.75	3.25		
₇ N	$1s^2, 2s^2, 2p^3$	7	4× 0.35=1.40	0.85×2=1.70	3.10	3.90		
O_8	1s ² ,2s ² ,2p ⁴	8	5× 0.35=1.75	0.85×2=1.70	3.45	4.55		
₉ F	$1s^2, 2s^2, 2p^5$	9	6× 0.35=2.10	0.85× 2=1.70	3.80	5.20		

Calculated for valence electron.

Key Points :

- (a) From left to right in a period Z_{eff} increases
- (i) For s and p-block elements, Z_{eff} in a period increases by 0.65 where atomic number increases by 1, and hence atomic size decreases considerably.
- (ii) In transition series Z increase by + 1 but screening constant increases by 0.85 So Z_{eff} is increased by 0.15
 - (1-0.85=0.15) [Because e⁻ enters in (n-1) orbit which has value of $\sigma = 0.85$]
- (b) From top to bottom in a group Z_{eff} remain constant for s-block elements, after Li and Be.

Element	Li	Na	Κ	Rb	Cs	Fr
Z_{eff}	1.30	2.20	2.20	2.20	2.20	2.20

Example-7:

What is the effective nuclear charge at the periphery of nitrogen atom when an extra electron is added during the formation of an anion. Also find the value of Z_{eff} when the atom is ionized to N⁺.

Ans. Ground state electron configuration of $N(Z = 7) = 1s^2 2s^2 2p^3$ Electron configuration of $N^- = (1s^2) (2s^2 2p^4)$ Shielding constant for the last 2p electron, $\sigma = [(2 \times 0.85) + (5 \times 0.35)] = 3.45$ So $Z_{eff} = Z - \sigma = 7 - 3.45 = 3.55$ Electron configuration of $N^+ = (1s^2) (2s^2 2p^2)$ Shielding constant for the last 2p electron, $\sigma = [(2 \times 0.85) + (3 \times 0.35)] = 2.75$ So Z_{eff} for last electron on $N^+ = 7 - 2.75 = 4.25$

node06 \B0AH-A1\Kata\EE(Advanced)\Nuture\Chem\Sheet\Quantum number,Periodic table & Chemical bonding\Eng\01_Theory & Ex.p65

ALLEN

SHAPES OF ATOMIC ORBITALS

 \mathbf{p}_{z}

13

JEE	-Cnemistry			ALLEN
		EXERCI	SE # 0-1	
	General Introductio	n :		
1.	The total number of r	neutrons in dipositive zinc	ion with mass number 7	0 is
	(A) 34	(B) 40	(C) 36	(D) 38
2.	It is known that atom of its original value w mass of ${}_{6}^{14}$ C will be	contain protons, neutron where as that of proton is a -	s and electrons. If the ma assumed to be twice of it	s of neutron is assumed to half s original value then the atomic
	(A) same	(B) 25% more	(C) 14.28 % more	(D) 28.5% less
3.	Two monoatomic cat are consecutive)	ions x^{\oplus} and y^{2+} are isoeled	etronic then select the con	rect statement : (Both elements
	(A) Both element x	and y have same numbe	r of electrons	
	(B) Total number of	valence electrons are m	ore in element x, than	element 'y'
	(C) Total number of	valence electrons are m	ore in element y, than a	element 'x'
	(D) Both (A) and (B	are correct		
4.	Which of the follow	ing sets contain only iso	electronic ions?	
	(A) Zn^{2+} , Ca^{2+} , Ga^{3+}	, Al ³⁺	(B) K^+ , Ca^{2+} , Sc^{3+} , Ca^{3+} ,	
	(C) P ³⁻ , S ²⁻ , Cl ⁻ , Zn	+2	(D) Ti^{4+} , Ar, Cr^{3+} , V	75+
Qua	ntum number			
5.	Which quantum nun	nber will determine the s	hape of the orbital	
	(A) Principal quantu	m number	(B) Azimuthal quant	rum number
	(C) Magnetic quantu	um number	(D) Spin quantum n	umber
6.	In Palladium (Atomi	ic no46), number of ele	ectron having $(\ell = 2)$ w	vill be -
	(A) 20	(B) 18	(C) 16	(D) 22
7.	For an electron prese Consider maximum p	ent in which of the follow possible value for 'm' and	ing orbital for which (n minimum possible value	l + l + m + s) value is maximum. e of m _s (where ever applicable).
	(A) 3p	(B) 5p	(C) 4d	(D) 5s
8.	Choose the correct of	option for the quantum n	numbers of the last elect	ron of K ⁺ .
	(A) 4, 0, 0, +1/2	(B) 3, 1, -1, -1/2	(C) 4, 1, 0, $-\frac{1}{2}$	(D) 3, 0, 1, $\frac{1}{2}$
9.	Find the sum of max (Atomic number = 2	ximum number of electro 2)	ons having $+1$ and -1 v	alue of 'm' in Ti
	(A) 6	(B) 8	(C) 10	(D) 12
10.	The number of electr	ons in Ca having minimur	n value of $\left \frac{n}{\ell \times m_{\ell}} \right $ is.	
	(Consider only non-z	zero values of ℓ and m)		
	(A) 6	(B) 3	(C) 4	(D) None of these

rode06/80AH4NVdev/JE[Advanad]/Nunture/Chen/Shee/Countum number, Periodicable & Chenical booking/Eng/01_Theory & Ex.pd5

Quantum number & Electronic configurations

	Electronic Configurati	on		
11.	A neutral atom of an elem of the element is	nent has two K, eight L, n	ine M and two N electrons t	hen electronic configuration
	(A) $1s^2 2s^2 2p^6 3s^2 3p^6$	$3d^2 4s^1$	(B) $1s^2 2s^2 2p^6 3s^2 3p^6$	$3d^1 4s^2$
	(C) $1s^2 2s^2 2p^6 3s^2 3d^2$	² 3p ⁶ 4s ¹	(D) $1s^2 2s^2 2p^6 3s^2 3p^6$	3d ²
12.	The explanation for the	presence of three unpair	ed electrons in the nitrogen	n atom can be given by
	(A) Pauli's exclusion prin	nciple	(B) Hund's rule	
	(C) Aufbau's principle		(D) Uncertainity principle	
13.	If the nitrogen atom had e state configuration $1s^2 2s$ because it violates :-	lectronic configuration 1s ${}^{2}2p^{3}$, because the electro	³⁷ , it would have energy lowe ns would be closer to the nu	er than that of normal ground cleus. Yet 1s ⁷ is not observed
	(A) Uncertainity princip	le	(B) Hund's rule	
	(C) Pauli's exclusion prin	nciple	(D) Bohr postulate of stat	ionary orbits
	Effective Nuclear char	$ge(Z_{eff}):$		
14.	The Z_{eff} for (as Slater's r	ule)		
	3d electron of Cr			
	4s electron of Cr			
	$3d$ electron of Cr^{3+}			
	3s electron of Cr ³⁺ are in	the order respectively		
	(A) 4.6, 2.95, 4.95, 8.03	5	(B) 4.95, 2.95, 4.6, 8.0)5
	(C) 4.6, 2.95, 5.3, 12.7	5	(D) none of these	
15.	Total number of possible	e shells in uranium atom	(atomic no. z = 92)	
	(A) 7	(B) 1	(C) 6	(D) None of these
16.	Which of the following h	has the maximum numbe	r of unpaired electrons ?	
	$(A) Mg^{2+}$	(B) Ti ³⁺	(C) V ³⁺	(D) Fe^{2+}
17.	Gaseous state electronic	configuration of nitrog	en atom can be represented	las:
	(A) $\uparrow \downarrow \uparrow \downarrow \uparrow \uparrow \uparrow$		(B) $\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow$	
	(C) $\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \downarrow$		$(D) \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$	

Ε

ALLEN -

15

EXERCISE	:	0-2
----------	---	-----

	Gen	eral I	ntrod	uction	:							
1.	Isoto	ones a	are :									
	(A)	The a	toms	of diff	erent elen	nents						
	(B)	Have	same	numbe	er of neut	rons						
	(C)]	Have	same	numbe	er of (neu	trons + pro	otons	5)				
	(D)	Have	same	differe	ence of m	ass numbe	er and	d ator	nic nu	mber		
	Qua	ntum	num	ber								
2.	For	an ele	ectron	presei	nt in whic	h of the fo	ollow	ving of	rbital	for w	hich (1	n + l) value is maximum.
	(A)	3p			(B) 5p			(C) 4	4d			(D) 5s
3.	Corr	ect se	et of f	òur qu	antum nu	mbers for	vale	nce el	ectror	n of ru	bidiur	m(Z = 37) is
	(A)	5, 0,	$0, + \frac{1}{2}$	$\frac{1}{2}$	(B) 5, ($0, 0, -\frac{1}{2}$		(C) :	5, 1, 1	$+\frac{1}{2}$		(D) 6, 0, 0, $+\frac{1}{2}$
4	Tho	oorro	at sat	of and	ntum nur	- phore for t	ha u	nnoiro	d alaa	tron	fable	orino atom is
4.	The	n		or qua			ne u	npane	u elec	<i>n</i>	m	
	(A)	п 2	د 1	ш 0				(B)	п 2	د 1	1 1	
	(\mathbf{A})	2	1	1				(D)	2	1	0	
5	(C) Whi	ch of	the fo	1 Mowin	a sets of	quantum n	umb	(D)	nrecei	ı nt an i	imnos	sible arrangement ?
J•	** 111	n	l inc inc	m	m	quantum	iumo	n	preser 1	m	m m	sible arrangement ?
		п	ł	111	m _s			п	r	111	m _s	
	(A)	3	3	-2	$\frac{1}{2}$		(B)	4	0	0	$\frac{1}{2}$	
					Z						2	
	(\mathbf{C})	2	n	2	1		(\mathbf{D})	5	2	0	1	
	(C)	3	Z	-3	2		(D)	5	3	0	2	
6.	The	quant	tum n	umbers	s for the	19 th electro	on of	Cr (Z	2 = 24) are		
	(A)	n = 3	, <i>l</i> = (0, m =	$0, m_{s} = -$	$+ \frac{1}{2}$		(B) 1	n = 4,	$\ell = 0$), m =	$0, m_{\rm s} = + \frac{1}{2}$
	(C) 1	n = 3	$\ell = 2$	2, m =	2, $m_s = -$	$+ \frac{1}{2}$		(D) 1	n = 4,	<i>l</i> = (), m =	$= 0, m_{\rm s} = -\frac{1}{2}$
7.	The	maxi	mum 1	numbe	r of elect	ron having	n ×	$\ell \times n$	n = 0	in Zn	²⁺ is eq	qual to the -
	(A)	Atom	ic nur	nber o	f Mg							
	(B)	12										
	(C)	Total	numb	er of e	electron in	n Zn which	1 hav	ve n +	$\ell = 0$)		
	(D)	'p' ele	ectrons	s in Ar								

		Q	uantum number &	Electronic configurations
	Electronic Configura	ution		
8.	The species which ha	we same number of ele	ectrons in outer most a	nd penultimate shell -
	(A) Ca	(B) Ar	(C) V ⁺³	(D) Sc^{3+}
9.	Which sub-shell fill c	ompletely before the 4	-f?	
	(A) 6s	(B) 5p	(C) 5d	(D) 4d
10.	The electronic config arrangements of the 2	guration of a carbon a 2p electrons. Which ar	tom is $1s^2$, $2s^2$, $2p^2$ a rangement have lowest	nd consider the following four t energy ?
	(A) 1	(B) 1 1	(C) 1 1	(D) 1 1
11.	Hund's rule is applicate	able for :-		
	(A) d-subshell	(B) p-subshell	(C) s-subshell	(D) f-subshell
12.	Which of the following	ng has maximum numb	per of unpaired electro	n.
	(A) Fe	(B) Fe (II)	(C) Fe (III)	(D) Mn (II)
13.	Mn (Z = 25) = $1s^3 1$	p ⁹ 2s ³ 2p ⁹ 2d ¹		
	Which of the following	g change is required so th	nat Mn have above grou	nd state electronic configuration :
	(A) Change in the va	lue of ℓ (azimuthal qu	antum number) for any	y subshell
	(B) Change in the po	ssible values of ℓ (azir	nuthal quantum numbe	er)
	(C) Change in the Pa	uli rule		
	(D) Change in the (n	$+ \ell$) rule		
14.	The number of d- ele	ctrons in Mn ²⁺ is equa	l to that of	
	(A) p-electrons in N		(B) s-electron in N	a
	(C) d-electrons in Fe ⁺	+3	(D) p-electrons in	0-2
15.	Select incorrect stater	ment(s):		
	(A) d_{z^2} orbital has d	ifferent shape from res	t of all d-orbitals	
	(B) For the formation	n of cation electrons ar	e always removed from	n 4s.
	(C) Zinc is a p-block	element.		
	(D) Principal quantur	n number depend upor	n the value of azimuth	al quantum number

EXERCISE # S-1

Integer Answer Type (0 to 9) :

1. Find total no. of orbitals in nickel which have $|m| \le 1$ and at least one electron is present, where 'm' is magnetic quantum number.

(Given your ans. as sum of digits for example. If your ans is 57 then 5 + 7 = 12 and 1 + 2 = 3)

2. Minimum number of electrons having
$$m_s = \left(-\frac{1}{2}\right)$$
 in Cr is "____".

- 3. How many elements are possible for the Ist period of periodic table if azimuthal quantum number can have integral values from 0 to (n + 1). [n = shell number & other rules are remaning same to form periodic table.
- 4. Find number of unpaired electrons when Fe does not follow (n + l) rule and filling of electron takes palce shell after shell and Hund's rule is also not obeyed.
- 5. Find the maximum number of electrons having same Z_{eff} value for sulphur atom
- 6. Find the sum of maximum unpaired e⁻ present in one 5g & one 6g orbital.
- 7. Find out the maximum number of electrons that can involve in the shielding of an electron, having quantum numbers : n = 2, $\ell = 1$, m = 0, $m_s = +\frac{1}{2}$, in an atom.
- 8. Find the sum of minimum and maximum possible value of x in Fe^{+x} ion, if magnetic moment of $Fe^{+x} = 4.89$ B.M.

EXERCISE # S-2

Paragraph for Question 1 to 3

	The gene	ral ele	ectron	ic config	uration of	outer mos	t and	penu	ltimate	e shell i	s given a	ıs (n –	1)s ²
1	$(n-1)p^{\circ}$	(n – 1)d^ns	² . Then IC	or an elem	ent with n	= 4 a	na x =	⁼ 6.	- C - 1	с		
1.	The number (A) 24	ber of	proto	ns presen	t in the div	alent catio	$n \text{ or } \mathfrak{l}$	ne ele	ment		e conngui	ration is	5 :-
2	(A) 24	ant ia		(B) 23		(C)	20			(D) 2	/		
2.	I ne eleme (A) M	ent is	:	(D) E-		(\mathbf{C})	C -			(D) I	:		
2	(A) Mn	C		(B) Fe		(C)		41 :		(D) L] 1-4 - 1 -		_1_1_
з.		ber of t	unpair	ed electro	ons in the di	ivalent catio	on of	the giv	en ele	ment in	isolated g	aseous	state
	1S :-			(\mathbf{D}) 2		(\mathbf{C})	1			(D) 1			
	(A) 0			(B) 3	D	(C)	4 	105		(D) I			
				1	Paragraph	i jor Quesi	<i>ion</i> 4	& X 3					
	Consider	a hype	othetic	al atom w	where p_x, p_y	p_z, d_{xy}, d_{xz}	, d _{yz} a	and d_{x^2}	a_{-y^2} or	bitals ar	e present	for prin	cipal
	quantum	numba	ern=	4									
4.	Find the r	umbe	er of o	ther orbit	al which l	obes are fu	llv nr	esent i	n the	nodal n	lane of p	orbita	1 •-
	(A) 2		1 01 0	(B) 4		(C)	лу рі 3	esent		(D) 5		x	
5.	Which of	the fo	llowir	ng orbitals	s lobe is no	ot present a	t all e	either i	n the	nodal pl	ane of p	orbital	or in
	the nodal	nlane	ofn	orbital		e present a	it un v			no u u pi	and of P_x	oronur	01 111
		plane	or p _y	oronan.									
	(A) d_{xy}			(B) d_{yz}		(C)	$d_{x^2-y^2}$	2		(D) p	Z		
				1	Paragraph	for Quest	tion 6	5 & 7					
	Isotopes,	Isobar	s and	Iso-diaphe	ers are som	e basic defi	nition	s relate	ed to tl	he atom,	which are	e based	upon
	the variati	ion in	no. of	f electron,	, proton or	neutrons.							-
6.	Which of	the fo	ollowii	ng pair re	presents th	ne Isobar sp	pecies	5 :-					
2	(A) $_{18}Ar^{2}$	⁴⁰ , ₆ C	12	(B) _o O	¹⁶ , ₇ N ¹⁴	(C)	N,O,	CO,		(D) N	one of th	nese	
⁴ x ₃ % 7.	Which of	the fo	llowi	ng pair is	correct for	r isosters :-	2	2					
ıg∖01_The	(A) N ₂ O,	CH₄		(B) N ₂	O, CO ₂	(C)	CO,,	SO,		(D) N	I,O, HOO	Cl	
^I 8.	Colu	mn-I		2	μ <u>Δ</u>		Colu	mn-II			2		
k Chemical	Elem	ent					Max.	value	ofna	and ℓ re	spectivel	y; cons	sider
odic table 8							filled	subsl	nell on	ıly	-		
umber, Per	(P) P					(1)	6, 2			-			
Quantum r	(Q) N					(2)	3, 1						
em/Sheet/	(R) Pb					(3)	6, 3						
łu rłu re/Ch	(S) Cs					(4)	2, 1						
Cod	le :												
Kata∖IEE(A	Р	Q	R	S			Р	Q	R	S			
BOAH-AIN	(A) 4	1	2	3		(B)	2	4	1	3			
/ 90abou	(C) 3	1	2	4		(D)	2	4	3	1			
E				(•——								19

JEE-Chemistry

9.	Match the foll	owing:				
	Column-	-I				Column-II
	(P) Same nut	mber of unpai	ired		(1)	Na ⁺ , Mg ²⁺ , F
	electrons	are present ir	n (excluding	zero)		
	(Q) Same nut	mber of electr	ons		(2)	F ⁻ , Mg, O ²⁻
	in s & p	subshells.				
	(R) Same nut	mber of electr	ons with		(3)	Mg, Ne, O ²⁻
	the $l = 1$					
	(S) Same nut	mber of total of	electrons		(4)	Li, Na, K
Cod	e :					
	Р	Q	R	S		
	(A) 1, 2	3, 4	1	4		
	(B) 4, 2	3, 1	2, 3	4, 1		
	(C) 4	1	1, 2, 3	1		
	(D) 3	1, 2	3, 4	1, 3,	4	
10.	Match the fo	llowing :				
	Column-	-I (Orbital)				Column–II (
	(P) s				(1)	Have electron
	$(Q) p_x$				(2)	YZ plane is r
	(R) d_{xy}				(3)	dumbell shap
	(S) $d_{x^2-y^2}$				(4)	have azimuth
Cod	e :					
	Р	Q	R	S		
	(A) 1, 3	2, 3	3	3, 4		
	(B) 1	2, 3	2, 4	4		
	(C) 1	2, 3, 4	3, 4	1, 4		
	(D) 2	3, 4	2, 3	1, 4		
Mate	ch The Colum	<i>n</i> :				
11.	Match the fo	llowing :				
	Column-	–l (e⁻ configu	ration)			Column–II (
	(A) d^8				(P)	Symmetrical of
	(B) d^{10}				(Q)	Unsymmetric
	(C) d^{6}				(R)	No of exchan
	$(D) d^3$				(S)	two electrons
						. 1
					(T)	at least one el
10		-			(T)	at least one el $m = -1$
12.		·I			(T)	at least one el $m = -1$ Column-II
12.	Column (A) Zn ²⁺	·I			(T) (P)	at least one el $m = -1$ Column-II Diamagnetic
12.	Column • (A) Zn ²⁺ (B) Ga ⁺	·I			(T) (P) (Q)	at least one el m = -1 Column-II Diamagnetic Spin magnetic
12.	Column (A) Zn^{2+} (B) Ga^{+} (C) Fe^{3+}	·I			(T) (P) (Q) (R)	at least one el m = -1 Column-II Diamagnetic Spin magnetic 18 e ⁻ in oute
12.	Column (A) Zn^{2+} (B) Ga^{+} (C) Fe^{3+} (D) Br^{-}	·I			 (T) (P) (Q) (R) (S) 	at least one el m = -1 Column-II Diamagnetic Spin magnetic 18 e ⁻ in oute 3d subshell is
12.	Column (A) Zn^{2+} (B) Ga^{+} (C) Fe^{3+} (D) Br^{-}	·I			 (T) (P) (Q) (R) (S) (T) 	at least one el m = -1 Column-II Diamagnetic Spin magnetic 18 e ⁻ in oute 3d subshell is All the orbital

(Property)

- n density at all three axes
- nodal plane
- be
- nal quantum no. $\ell = 2$

(Property)

- distribution
- al distribution
- ge pair are maximum among these
- s must be present in $d_{x^2-y^2}$ orbital
- lectron is present in orbital having
- ic moment = $\sqrt{35}$ BM
- er most shell
- s fully filled
- of outer most shell are fully filled

MATCHING LIST TYPE 1 × 3 Q. (THREE LIST TYPE Q.)

Column - I	Column - II	Column - III			
(A) Paramagnetic set	(i) Na ⁺ ,Mg ⁺² , F ⁻	(P) same value of principal quantum number for last electron			
(B) Isoelectronic set	(ii) Li, Na, K	(Q) The non zero number(s) of $e^{-1}(s)$ for n = 3 and $\ell \ge 1$ is			
(C) The set for which value(s) of spin multiplicity is ≥ 1	(iii) Fe^{+3} , Co^{2+} , Ni^{+2}	(R) The value of " m_s " must be $+\frac{1}{2}$ for last electron			
(D) The set of elements belongs to same period in periodic table	(iv) S^{-2}, Cl^{-}, P^{-3}	(S) Set for which the value of m =±2 is possible for electron(s)			

13. Which one of the following options is the **CORRECT** combination?

(A) (A, i, P) (B) (B, iv, S) (C) (D, iii, S) (D) (C, iii, R)

- 14. Which one of the following options is the **INCORRECT** combination?
 - (A) (A, iii, P) (B) (C, ii, P) (C) (B, i, P) (D) (B, iv, Q)
- 15. Which one of the following options is the **CORRECT** set of species with number of nodal planes for filled/partially filled orbitals is ≤ 1 for all given species in set?

(A) (B, ii, R) (B) (B, iv, P) (C) (A, i, Q) (D) (D, iii, S)

	EXERCISE	# JEE-MAIN	
1.	Which of the following groupings repres	ent a collection of isoeled	ctronic species ?
	(At. no. $Cs = 55$, $Br = 35$)		[AIEEE-2003]
	(1) N ³⁻ , F ⁻ , Na ⁺	(2) Be, Al^{3+} , Cl^{-}	
	(3) Ca^{2+} , Cs^+ , Br	(4) Na ⁺ , Ca ²⁺ , Mg ²	+
2.	The number of d-electrons retained in Fe ²⁺	(At. no. of $Fe = 26$) ion is	s : [AIEEE-2003]
	(1) 6 (2) 3	(3) 4	(4) 5
3.	Which of the following sets of quantum num	ber is correct for an electron	n in 4f orbital ?[AIEEE-2004]
	(1) n = 3, ℓ = 2, m = -2, s = + $\frac{1}{2}$	(2) n = 4, ℓ = 4, m =	$= -4, s = -\frac{1}{2}$
	(3) n = 4, ℓ = 3, m = +1, s = + $\frac{1}{2}$	(4) n = 4, ℓ = 3, m =	$= +4, s = +\frac{1}{2}$
4.	Consider the ground state of Cr atom (Z	= 24). The numbers of e	electrons with the azimuthal
	quantum numbers, $l = 1$ and 2 are, respective	ely.	[AIEEE-2004]
	(1) 16 and 5 (2) 12 and 5	(3) 16 and 4	(4) 12 and 4
5.	Which one of the following sets of ions represe	ents the collection of isoelect	tronic species? [AIEEE-2004]
	(1) Na ⁺ , Mg ²⁺ , Al ³⁺ , Cl ⁻	(2) Na ⁺ , Ca ²⁺ , Sc ³⁺ , (2^{2+})	F-
	(3) K ⁺ , C ⁺ , Mg ²⁺ , Sc ³⁺	(4) K^+ , Ca^{2+} , Sc^{3+} , Ca^{3+} ,	21-
6.	In a multi-electron atom, which of the follo	wing orbitals described by	the three quantum members
	will have the same energy in the absence of	of magnetic and electric fie	elds ? [AIEEE-2005]
	(A) $n = 1, l = 0, m = 0$	(B) $n = 2, l = 0, m =$	= 0
	(C) $n = 2, l = 1, m = 1$	(D) $n = 3, l = 2, m =$	= 1
	(E) $n = 3, l = 2, m = 0$		
	(1) (D) and (E) (2) (C) and (D) (2)	(3) (B) and (C)	(4) (A) and (B)
7.	Of the following sets which one does not o	contain isoelectronic speci	les ? [AIEEE-2005]
	(1) BO_3^{3-} , CO_3^{2-} , NO_3^{-} (2) SO_3^{2-} , CO_3^{2-} , NO_3^{2-}	O_{3}^{-} (3) CN ⁻ , N ₂ , C ₂ ²⁻	(4) PO_4^{3-} , SO_4^{2-} , ClO_4^{-}
8.	Which of the following statements in relati	on to the hydrogen atom i	s correct ? [AIEEE-2005]
	(1) 3s, 3p and 3d orbitals all have the same	e energy	
	(2) 3s and 3p orbitals are of lower energy t	than 3d orbitals	
	(3) 3p orbital is lower in energy than 3d or	bital	
	(4) 3s orbitals is lower in energy than 3p o	rbital	
9.	Which one of the following sets of	f ions represents a co	llection of isoelectronic
	species ?		[AIEEE-2006]
	$(1)N^{3-},O^{2-}, F^{-}, S^{2-}$	(2) Li^+, Na^+, Mg^{+2}, C	Ca^{+2}
	(3) K ⁺ ,C ⁺ , Ca ⁺² , Sc ⁺³	(4) Ba^{+2} , Sr^{+2} , K^{+2} ,	Ca^{+2}
10.	Which of the following sets of quantum n	numbers represents the high	ghest energy of an atom ?
	(1) $n = 3$, $\ell = 1$, $m = \ell$, $s = +\frac{1}{2}$		[AIEEE-2007]
	(2) $n = 3$, $\ell = 2$, $m = \ell$, $s = +\frac{1}{2}$		
	(3) $n = 4$, $\ell = 0$, $m = 0$, $s = +\frac{1}{2}$		
	(4) $n = 3$, $\ell = 0$, $m = 0$, $s = +\frac{1}{2}$		

ALLEN

11.	Which one of the follow	wing constitutes a group	of the isoelectronic sp	pecies? [AIEEE-2008]
	(1) $C_2^{2-}, O_2^{-}, CO, NO$		(2) NO^+, C_2^{2-}, CN^-	, N ₂
	(3) $CN^{-}, N_{2}, O_{2}^{2-}, C_{2}^{2-}$		(4) N ₂ , O ₂ ⁻ , NO ⁺ , CO	0
12.	The electrons identified	ed by quantum numbers	s n and ℓ :-	
		[JEE-1999	9, AIEEE-2012, JEI	E-MAIN, (ONLINE)-2012]
	(a) $n = 4$, $\ell = 1$	(b) $n = 4, \ell = 0$	(c) $n = 3, \ell = 2$	(d) $n = 3, \ell = 1$
	Can be placed in orde	er of increasing energy	as	
	(1) (a) $<$ (c) $<$ (b) $<$ (e)	d)	(2) (c) < (d) < (b)	< (a)
	(3) (d) < (b) < (c) < (a)	(4) (b) < (d) < (a)	< (c)
13.	Which of the followin	g paramagnetic ions wo	ould exhibit a magnet	tic moment (spin only) of the
	order of 5 BM ?		[JEI	E-MAIN, (ONLINE)-2012]
	(At. No : Mn = 25, C	Cr = 24, V = 23, Ti = 22	2)	
	(1) V^{2+}	(2) Ti ²⁺	(3) Mn^{2+}	(4) Cr^{2+}
14.	In an atom how ma	any orbital (s) will have	ave the quantum n	numbers; $n = 3$, $l = 2$ and
	$m_{l} = +2$?		[JEI	E-MAIN, (ONLINE)-2013]
	(1) 1	(2) 5	(3) 3	(4) 7
15.	The numbers of proto	ons, electrons and neutro	ons in a molecule of	heavy water are respectively
	(1) 10, 10, 10	(2) 8, 10, 11	[JEI	E-MAIN, (ONLINE)-2013]
	(3) 10, 11, 10	(4) 11, 10, 10		
16.	Given		[JEI	E-MAIN, (ONLINE)-2013]
	(a) n=5, $m_l = +1$	(b) $n = 2, l = 1, m_l =$	$-l, m_s = -l/2$	
	The maximum number	r of electron(s) in an ato	om that can have the	quantum numbers as given in
	(a) and (b) are respec	tively :		
	(1) 8 and 1	(2) 25 and 1	(3) 2 and 4	(4) 4 and 1
17.	The correct set of four	r quantum numbers for t	the valence electrons	of rubidium atom $(Z = 37)$ is:
				[JEE(Main)-2014]
	(1) 5,1,1, $+\frac{1}{2}$	(2) 5,0,1,+ $\frac{1}{2}$	$(3) 5,0,0,+\frac{1}{2}$	(4) 5,1,0,+ $\frac{1}{2}$
10		2	2	
18.	If the principal quanti	im number $n = 6$, the co	orrect sequence of fil	ling of electrons will be:-
		× 4		-MAIN, (ONLINE)-2015]
	(1) ns \rightarrow (n-1)d \rightarrow (n-2))f→np	(2) ns \rightarrow np \rightarrow (n-1)	$d \rightarrow (n-2)f$
10	(3) ns \rightarrow (n-2) $f\rightarrow$ (n-1)d→np	(4) ns \rightarrow (n-2) $f\rightarrow$ n	$p \rightarrow (n-1)d$
19.	The total number of c	orbitals associated with t	the principal quantum	n number 5 is :
		(a) -		E-MAIN, (ONLINE)-2016]
	(1) 25	(2) 5	(3) 20	(4) 10

ALLEN -

23

EXERCISE # JEE-ADVANCED

1. The electronic configuration of an element is $1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$. This represents its : [JEE 2000]

(A) excited state (B) ground state (C) cationic form (D) none

- 2. The maximum number of electrons that can have principal quantum number, n = 3, and spin quantum number, $m_s = -1/2$, is [JEE 2011]
- 3. In an atom, the total number of electrons having quantum numbers n=4, $|m_{\ell}| = 1$ and $m_s = -\frac{1}{2}$ is:

[JEE Advanced 2014]

ALLEN

4. Not considering the electronic spin the degeneracy of the second excited state (n = 3) of H-atom is 9, where the degeneracy of the second excited state of H⁻ is [JEE Advanced 2015]

ANSEWR KEY

EXERCISE # (O-1)

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	В	С	С	В	В	А	С	В	С	С
Que.	11	12	13	14	15	16	17			
Ans.	В	В	С	С	D	D	А			

EXERCISE # (O-2)

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	A, B, D	B, C	А, В	C, D	A, C	B, D	A, B, D	B, D	A, B, D	C, D
Que.	11	12	13	14	15					
Ans.	A, B, D	C, D	B, C, D	B, C	B, C, D					

EXERCISE # (S-1)

Que.	1	2	3	4	5	6	7	8
Ans.	4	9	8	0	8	2	9	6

EXERCISE # (S-2)

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	С	В	С	С	А	D	В	D	С	В
Que.	11				12					
Ans.	(A)-Q,T (B)-P,R,S,T (C)-Q,T (D)-P,T			(A)-P,R,S,T (B)-P,S (C)-Q (D)-P,S						
Que.	13	14	15							
Ans.	С	В	В							

EXERCISE # JEE-MAIN

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	1	1	3	2	4	1	2	1	3	2
Que.	11	12	13	14	15	16	17	18	19	
Ans.	2	3	3	1	1	1	3	3	1	

EXERCISE # JEE-ADVANCED

Que.	1	2	3	4
Ans.	В	9	6	3

e.g.

PART-A (PERIODIC TABLE)

INTRODUCTION:

The arrangement of all the known elements according to their properties in such a way that the elements of similar properties are grouped together in a tabular form is called periodic table.

Development of periodic table :

(A) LAVOISIER CLASSIFICATION OF ELEMENTS

At first Lavoisier classified the elements into two categories.

(i) Metal (ii) Non-metal

Note : This classification cannot categories the metalloid variety.

(B) DOBEREINER'S TRIAD RULE [1817]

- (i) He made groups of three elements having similar chemical properties called TRIAD.
- (ii) In Dobereiner triad, atomic weight of middle element is nearly equal to the average atomic weight of first and third element.

Cl Br I	
$35.5 \qquad 80.0 \qquad 127 \qquad \frac{35.5 + 127}{2} = 81.$	25
Ca Sr Ba	
$40 \qquad \boxed{87.5} \qquad 137 \qquad \frac{40+137}{2} = 88.5$	
Li Na K	
7 23 39 At. wt of Na =	$\frac{7+39}{2} = 23$

(iii) Other examples – (K, Rb, Cs), (P, As, Sb), (S, Se, Te), (H, F, Cl), (Sc, Y, La)

(C) NEWLAND'S OCTAVE RULE [1865]

(i) He arranged the elements in the increasing order of their atomic mass and observed that properties of every 8th element was similar to the 1st one, like in the case of musical vowels notation.

8

TT

Ni | Sa

7

(ii) At that time inert gases were not known.

						П
Li	Be	В	С	Ν	0	F
Na	Mg	Al	Si	Р	S	Cl
K	Ca					

(iii) The properties of Li are similar to 8th element i.e. Na, Be are similar to Mg and so on. *Drawbacks or Limitations* :

- (a) This rule is valid only upto Ca. because after Ca due to filling of d-orbitals there is difference of 18 elements instead of 8 element.
- (b) After the discovery of inert gas this law had to be dropped out.
- (c) He failed in the case of heavier metals as Fe has been placed along with O and S.

(D) LOTHER MEYER'S CURVE [1869]

- (i) He plotted a curve between atomic weight and atomic volume of different elements.
- (ii) The following observations can be made from the curve -
- (a) Most electropositive elements i.e. alkali metals (Li, Na, K, Rb, Cs etc.) occupy the peak portions of the curve.
- (b) Less electropositive i.e. alkaline earth metals (Be, Mg, Ca, Sr, Ba) occupy the descending portions of the curve.
- (c) Metalloids (B, Si, As, Te, At etc.) and transition metals occupy bottom part of the curve.
- (d) Most electronegative i.e. halogens (F, Cl, Br, I) occupy the ascending portion of the curve.

Note : Elements having similar properties occupy similar portions of the curve.

Conclusion :

ALLEN

On the basis of this curve, Lother Meyer proposed that the physical properties of the elements are periodic function of their atomic weight and this became the basis of Mendeleev's periodic table.

(E) MENDELEEV'S PERIODIC TABLE [1869]

- (i) *Mendeleev's periodic law* The physical and chemical properties of elements are the periodic function of their atomic weight
- (ii) Characteristic of Mendeleev's periodic table –
- (a) It is based on atomic weight
- (b) 63 elements were known, noble gases were not discovered.
- (c) He was the first scientist to classify the elements in a systamatic manner i.e. in horizontal rows and in vertical columns.
- (d) Horizontal rows are called periods and there were 7 periods in Mendeleev's Periodic table.
- (e) Vertical columns are called groups and there were 8 groups in Mendeleev's Periodic table.
- (f) Each group upto VIIth is divided into A & B subgroups.'A' sub group elements are called normal elements and 'B' sub group elements are called transition elements.
- (g) The VIIIth group consists of 9 elements in three rows.
- (h) The elements belonging to same group exhibit similar properties.

(iii) Merits or advantages of Mendeleev's periodic table -

- (a) Study of elements For the first time, all known elements were classified in groups according to their similar properties. So study of the properties of elements became easier.
- (b) *Prediction of new elements* It gave encouragement to the discovery of new elements as some gaps were left in it.

Sc (Scandium), Ga (Gallium), Ge (Germanium), Tc (Technetium)

were the elements whose position and properties were well defined by Mendeleev even before their discoveries and he left the blank spaces for them in his table.

e.g. - Blank space at atomic weight 72 in silicon group was called Eka silicon (means properties like silicon) and element (*discovered later*) was named Germanium .

Similarly other elements discovered after mendeleev periodic table were :

Eka aluminium – Gallium(Ga)

Eka Boron - Scandium (Sc)

Eka Silicon – Germanium (Ge)

- Eka Manganese Technetium (Tc)
- (c) Correction of doubtful atomic weights-Corrections were done in atomic weight of some elements.

Atomic Weight = Valency × Equivalent weight.

Initially, it was found that equivalent weight of Be is 4.5 and it is trivalent (V = 3), so the weight of Be was 13.5 and there is no space in Mendeleev's table for this element. So, after correction, it was found that Be is actually divalent (V = 2). So, the weight of Be became $2 \times 4.5 = 9$ and there was a space between Li and B for this element in Mendeleev's table.

Corrections were done in atomic weight of elements are - U, Be, In, Au, Pt.

(iv) Demerits of Mendeleev's periodic table -

- (a) **Position of hydrogen** Hydrogen resembles both, the alkali metals (IA) and the halogens (VIIA) in properties so Mendeleev could not decide where to place it.
- (b) Position of isotopes As atomic weight of isotopes differs, they should have been placed in different position in Mendeleev's periodic table. But there was no such place for isotopes in Mendeleev's table.
- (c) Anomalous pairs of elements There were some pair of elements which did not follow the increasing order of atomic wts.

eg : Ar and Co were placed before K and Ni respectively in the periodic table, but having higher atomic weights.

$$\begin{pmatrix} Ar & K \\ 39.9 & 39.1 \end{pmatrix} \begin{pmatrix} Te & I \\ 127.5 & 127 \end{pmatrix}$$

in mod ified mendeleev P.T.
$$\begin{pmatrix} Co & Ni \\ 58.9 & 58.6 \end{pmatrix} \begin{pmatrix} Th & Pa \\ 232 & 231 \end{pmatrix}$$

(d) Like elements were placed in different groups.

There were some elements like Platinum (Pt) and Gold (Au) which have similar properties but were placed in different groups in Mendeleev's table.

Pt Au VIII IB (e) Unlike elements were placed in same group.

ALLEN

Cu, Ag and Au placed in Ist group along with Na, K etc. While they differ in their properties (Only similar in having ns¹ electronic configuration)

(F) MODERN PERIODIC TABLE (MODIFIED MENDELEEV PERIODIC TABLE)

- (i) It was proposed by Moseley (1913).
- (ii) Modern periodic table is based on atomic number.
- (iii) Moseley did an experiment in which he bombarded high speed electron on different metal surfaces and obtained X-rays.

He found out that $\sqrt{v} \propto Z$ (where v = frequency) of X-rays from this experiment, Moseley concluded that the physical and chemical properties of the elements are periodic function of their atomic number. It means that when the elements are arranged in the increasing order of their atomic number, elements having similar properties gets repeated after a regular interval. This is also known as '**Modern Periodic Law'**.

- *(iv) Modern periodic law* The physical & chemical properties of elements are a periodic function of their atomic number.
- (v) Characteristics of modern periodic table
 - (a) 9 vertical columns called groups.
 - (b) IA to VIIA, IB to VIIB, VIII and 0
 - (c) Inert gases were introduced in periodic table by Ramsay.
 - (d) 7 horizontal series called periods.

(G)LONG FORM / PRESENT FORM OF MODERN PERIODIC TABLE

(It is also called as 'Bohr-Burry & Rang, Werner Periodic Table.)

(i) It is based on the Bohr-Burry electronic configuration concept and atomic number.

(ii) This model was proposed by Rang & Werner

(iii) It consists of 7 horizontal periods and 18 vertical columns (groups)

(iv) According to I. U. P. A. C. 18 vertical columns are named as 1st to 18th group.

(v) The co-relation between the groups in long form of periodic table and in modern form of periodic table are given below.

1 2 3 4 5 6 7 8, 9, 10 11 12 13 14 15 16 17 18

(vi) Elements belonging to same group have same no. of electrons in the outermost shell so their properties are similar.

Description of periods :

Period	n	Sub shell	No. of elements	Element	Name of Period
1.	1	1s	2	$_{1}H{2}He$	Shortest
2.	2	2s, 2p	8	₃ Li – ₁₀ Ne	Short
3.	3	3s, 3p	8	$_{11}Na{18}Ar$	Short
4.	4	4s, 3d, 4p	18	$_{19}K{36}Kr$	Long
5.	5	5s, 4d, 5p	18	$_{37}Rb{58}Xe$	Long
6.	6	6s, 4f, 5d, 6p	32	$_{55}Cs{86}Rn$	Longest
7.	7	7s, 5f, 6d,	26	$_{87}{\rm Fr}~{112}{\rm Uub}$	Incomplete

CLASSIFICATION OF ELEMENTS INTO s, p, d & f-BLOCK ELEMENTS :

s - block:

(i) Configuration $n s^{1-2}$ (ii) Last e^- enters in s orbital

(iii) Two groups I A or 1 ; II A or 2

- p block:
 - (i) Configuration $n s^2 n p^{1-6}$ (ii) Last e^- enters in p orbital

(iii) Six groups III A, IV A, V A, VI A, VII A, zero or 13, 14, 15, 16, 17, 18

d - block : [Transition Elements]

- (i) Configuration $(n-1) d^{1-10} ns^{0-2}$ (ii) Last e^- enters in d orbital
- (iii) Their two outermost shell are incomplete
- (iv) 10 groups III B , IV B , V B , VI B , VII B , VIII (Triad) , I B , II B or 3 , 4 , 5 , 6 , 7 , (8 , 9 , 10) , 11 , 12 .
- (v) Four series 3d, 4d, 5d, 6d belong to 4th, 5th, 6th & 7th period respectively in long form of Periodic table.

f - block : [Inner Transition]

ALLEN _

- (i) configuration $(n-2) f^{0-14} (n-1) d^{0-2} ns^2$
- (ii) last e⁻ enters in f orbital
- (iii) two series 4 f Lanthanides & 5 f Actinides belong to 6th & 7th period respectively in long form of Periodic table.

Neil Bohr's classification of elements :

Using electronic configuration as the criteria, elements are of four types. The classification of the elements into these groups is dependent on the extent to which the s, p, d and f orbitals are filled.

Inert Gases :

- (a) s-and p-orbitals of the outer most shell of these elements are completely filled. The outermost electronic configuration is ns^2np^6 .
- (b) Helium is also inert gas but its electronic configuration is $1s^2$

Representative or Normal Elements :

- (a) Outermost shell of these elements is incomplete. The number of electrons in the outermost shell is less than eight.
- (b) s-and p-block elements except inert gases are called normal or representative elements.

Transition Elements :

- (a) These metals were placed between s-block metals and p-block elements so, are named transition metals.
- (b) Their outermost electronic configuration is similar to d-block elements i.e. $(n-1) d^{1-10} ns^{1-2}$.
- (c) Last two shells of these elements namely outermost and penultimate shells are incomplete.
- (d) The last shell contains one or two electrons and the penultimate shell may contain more than eight and up to eighteen electrons.
- (e) According to definition of transition elements, those elements which have partly filled d-orbitals in neutral state or in any stable oxidation state are called transition elements. According to this definition Zn, Cd and Hg (IIB group) are d-block elements but not transition elements because these elements have d¹⁰ configuration in neutral as well as in stable +2 oxidation state.

Inner Transition Elements :

- (a) In these elements last three shells i.e. last, penultimate and prepenultimate shells are incomplete.
- (b) These are related to IIIB i.e. group 3.
- (c) The last shell contains two electrons. Penultimate shell may contain eight or nine electrons and pre-penultimate shell contains more than 18, up to 32 electrons.
- (d) Their outemost electronic configuration is similar to f-block element

i.e. (n-2) f $^{0-14}$ (n-1) d $^{0-2}$ ns²

METALS, NON-METALS & METALLOIDS

Apart from classifying elements into s, p, d and *f*-blocks, there is yet another broad classification of elements based on their properties. The elements can be broadly classified into

(a) Metals:

Majority of the elements in periodic table are metals and appears on the left side of the periodic table.

Properties:

- (i) These are usually solid at room temperature [exception mercury]
- (ii) They have high melting and boiling point [exception Gallium & Cesium have very low melting point (303 K and 302 K respectively)]
- (iii) They are good conductor of heat and electricity.
- (iv) They are malleable (can be flattened into thin sheets by hammering) and ductile (can be drawn into wires)
- (b) Non-Metals:

These are placed at the top right hand side of periodic table. As we move horizontally along a period, the property of elements changes from metallic (on left) to non-metallic (on the right).

Properties :

- (i) These are usually solids or gases at room temperature.
- (ii) They have low melting point and boiling point (exception : Boron, Carbon).
- (iii) Most Non-metallic solids are brittle and are neither malleable nor ductile.
- (c) Metalloids (Semi-metals):

Properties of these elements show the characteristics of both metals and non-metals. Silicon (Si), Germanium(Ge), Arsenic(As), Antimony(Sb) and Tellurium(Te) are metalloids.

ESTIMATING POSITION OF AN ELEMENT FROM ITS ELECTRONIC CONFIGURATION

The last electron enters in which subshell gives idea of its block.

[\bigcirc *Think* :1s¹ and 1s² belongs to which block]

Period number = Principal quantum number of valence shell electron in ground state electronic configuration.

Group number for s block = number of valence shell electrons

Group number for p block = 10 + number of valence shell electrons

Group number for d block = number of [ns + (n-1) d] electrons

Group number for f-block = 3

[💮 Use these carefully while locating the position.]

SOME COMMONLY USED TERMS

- 1. *Noble Gases :* Element of group 18 are called noble gases. These are also called as inert gases because their outermost ns and np orbitals are completely filled (except He and 1s²) and these gases are non-reactive in nature under ordinary conditions.
- 2. *Typical elements* : Elements of second and third period are known as typical elements.
- 3. *Diagonal relationship*: Properties of elements of second period resemble with the element of third period. This resemblance between properties of 2nd & 3rd period is called diagonal relationship.

4. Bridge elements :

ALLEN.

The typical elements of third period are also called bridge elements as the division between two subgroups A and B starts from these elements. In second group Mg acts as a bridge element. The properties of bridge element are some what mixed of the elements of two subgroups as magnesium shows similarities with alkaline earth metals (IIA) on one hand and with zinc metals (IIB) on the other.

IUPAC NOMENCLATURE OF THE ELEMENT :

The names are derived by using roots for the three digits in the atomic number of the element and adding the ending –ium. The roots for the number are

Digit	Name	Abbreviation
0	nil	n
1	un	u
2	bi	b
3	tri	t
4	quad	q
5	pent	р
6	hex	h
7	sept	S
8	oct	0
9	enn	e

Thus element with atomic number 109 will be named as **une** (\mathbf{u} for 1, \mathbf{n} for 0 and \mathbf{e} for 9). Table summarises the names of the elements with atomic number above 100.

PART-B (PERIODIC PROPERTIES)

PERIODICITY :

- (a) The regular gradation in properties from top to bottom in a group and from left to right in a period is called periodicity in properties.
- (b) In a period, the ultimate shell remain same, but the number of electrons gradually increases.
- (c) In a group, the number of electrons in the ultimate shell remains same, but the values of n increases.

Cause of periodicity

- (a) The cause of periodicity in properties is due to the same outermost shell electronic configuration repeating over regular intervals.
- (b) In the periodic table, elements with similar properties occur at intervals of 2, 8, 8, 18, 18 and 32. These numbers are called magic numbers.

ATOMIC RADIUS :

Since there is a problem in calculating actual size of atom, three types of radii can be defined :

Type-I Covalent radius :
$$C_r = \frac{d}{2}$$

[Used for H₂, Cl₂ and such molecules]

Type-II Metallic Radius :
$$M_r = \frac{d}{2}$$

[Used for metals]

<u>Type-III</u> VanderWaal's Radius or Collision radius

VanderWaal's radius = $\frac{1}{2}$ × Internuclear distance between nuclei of two neighbouring atoms

belonging to nearest molecules.

VanderWaal's radius > Metallic radius > Covalent radius

The VanderWaal's radius and covalent radius of chlorine atom are 1.80 Å and 0.99 Å respectively.
Ionic Radius

A neutral atom changes to a cation by the loss of one or more electrons and to an anion by the gain of one or more electrons. The magnitude of charge on cation and anion is equal to the number of electrons lost or gained respectively. The ionic radii of the ions present in an ionic crystal may be calculated from the internuclear distance between the two ions.

(a) Radius of Cation

Radius of cation is smaller than that of corresponding atom. Since due to removal of electron(s), $\rm Z_{eff}$ increases.

(b) Radius of an Anion
 Radius of an anion is invariably larger than that of the corresponding atom, since due to addition of electron(s) Z_{eff} decreases.

Factors affecting atomic radius:

- (a) Z_{eff} increases, atomic radius decreases
- (b) Number of shell(n) increases, atomic radius increases
- (c) Screening effect increases, atomic radius increases.
- (d) Magnitude of -ve charge increases, atomic radius increases
- (e) Magnitude of +ve charge increases, atomic radius decreases $Mn > Mn^{+2} > Mn^{+3} > Mn^{-3}$
- (f) Bond order increases, atomic radius decreases

Periodic Trend :

- (a) For normal elements:
- (i) Across a period : It decreases from left to right in a period as $Z_{eff.}$ increases. Ex. Ne > Li > Be > B > C > N > O > F
- (ii) In a group : It increases from top to bottom in a group as number of shells increases.
 Ex. Li < Na < K < Rb < Cs

Solution Note: In III A group size of Al and Ga is nearly same (transition contraction)

(b) For inert gases:

In respective period generally, the atomic radius of inert gas is largest, because for inert gas VanderWaal's radius is defined. The VanderWaal's radius of inert gases also increases on moving from top to bottom in the group.

(c) For transition elements:

From left to right in a period:

 $\label{eq:listic_list$

$$0 < 0^{-} < 0^{-2}$$

$$>_{N-N} > -N = N = N$$

JEE-Chemistry

In a group :

- (i) The atomic radius of elements increases on moving down the first transition series (3d) to second transition series (4d). This is due to the increases in number of shells with the increase in atomic number.
- (ii) The atomic radii of second (4d) and third (5d) transition series in a group is almost same except Y(39) and La(57)

(d) For inner transition elements:

As we move along the lanthanide series, there is a decrease in atomic as well as ionic radius. The decrease in size is regular in ions but not so regular in atoms. This is called lanthanide contraction*.

Exceptions :

(1) Noble gases have largest atomic sizes [Vander waal radii]. However, their covalent radii are smaller e.g. Xe.

BORON FAMILY

- (2) Size of Ga and Al are same, $[\rm Z_{eff}\ increasing]$
- (3) Size of Hf & Zr are same (lanthanide contraction)

Graphical representation of atomic radius :

ALKALI METALS

ALKALINE EARTH METALS

In the direction of arrow (\rightarrow) ionic size increases. Note:-

IONISATION ENERGY:

ALLEN

Amount of energy required to remove the most loosely bonded electron from an isolated gaseous atom from its ground state electronic configuration.

Units : kJ mol⁻¹, k cal mol⁻¹, eV per atom.

Ionisation is endothermic (endoergic) i.e. requires energy. Hence $\Delta H_{ionsation}$ is +ve.

 $M + Energy (IE_1) \longrightarrow M^+ + e^ M \longrightarrow M^+ + e^ \Delta H = IE_1$ $\begin{array}{ccc} M^{+} & \longrightarrow & M^{+2} + e^{-} & \Delta H = IE_{2} \\ M^{+2} & \longrightarrow & M^{+3} + e^{-} & \Delta H = IE_{3} \end{array} \right] \text{Successive ionisation energy}$

 $IE_3 > IE_2 > IE_1$ (always)

FACTORS AFFECTING IONISATION ENERGY:

- Atomic size : Varies inversely (1)
- (2)Screening effect : Varies inversely
- Nuclear charge (Z) : Varies directly (3)
- (4) Special electronic configuration of outermost electron (half filled / fully filled)
- Type of orbitals involved in Ionisation : s > p > d > f. (5)
- Note : Half filled and full filled inner orbitals, affects d-block and f-block trends.

General Trend: Along period I.E. increases [with some exception] $[Z_{eff} \uparrow]$

Along a group I.E. decrease [Z_{eff} constant, n \uparrow]

Exception :

- Along a period, half filled and fully filled configurations have higher I.E. (1)e.g. Be > B and N > O.
- (2)Along a group, $Ga \simeq Al$

PROPERTIES AFFECTED BY IONISATION ENERGY :

- (1) Metallic character (Varies inversely)
- (2) Reducing power (Varies inversely)
- (3) Tendency to stay in which state A^{+1} . A^{+2} or A^{+3}

Solution Note :

- (a) Helium (He) has the highest ionisation energy (IE₁) among all the elements and Caesium (Cs) has the least (IE₁) value.
- Ionisation potential of inert gases is very high due to most stable s^2p^6 electronic configuration. (b) Ne Ar Kr Xe Element He Rn $IE_1(eV)$ 24.5 21.6 15.8 14.0 121 107
- (c) For isoelectronic species I.E. increases with positive charge and decreases with negative charge. e.g. $Al^{+3} > Mg^{+2} > Na^+ > F^- > O^{-2} > N^{-3}$

Graphical representation of ionisation energy : ALKALI METALS

ALKALINE EARTH METALS

HALOGENS

Ionisation energy of d-block elements :

1st, 2nd, 3rd IE's are increasing from left to right for 1st Transition series, but not regularly.

For 2^{nd} IE Cr > Fe > Mn and Cu > Zn

For 3^{rd} IE Mn > Cr > Fe and Zn has highest.

Element		Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn
Atomic number	ration	21	22	23	24	25	26	27	28	29	30
Electronic configu	M	$3d^14s^2$	$3d^{2}4s^{2}$	$3d^{3}4s^{2}$	$3d^{5}4s^{1}$	$3d^{5}4s^{2}$	$3d^{6}4s^{2}$	$3d^{7}4s^{2}$	$3d^{10}4s^2$	$3d^{10}4s^{1}$	$3d^{10}4s^2$
	M^{2+}	$3d^{1}$	$3d^2$	$3d^3$	$3d^4$	$3d^5$	$3d^6$	$3d^7$	$3d^8$	$3d^9$	$3d^{10}$
	M^{3+}	[Ar]	$3d^{1}$	$3d^2$	$3d^3$	$3d^4$	$3d^5$	$3d^6$	$3d^7$	_	_
Enthalpy of atomis	sation, Δ_{a}	$\mathrm{H}^{\circ}/\mathrm{kJ} \mathrm{mol}^{-1}$									
Ionisation Enthalp	y, $\Delta_1 H$	326 I [©] /kJ mol ⁻¹	473	515	397	281	416	425	430	339	126
$\Delta_{\scriptscriptstyle 1} H^{\scriptscriptstyle \odot}$	Ι	631	656	650	653	717	762	758	736	745	906
	II	1235	1309	1414	1592	1509	1561	1644	1752	1958	1734
	111	2393	2657	2833	2990	3260	2962	3243	3402	3556	3829

ELECTRON AFFINITY & ELECTRON GAIN ENTHALPY (EGE) :

Electron Affinity : Amount of energy released when an electron is added to an isolated gaseous atom. Units : k J mol⁻¹, k Cal mol⁻¹ and eV per atom.

Addition of electron results in release of energy in most of the cases but for addition of second electron energy is always required. The sum of $EA_1 \& EA_2$ is +ve (energy required)

$$E A \alpha \frac{1}{\text{atomic size}} \alpha Z$$

$$\alpha \frac{1}{\text{atomic size}} \alpha Z_{\text{eff}}$$
 (Cl has the highest E.A.)

Electron gain Enthalpy (EGE): When expressed in terms of enthalpy change (ΔH_{eg}) then it is termed as EGE Remember that $\Delta H = -ve$ for exothermic change.

For EA_1 , energy is released	÷	$\Delta H_{eg1} = -ve$ (Not always)
For EA ₂ , EA ₃ energy is required		$\Delta H_{eg2} = + ve \text{ (always)}$
In general $EA_1 + EA_2$, energy is required.	÷	$(\Delta H_{eg1} + \Delta H_{eg2}) > 0$

Note : $\Delta H_{e.g.} \simeq - EA$

FACTORS AFFECTING ELECTRON AFFINITY :

- (1) *Atomic size :* Varies inversely
- (2) *Nuclear charge :* Varies directly
- (3) For stable electronic configuration i.e. half filled and fully filled shells EA decreases.

General Trend: Along a period, electron affinity increases [with a few exceptions] as Z_{eff} [↑]. Along a group, electron affinity decreases after 3rd period. Between 2nd and 3rd period in p block electron affinity of 2nd period is lesser.

Exception :

- (1) A fully filled and half filled configuration have low values of EA or even sometimes energy is required rather than getting released.
- (2) 2nd period has lower value than 3rd owing to repulsion between electrons in small sized 2nd period elements.

1							18
Н							He
+0.754	2	13	14	15	16	17	-0.5
Li	Be	В	С	Ν	0	F	Ne
+0.618	≤ 0	≤+0.277	+1.263	-0.07	+1.461	+3.399	-1.2
Na	Mg	Al	Si	Р	S	C1	Ar
+0.548	≤ 0	+0.441	+1.385	+0.747	+2.077	+3.617	-1.0
K	Ca	Ga	Ge	As	Se	Br	Kr
+0.502	-	+0.03	+1.2	+0.81	+2.021	+3.365	-1.0
Rb	Sr	In	Sn	Sb	Те	Ι	Xe
+0.486	-	+0.3	+1.2	+1.07	+1.971	+3.059	-0.8

Electron affinity of the main-group elements (in electron volts)

ELECTRO NEGATIVITY :

Property of an atom in a molecule

F has highest electronegativity in the periodic table.

Decreasing order $\rightarrow F > O > Cl \approx N > Br > S \approx C > I > H.$

Pauling Scale :
$$X_A \sim X_B = 0.208 \sqrt{\Delta_{A-B}}$$
 Δ in kcal/mol

$$X_A \sim X_B = 0.102 \sqrt{\Delta_{A-B}} \Delta \text{ in kJ/mol}$$

$$\Delta_{A-B} = E_{A-B} - (E_{A-A} \times E_{B-B})^{1/2}$$

Where, E_{A-B} = Bond energy of A–B; E_{A-A} = Bond energy of A–A; E_{B-B} = Bond energy of B–B

Mulliken's Scale : $X_M = \frac{IP + EA}{2}$ (IP & EA are expressed in eV)

Mulliken's values of EN are about 2.8 times higher than values on Pauling's scale.

i.e.
$$X_{p} = \frac{X_{M}}{2.8}$$

Allred-Rochow's Scale : $X_{AR} = \frac{0.359Z_{eff}}{r^2}$; $X_P = X_{AR} + 0.744$

r = covalent radius of atom (in Å)

 Z_{eff} = Effective nuclear charge on periphery

FACTORS AFFECTING ELECTRO NEGATIVITY :

- Nuclear attraction : Varies directly (1)
- Atomic radius : Varies inversely (2)
- *Charge on ions* : More positive charge, more electronegativity and more -ve charge, less (3) electronegativity.
- (4) Hybridisation : To be discussed later in chemical bonding chapter.

General Trends : Along a period, electronegativity increases

Along a group, electronegativity decreases

Exceptions : Not Noteworthy.

\bigcirc Note: Electronegativity of F > Cl but Electron affinity of Cl > F**Electronegativity of Some Elements (on Paulling's Scale)**

	9						
Η							In Pauling's Scale , elements having
2.1							almost same electronegativity are-
Li	Be	В	С	Ν	0	F	$C \simeq S \simeq I \simeq 2.5$
1.0	1.5	2.0	2.5	3.0	3.5	4.0	N = C1 = 3.0
Na	Mg	Al	Si	Р	S	Cl	P - H - 2.1
0.9	1.2	1.5	1.8	2.1	2.5	3.0	1 - 11 - 2.1
Κ	Ca	Ga	Ge	As	Se	Br	$C_{S} = Fr = 0.7$
0.8	1.0	1.6	1.8	2.0	2.4	2.8	Be=AI=1.5
Rb	Sr	In	Sn	Sb	Те	Ι	
0.8	1.0	1.7	1.8	1.9	2.1	2.5	
Cs	Ba	Tl	Pb	Bi	Ро	At	
0.7	0.9	1.8	1.8	1.9	2.0	2.2	
Fr	Ra						-
0.7	0.9						

(4)

PROPERTIES DEPENDENT ON ELECTRO NEGATIVITY :

% ionic character (1)

Strength of bond (2)

- (3)

Nature of hydrides

- Bond Length
- (5) Nature of hydroxide.

Graphical representation of Electronegativity :

ALKALI METALS

ALKALINE EARTH METALS

BORON FAMILY

The amount of energy released during the formation of 1 mole crystal lattice from consituent gaseous ions.

 $Na^{+}(g) + Cl^{-}(g) \rightarrow NaCl(s)$ Lattice energy = -788 kJ mol⁻¹

OR

The lattice energy of an ionic compound is the energy required to separate 1 mole of solid ionic substance completely into gaseous ions.

 $NaCl(s) \rightarrow Na^{+}(g) + Cl^{-}(g)$ Lattice energy = +788 kJ mol⁻¹

Lattice energies are large and positive because of attraction between positive and negative ions. The potential energy of two interacting charged particles is given by:

$$E = K \frac{Q_1 Q_2}{r}$$
 where, $r = r^+ + r^-$; $r^+ \rightarrow$ radius of cation, $r^- \rightarrow$ radius of anion

Where Q_1 and Q_2 are the charge on the particles in coulombs, and r is the distance between their centres in meters. The constant K has the value $9.0 \times 10^9 \text{ J} - \text{m/C}^2$.

Factors affecting lattice energy :

- (a) The lattice energy increases as the charge on the ions increases and as their radii decreases.
- (b) The magnitude of lattice energies however depends primarily on the ionic charges because ionic radii do not vary over a wide range.

For Example :

ALLEN

The lattice energy order for some compounds is given below.

LiI < LiBr < LiCl < LiF (Due to small size of halide ion F⁻ alongwith small Li^+)

HYDRATION ENERGY :

It is the energy released when 1 mol of gaseous ions are hydrated in water. It is directly proportional to nuclear charge and inversely proportional to size. It always decreases down the group.

(a) As the charge density of ion increases hydrated size (or aqueous radius) increases. **Size :** $Li^+(aq) > Na^+(aq) > K^+(aq) > Rb^+(aq) > Cs^+(aq)$

(b) As the hydrated size of ion increases ionic mobility decreases, which thus, decreases conductivity of ions.

Mobility : $Li^{+}(aq) < Na^{+}(aq) < K^{+}(aq) < Rb^{+}(aq) < Cs^{+}(aq)$

Conductivity : $Li^+(aq) < Na^+(aq) < K^+(aq) < Rb^+(aq) < Cs^+(aq)$

(c) Hydration energy also affects the solubility of ionic compounds. If hydration energy is greater than lattice energy then ionic compound will be soluble in water. More is the hydration energy, greater is the solubility, whereas, if lattice energy decreases, solubility of ionic compound increases.

MISCELLANEOUS CHEMICAL PROPERTIES :

1. Periodicity of hydra acids :

- (a) Acidic character of hydra acid increases from left to right in a period.
- (b) Acidic character of hydra acid increases from top to bottom in a group.

2. Periodicity of oxy acids :

- (a) Acidic character of oxy acid increases from left to right in a period.
- (b) Acidic character of oxy acid decreases from top to bottom in a group.

3. Periodicity of nature of oxide :

(a) On moving from left to right in a period acidic nature of oxide generally increases.

e.g. $CO_2 < P_2O_5 < SO_3 < Cl_2O_7$

(b) On moving from top to bottom in a group acidic nature of oxide generally decreases.

4. General trends

- (a) *Hydration energy* decreases along a group.
- (b) *Lattice energy* decreases along a group.

:: Some points to Remember ::

(without considering radioactive elements)

- 1. Second most electronegative element is Oxygen
- 2. Hydrogen is the lightest element and Lithium is lightest metal.
- **3.** Helium has the highest value of I.P.

ALLEN

- 4. In periodic table metalloids are only in p-block.
- 5. Total gaseous elements are 11 (He, Ne, Ar, Kr, Xe, Rn, H_2 , N_2 , O_2 , Cl_2 , F_2)
- 6. Liquid metal at room temperature is Hg.
- 7. Diamond is hardest natural substance.
- 8. Halogens have highest electron affinity and amongst them, Cl has the highest amongst them.
- 9. The largest cation of the periodic table = Cs^+ .
- **10.** The smallest cation of the periodic table = H^+ .
- **11.** The smallest anion of the periodic table = F^- .
- **12.** The biggest element of periodic table = Fr.
- **13.** The smallest element of periodic table = H.
- **14.** Br is liquid non-metal element at room temperature.
- **15.** Osmium is the heaviest element known.
- **16.** Fluorine is the most electronegative element.

46				ú	ton	hah	ŗ		L L	r m	44 90	D	orio	י. נוק	Tah				
		s-Block	lements	ì		5	5				5				25	Block F	Flamonte		4
\sim 1	Group	٩£			Ŭ	etals							•		_	- 4001 0 -0	רומוומווי		0 (18)
	Period	- I	AII		No	n metal	S							AIII	VA	VA	VIA	VIIA	2 He
	•	1.0079 Hydrogen	5		Mé	stalloids							_	(13)	(14)	(15)	(16)	(17)	4.0026 Helium
	2	6.940 Lithium	Be 9.0122 Beryllium				I	d-Block	: Elemen	ts				5 10.811 Boron	12.011 Carbon	14.007 Nitrogen	15.999 Oxygen	18.998 Fluonne	20.180 Neon
	ю	22.990 Sodium	12 Ng 24.305	(3)		VB (5)	VIB (6)			- III/-	[10]	IB (11)	IIB	13 AI 26.982 Aluminium	31 28.086 Silcon	15 P 30.974 Phosportis	16 32.066 Sulabur	35.453 Chlorine	18 Ar 39.948 Arcon
1	4	€ ¥ ^{80.08}	20 Ca 40.078	21 26 44.956	1 47.867	23 50.941	51.996	25 Zn 54.938	26 Fe 55.847	27 28.933	28 DI	29 Cu 63.546	Z D 85.39	31 31 62.723	32 Ge 72.61	33 AS 74.922	34 Se 78.96	35 Br 79.904	7 X 36 83.80
	2	37 37 85.468 85.468 85.468	Calcium 38 87.62 Strontium	Scandium 33 88.906 ∀#riium	Titanium 40 21.224 Zirconium	Vanadium 41 92.906 Nichium	Chrominur 42 85.94 MoMMenum	Manganese 43 TC 98 Technetium	Iron RU 101.07 Buthenium	Cobolt 45 102.91 Rhodium	A6 46 7d 106.42 Palladium	Copper 47 AG 107.87 Silver	Zinc 48 112:41 Cadmium	Gallium 49 114.82 Indium	Germanium 50 5 n 118.71	Arsenic 51 Sb 121.76 Antimonv	Selenium 52 TC 127.60	Bromine 53 126.90 Iodine	Krypton 54 Xenon Xenon
	y	55 CS CS Cesium	56 56 137.33 Barium	57 57 138.91 Lanthanum	72 74 178.49 Hafnium	73 73 180.95 Tantalum	74 74 183.84 Tungsten	75 75 Re 186.21 Rhenium	76 0 S ^{190.23} Osmium	19 2.22 Iridium	78 Pt 195.08	79 79 196.97 Gold	HG 200.59 Mercurv	204.38	82 82 207.2 Lead	B 208.98 Bismuth	PO 210 Polonium	85 At 210 Astatine	86 222 Radon
л	7	87 Fr 223 Francium	88 83 226 Radium	89 AC ** ²²⁷ Actinium	104 Unniquadium	105 Unn 262 Unnipentium	Unh 266 Unnihexium	107 Unns 264 Unnilseptium	108 Unniloctium	109 Unniennium	110 Uun ²⁶⁹ Ununnilium	111 Uuu 272 Unununium	112 Uub ²⁷⁷ Ununbium	The sym pr	thols for eler roposed by t 110	ments 104- the Americi)-112 propo	-109 used ir an Chemica osed by IUF	ı this table a al Society an AC	re those d
						ļ					- -	Block El	ements						Ť
	9	*Lan	thani	de Se	ries	58 Ce 140.12 Cerium	59 Pr 140.91 Praseodymium	60 Nd 144.24 Neodymium	PP 145 Promethium	62 Sm 150.36 Samarium	63 Eu 151.96 Europium	64 Gd ^{157.25} Gadolinium	65 Tb ^{158.93} Terbium	66 Dy 162.50 Dyspro-	67 HO Holmium	68 167.26 Erbium	69 Tm 168.93 Thulium	70 Yb 173.07 Ytterbium	71 Lu 174.97 Lutetium
	7	** A (ctinid	e Seri	es	90 Th ^{232.04} Thorium	91 Pa 231.04 Protactinium	238.03 Uranium	93 Neptunium	Pu 244 Plutonium	95 Am 243 Americium	96 Cm ²⁴⁷ Curium	97 BK 247 Berkelium	98 Cf ²⁵¹ Califonium	99 ES 252 Einsteinium	100 Fm ²⁵⁷ Fermium	101 Md 258 Mendelevium	102 No Nobelium	103 Lr 262 Lawrencium

JEE-Chemistry

ALLEN

IUPAC designations of groups of elements are given in brackets

node06 \B0AH-A1\Koe\LEEAdveneed\\Nurture\Chem\Sheet\Quentum number, Periodic table & Chemical bonding \Eng\02_Theory.pd5

PERIODS

A tomio un dimo		PER		
Acount Faulus				- Decreases
Ionisation I	ootential			> Increases
Electro	negativity — — — — —			> Increases
Elec	tron affinity —			→ Increases
	Sovalent character of h	alides — — —		
Increases	Metallic character –			→ Decreases
Decreases	Oxidising nature			→ Increases
Decreases	Reducing nati	lre —		
Decreases	Screening	effect		
Decrea	ses Effecti	ve nuclear charge	e (Z _{e tt})	
Incr	eases Val	ency w.r.t Oxygen		> Increases
Ι	Decreases	Basic character o	of hydroxides	→ Decreases
	Increasés	Basic charact	er of hydrides	
	Increases	Basic char	racter of Oxides	→ Decreases
	Constant	Strengt	th of oxy acids	
	Constant	The	ermal stability of sulphate ———	
	(Metals)Increa	sés –	Thermal stability of carbonates —	→ Decrease
(Non metal) D	ecreases (Metals) Incr	eases	Thermal stability of nitrates—	
		Increasés	Therma stability of hydrox	ide →Decrease
		Decreases	Density	→ First increases then decrease
		Increases	Electro positivity—	→ Decrease
		Increa	ses	
		Inc	reases	
			Increases	
			Increases	
			Increases	

EXERCISE # 0-1

		Perio	odic Table				
1.	Which is not anomalo	ous pair of elements in th	e Mendeleev's periodic ta	able:-			
	(A) Ar and K	(B) Co and Ni	(C) Te and I	(D) Al and Si			
2.	Representative eleme	ents belong to :					
	(A) s-and p-block	(B) d-block	(C) d and f-block	(D) f-block			
3.	True statement is :-						
	(A) All the transurar	ic elements are synthet	tic elements				
	(B) Elements of third	1 period are called trans	sition elements				
	(C) Element of [Ar]	3d ¹⁰ 4s ² configuration	is placed in IIA group				
4	(D) Electronic config	guration of elements of	a group is same				
4.	which of the following (Λ) Last natural elements	ng match is correct					
	(R) General electronic	configuration of IA gr	$nun - ns^2$				
	(C) Inert gas elemen	ts lies between $2^{nd} - 6^{t}$	^h period				
	(D) Typical elements	$s - 3^{rd}$ period elements					
5.	The electronic config	uration of elements X a	nd Z are $1s^2 2s^2 2p^6 3s^2 3$	p^5 and $1s^2 2s^2 2p^5$ respectively.			
	What is the position	of element X with res	pect to position of Z in t	the periodic table -			
	(A) Just below elem	ent Z	(B) Just above Z				
	(C) Left to the Z		(D) right to the Z				
6.	Which of the follow	ing is not a Dobereiner	triad :				
	(A) H, F, Cl	(B) N, O, F	(C) P, As, Sb	(D) S, Se, Te			
7.	Select the incorrect st	atement for Lother Mey	ver's curve :				
	(A) Curve is plotted between atomic weight and atomic volume						
	(B) Alkali metals occupy maxima of curve						
	(D) Transition metal	s occupy bottom portions	on the curve				
	(D) Hanstion metal	Atomic d	& Ionic Radii				
8.	The size of the follo	wing species increases	in the order:				
	(A) $Mg^{2+} < Na^+ < F$	<u>-</u>	(B) $F^- < Na^+ < Mg^2$	2+			
	(C) $M\sigma^{2+} < F^- < Na$	+	(D) $Na^+ < F^- < Ma^2$	2+			
0	Highest size will be	of					
9.	(A) Dr			(\mathbf{D}) I ⁺			
10	(A) Br	$(\mathbf{B})\mathbf{I}$	(C) I	$(\mathbf{D})\mathbf{\Gamma}$			
10.	Element Cu has two	oxidation states Cu ⁺¹	& Cu^{-2} . the right order (of radii of these ions.			
	(A) $Cu^{+1} > Cu^{+2}$	(B) $Cu^{+2} > Cu^{+1}$	(C) $Cu^{+1} = Cu^{+2}$	$(D) Cu^{+2} \ge Cu^{+1}$			
11.	The correct order of	increasing atomic size	of element N,F, Si & P.				
	(A) $N < F < Si < P$	(B) $F > N < P < Si$	(C) F < N < P < Si	(D) $F < N < Si < P$			
12.	The correct order of	atomic or ionic size					
	(A) N < $Li < B$	(B) $Cl < Mg < Ca$	(C) $Ca^{+2} < S^{-2} < Cl$	(D) $Na^+ < Mg^{+2} < Cl^-$			
13.	In isoelectronic serie	s largest difference bet	ween size is observed in	$N^{3-}, O^{2-}, F^{-}, Na^+, Mg^{2+}$:			
	(A) N ³⁻ , Mg ²⁺	(B) N ³⁻ , O ²⁻	(C) Mg ²⁺ , Na ⁺	(D) F ⁻ , Na ⁺			
48							

are

	14.	Mg, Mg ²⁺ , Al and Al	³⁺ are arranged in decre	easing order of size 1 >	2 > 3 > 4. Species which	
		present at 1 and 4 po	sition respectively are :			
		(A) Al, Mg^{2+}	(B) Mg, Al^{3+}	(C) Mg^{2+} , Al	(D) Al^{3+} , Mg	
			Ionization End	ergy or Potential		
	15.	In which of the follow	wing electronic configur	ration, ionisation energy	will be maximum in	
		(A) [Ne] $3s^2 3p^1$	(B) [Ne] $3s^2 3p^2$	(C) [Ne] $3s^2 3p^3$	(D) [Ar] $3d^{10} 4s^2 4p^3$	
	16.	The correct order of	second ionisation poten	tial of C, N, O and F is:		
		(A) C > N > O > F	(B) $O > N > F > C$	(C) O > F > N > C	(D) $F > O > N > C$	
	17.	The ionization energy	will be maximum for	which process?		
		(A) $Ba \rightarrow Ba^+$	(B) Be \rightarrow Be ⁺	(C) $Cs \rightarrow Cs^+$	(D) $Li \rightarrow Li^+$	
	18.	Amongst the followin	g, the incorrect stateme	ent is		
		(A) IE_1 (Al) $\leq IE_1$ (M	(lg)	(B) IE_1 (Na) $\leq IE_1$ (M	ſg)	
		(C) IE_2 (Mg) > IE_2 (I	Na)	(D) IE_3 (Mg) > IE_3 (Al)	
	19.	Decreasing ionization	potential for K, Ca &	Ba is		
		(A) Ba> K > Ca	(B) $Ca > Ba > K$	(C) $K > Ba > Ca$	(D) $K > Ca > Ba$	
	20.	Alkaline earth metals	always form dipositive	ions due to		
		(A) $IE_2 - IE_1 > 10 eV$	Ι	(B) $IE_2 - IE_1 = 17 \text{ eV}$	/	
		(C) $IE_2 - IE_1 < 10 \text{ eV}$	Ι	(D) None of these		
	21.	The correct order of se	econd I.P.			
		(A) Na $<$ Mg $>$ Al $<$ S	i	(B) Na > Mg < Al > S	i	
		(C) Na > Mg > Al < S	i	(D) Na > Mg > Al > S	i	
			Electron affinity or I	Electron Gain Enthalpy		
	22. The process requires absorption of energy is					
		(A) $F \rightarrow F^-$	(B) $Cl \rightarrow Cl^{-}$	(C) $O^- \rightarrow O^{2-}$	(D) $H \rightarrow H^-$	
	23.	Of the following elem	nents, which possesses	the highest electron affin	nity?	
		(A) As	(B) O	(C) S	(D) Se	
	24.	Electron affinities of	O,F,S and Cl are in the	order.		
cise.p65		(A) $O < S < Cl < F$		(B) $O < S < F < Cl$		
g\03_Exen		(C) $S < O < Cl < F$		(D) $S < O < F < Cl$		
onding\En	25.	Increasing order of E	lectron affinity for follo	wing configuration.		
Chemical b		(a) $1s^2$, $2s^2 2p^2$		(b) $1s^2$, $2s^2 2p^4$		
lictable & ((c) $1s^2$, $2s^2 2p^6 3s^2 3$	p ⁴	(d) $1s^2$, $2s^2 2p^6$, $3s^2 3s^2$	3p ³	
lber, Perioc		(A) $d < a < b < c$	(B) $d < a < c < b$	(C) $a < b < c < d$	(D) $a < b < d < c$	
antum num	26.	Highest electron affin	ity is shown by			
\Sheet\Qu		(A) F	(B) Cl	(C) Li ⁺	(D) Na ⁺	
ure\Chem`	27.	Which of the following	ng statements is not true	e?		
iced]∖Nurt		(A) F atom can hold	additional electron more	e tightly than Cl atom		
JEE(Advan		(B) Cl atom can hold	additional electron more	re tightly than F atom		
1-Al\Kota∖		(C) The incoming ele	ctron encounters greate	r repulsion for F atom t	han for Cl atom	
eo6\B0AF		(D) It is easier to rem	ove an electron from F	than Cl ⁻ .		
pou			_	_		
E						

ALLEN -

		Ele	ctronegativity		
28.	The outermost e	lectronic configuration of r	nost electronegative eler	ment amongst the fo	ollowing is :
	(A) $ns^2 np^3$	(B) $ns^2 np^4$	(C) $ns^2 np^5$	(D) $ns^2 np^6$	5
29.	In the following,	which is the correct repre	sentation?		
	(A) $\begin{array}{c} \delta + & \delta - \\ C - F \end{array}$	(B) $\overset{\delta_+}{C} \overset{\delta_+}{-} \overset{\delta_+}{C1}$	(C) $\overset{\delta + \delta -}{F - Cl}$	δ- δ+ (D) O-F	
30.	On the Pauling's	electronegativity scale, w	hich element is next to F	· · · · · · · · · · · · · · · · · · ·	
	(A) Cl	(B) O	(C) Br	(D) Ne	
31.	Which one is not	correct order of electrone	egativity.		
	(A) $F > Cl > Br$: > I	(B) $Si > Al > M$	g > Na	
	(C) $Cl > S > P$	> Si	(D) None of thes	se	
32.	The increasing o	order of acidic nature of L	i_2O , BeO, B_2O_3		
	(A) $\text{Li}_2\text{O} > \text{BeC}$	$0 < B_2 O_3$	(B) $\text{Li}_2\text{O} < \text{BeO}$	$< B_2O_3$	
	(C) $\text{Li}_2\text{O} < \text{BeC}$	$0 > B_2 O_3$	(D) $\text{Li}_2\text{O} > \text{BeO}$	$0 > B_2O_3$	
33.	The lowest elect	ronegativity of the element	from the following atom	nic number is.	
	(A) 37	(B) 55	(C) 9	(D) 35	
		M	liscellaneous		
34.	Which of the foll	owing does not reflect the	periodicity of element		
	(A) Bonding beh	aviour	(B) Electronegati	vity	
	(C) Ionisation po	tential	(D) Neutron/ Pro	oton ratio	
35.	Among the follo	wing, which species is/are	paramagnetic?		
	(i) Sr^{2+}	(ii) Fe ³⁺	(iii) Co ²⁺	(iv) S ²⁻	(v) Pb^{2+}
	(A) i, iv, v	(B) i, ii, iii	(C) ii, iii	(D) iv, v	
36.	Choose the s-blo	ck element from the follow	ving:		
	(A) $1s^2$, $2s^2$, $2p$	6 , $3s^{2}$, $3p^{6}$, $3d^{5}$, $4s^{1}$	(B) $1s^2$, $2s^2$, $2p^6$	$^{\circ}$, $3s^{2}$, $3p^{6}$, $3d^{10}$, 4	S ¹
	(C) $1s^2$, $2s^2$, $2p$	6 , $3s^{2}$, $3p^{6}$, $4s^{1}$	(D) all of the abo	ove	
37.	False statement	for periodic classification of	of elements is		
	(A) The propert	ies of the elements are per	iodic function of their at	omic numbers.	
	(B) No. of non-i	metallic elements is less th	an the no. of metallic ele	ements.	
	(C) First ionizati a period.	on energy of elements does	s not increase regularly v	vith the increase in a	atomic number in
	(D) d-subshell is	filled by final electron with	n increasing atomic num	ber of inner transition	on elements.
38.	Which of the foll	owing order is incorrect a	gainst the property indic	ated :	
	(A) Mg < Ar < 2	Na (2nd I.E.)	(B) Be < F < Cl	(ΔH_{eg})	
	(C) $Rb < Na < 1$	K > Ca (atomic radius)	(D) P < S < N (e)	lectronegativity)	
39.	If each orbital ca	in hold a maximum of thre	e electrons, the number	of elements in 9 th p	eriod of periodic
	table (long form	$(\mathbf{P}) 1(2)$			
	(A) 48	(B) 162	(C) 50	(D) 75	
50		•			

node06 \B0AH-A1\Kota\EE[Advanced]\Nutrure\Chem\Shee1\Quantum number, Periode1tdble & Chemical bonding\Eng\03_Exercise p65

Е

- 40. Which of the following element has highest metallic character.
 - Element IP (A) P 17 eV
 - $\begin{array}{c} (\mathbf{R}) \quad \mathbf{Q} \\ (\mathbf{B}) \quad \mathbf{Q} \\ \end{array} \qquad \qquad 2 \text{ eV}$
 - (C) R 10 eV
 - (D) S 13 eV

41. The electronic configuration of an element is 1s² 2s² 2p⁶ 3s² 3p⁴. The atomic number and the group number of the element 'X' which is just below the above element in the periodic table are respectively.
(A) 24 & 6
(B) 24 & 15
(C) 34 & 16
(D) 34 & 8

- 42. The number of d- electrons in Mn²⁺ is equal to that of
 (A) p-electrons in N
 (B) s-electrons in Na
 - (C) d-electrons in Fe^{+2} (D) p-electrons in O^{-2}
- **43.** Which of the following formula has involved all the energy terms used to calculated $\Delta H_f^o of Na_2O_{(s)}$. (ΔH_{sb} : Sublimation energy; I.E₁: First ionisation energy; I.E₂: Second ionisation energy; B.D.E.; Bond dissosiation energy; E.G.E₁: First electron gain enthalpy; E.G.E₂: Second electron gain enthalpy; U : Lattice energy)

(A)
$$+ 2\Delta H_{sb} + I.E_1 + I.E_2 + \frac{B.D.E.}{2} + E.G.E_1 + E.G.E_2 + U$$

(B) $+ 2\Delta H_{sb} + 2I.E_1 + \frac{B.D.E.}{2} + E.G.E_1 + E.G.E_2 + U$

$$(C) + 2\Delta H_{Sb} + 2I.E_1 + \frac{B.D.E.}{2} + 2E.G.E_1 + U$$

(D) +
$$2\Delta H_{sb}$$
 + I.E₁ + $\frac{B.D.E.}{2}$ + E.G.E₁ + E.G.E₂ + U

- 44. EN of the element (A) is E_1 and IP is E_2 . Hence EA will be according to mulliken (A) $2E_1 - E_2$ (B) $E_1 - E_2$ (C) $E_1 - 2E_2$ (D) $(E_1 + E_2)/2$
- **45.** Moving from right to left in a periodic table, the atomic size is:

(A) Increased (B) Decreased (C) Remains constant (D) None of these

46. One element has atomic weight 39. Its electronic configuration is 1s², 2s² 2p⁶, 3s² 3p⁶ 4s¹. The true statement for that element is:

(A) High value of IE (B) Transition element (C) Isotone with $_{18}Ar^{38}$ (D) None

- **47.** The number of paired electrons in oxygen atom is:
 - (A) 6 (B) 16 (C) 8 (D) 32

48. The decreasing size of K^+ , Ca^{2+} , Cl^- & S^{2-} follows the order:

(A) $K^+ > Ca^{+2} > S^{-2} > Cl^-$ (B) $K^+ > Ca^{+2} > Cl^- > S^{-2}$

(C) $Ca^{+2} > K^+ > Ch^- > S^{-2}$ (D) $S^{-2} > Ch^- > K^+ > Ca^{+2}$

49. Which of the following has the maximum number of unpaired electrons (A) Mg^{2+} (B) Ti^{3+} (C) V^{3+} (D) Fe^{2+}

EXERCISE : 0-2

	Atomic & Ionic Radius						
1.	Select correct order	of size :					
	(A) $Ti^{2+} < Ti < Zr$	(B) $Ti^{2+} < Ti < Hf$	(C) $Zr^{2+} < Zr \approx Hf$	(D) $Hf^{2+} < Hf \approx Zr$			
2.	Which of the following	ng orders of atomic / Ionio	c radius is correct?				
	(A) $B < Al \approx Ga$	(B) $Sc > Cu < Zn$	(C) $C < O < N$	(D) $Al^{+3} < Al^{+2} < Al^{+}$			
		Electro	n Affinity				
3.	Which of the following	ng is correct order of EA.					
	(A) $N < C < O < F$	(B) F > Cl > Br > I	(C) $Cl > F > Br > I$	(D) $C < N < O < F$			
4.	The electron affinity	of the members of oxygen	family of the periodic tal	ble, follows the sequence			
	(A) O > S > Se	(B) $S > O < Se$	(C) $O < S > Se$	(D) Se > O > S			
		Ionisati	on Energy				
5.	Considering the follow	wing ionisation steps :					
	$A(g) \rightarrow A^+(g) + e^-$	$\Delta H = 100 \text{ eV}$	$A(g) \rightarrow A^{2+}(g) + e^{-}$	$\Delta H = 250 \text{ eV}$			
	Select the correct sta	tements :					
	(A) IE_1 of A(g) is 10	0 eV	(B) $IE_1 \text{ of } A^+(g) \text{ is } 15$	0 eV			
	(C) IE_2 of A(g) is 15	0 eV	(D) IE_2 of A(g) is 250) eV			
6.	Which of the following	ng are correct ?					
	(A) $IE_2(Mg) < IE_2(I)$	Na)	(B) EA (N) < EA (P)				
	(C) Atomic size Mg ⁺	2 > Atomic size (Li ⁺)	(D) IP of Na $<$ Mg $<$	Al			
_		Electro	negativty				
7.	Amongst the following	ng statements, which is / ai	re correct?				
	(A) Electronegativity	of sulphur is greater than	that of oxygen.				
	(B) Electron animity (bioxygen is smaller than the	nat of sulphur.				
	(D) Electron gain ent	halpy of chlorine is most n	egative				
8	An element 'F' have	IE = x eV/atom and EA =	= v eV / atom and FN or	Pauling scale is 1.2 Find FN			
0.	of 'E' on Mullikan sca	ale :	y e v 7 atom and Erv of				
	(A) $\frac{x+y}{2}$	(B) 1.2 × 2.8	(C) $\frac{x+y}{28} - 1.2$	(D) $1.2 - \frac{x+y}{2}$			
	2	II. Janet	2.0	<i>L</i>			
0	Choose the INCORI	Hyurau RECT order of hydrated s	vize of the ions -				
7.							
	(A) $F_{(aq.)}^{\Theta} > Cl_{(aq.)}^{\Theta} > F$	$\operatorname{Br}_{(\operatorname{aq.})} > \operatorname{I}_{(\operatorname{aq.})}^{\mathfrak{S}}$	(B) $Rb_{(aq.)}^{\oplus} > K_{(aq.)}^{\oplus} > 1$	$\operatorname{Na}_{(\operatorname{aq.})}^{\scriptscriptstyle{\heartsuit}} > \operatorname{Li}_{(\operatorname{aq.})}^{\scriptscriptstyle{\heartsuit}}$			
	(C) $Na^{\oplus}_{(aq.)} > Mg^{2+}_{(aq.)}$	$> Al_{(aq.)}^{3+}$	(D) $Be_{(aq.)}^{2+} > Mg_{(aq.)}^{2+} >$	$ Ca_{(aq.)}^{2+} > Sr_{(aq.)}^{2+} $			

 $\begin{array}{ll} (C) & Na_{(aq.)}^{\oplus} > Mg_{(aq.)}^{2+} > Al_{(aq.)}^{3+} \\ \mbox{ (D) } & Be_{(aq.)}^{2+} > Mg_{(aq.)}^{2+} > Ca_{(aq.)}^{2+} > Sr_{(aq.)}^{2+} \\ \mbox{ I0. Find the correct ionic mobility order in aqueous solution from the following options-} \\ (A) & Li^+ < Na^+ \\ \mbox{ (B) } & Mg^{2+} < Sr^{2+} \\ \mbox{ (C) } & Na^+ < K^+ \\ \mbox{ (D) } & F^- < Cl^- \\ \end{array}$

ALLEN -

		Miscella	neous				
	11.	• Select the correct statement(s).					
		(A) The value of electron gain enthalpy of an eler	ment can be -ve or +ve	۰.			
		(B) In the periodic table, metallic character of the ele the period	ements increases down	the group and decreases a	icross		
		(C) The Cl ^{$-$} & S ^{2–} are isoelectronic species but fi	irst one is not smaller i	n size than the second			
		(D) Ionization enthalpy of an atom is equal to elec	tron gain enthalpy of c	ation			
	12.	In halogens, which of the following properties incr	rease from iodine to flui	roine			
		(A) Ionisation energy	(B) Electronegativity				
		(C) Bond length	(D) Electron affinity				
	13.	• In which of the following set of elements 1 st eleme	ent is more metallic tha	n second.			
		(A) Ba, Ca (B) Sb, Sn	(C) Ge, S	(D) Na, F			
	14.	• Which of the following order(s) is / are CORRE	CT :				
		(A) $\text{Li} < \text{Be} < \text{B} < \text{C} (\text{IE}_1)$					
		(B) $HF < HCl < HBr < HI$ (Bond length)					
		(C) $Na_2O < MgO < Al_2O_3 < SiO_2 < P_2O_5$ (Acid	ic)				
		(D) $Li^+(g) < Na^+(g) < K^+(g) < Cs^+(g)$ (Ionic radiu	us)				
	15.	• Which of the following order is correct :					
		(A) P < Si < Be < Mg < Na (Metallic character)					
		(B) $Mg^{+2} < Na^+ < F^- < O^{2-}$ (Ionic radius)					
		(C) $\text{Li} < \text{B} < \text{Be} < \text{C} < \text{N} < \text{O}$ (2 nd ionization energy)					
		(D) $Li^+ < Na^+ < K^+ < Rb^+ < Cs^+$ (Ionic mobility)					
	16.	• The ionic compound A^+B^- is formed easily when	1 the				
		(A) electron affinity of B is high					
cise.p65		(B) ionization energy of A is low					
ing\03_Exer		(C) lattice energy of AB is high					
albonding∖E		(D) lattice energy of AB is low					
ole & Chemic	17.	• Which of the following is/are correct?					
r, Periodictal		(A) For A(g) + $e^- \longrightarrow A^-$ (g) ΔH may be negative	tive				
ntum numbe		(B) For $A^{-}(g) + e^{-} \longrightarrow A^{2-}(g) \Delta H$ may be neg	gative				
\Sheet\Qua		(C) For $A^{-}(g) + e^{-} \longrightarrow A^{2-}(g) \Delta H$ must be po	sitive				
rture\Chem		(D) For Ne(g) + $e^- \longrightarrow Ne^-$ (g) ΔH may be zet	ero				
vanced/Nhu							
(ota\JEE(Ad							
S\BOAH-AIN							
node06							
Ε		•			53		

EXERCISE # S-1

- Find out the atomic number of element whose IUPAC name is Unnilpentium. 1. Fill your answer as sum of digits (excluding decimal places) till you get the single digit answer. 2. Select total number of acidic compounds out of given below. CsOH, OC(OH)₂, SO₂(OH)₂, Sr(OH)₂, Ca(OH)₂, Ba(OH)₂, BrOH, NaOH, O₂NOH Total number of enthalpy(s) (out of given eight) of A(g) which is/are not associated with conversion of 3. $A_{(g)}^{-} \longrightarrow A_{(g)}^{+4}$: IE₁, IE₂, IE₃, IE₄, IE₅, IE₆, EGE₁, EGE₂ (IE = ionization energy, EGE = electron gain enthalpy) Write the number of pairs in which size of first element or ion is higher as compared to IInd out of following 4. eight pairs. (O,S), (He, Ne), (Kr, Ne), (Na, Na⁺), (Cl, Cl⁻), (l⁻, Cl⁻), (Li, Na), (Li⁺, Na⁺) Total number of elements which have less IE_1 than that of 'N'. 5. Be, B, C, F, P, He 6. Size of H⁻ is smaller than how many elements among these ? H, Li, Be, B, C, N, O, F, F 7. How many orders are **CORRECT** (a) Acidic strength \Rightarrow ClOH \leq BrOH \leq IOH (b) Basic strength \Rightarrow MgO < CaO < SrO < BeO (c) Electronegativity \Rightarrow I < Br < N < O < F (d) Electron affinity \Rightarrow Mg < Na < Si < S < Cl (e) % Ionic character \Rightarrow NaF < KF < RbF 8. is higher for fluorine as compared to chlorine. Find the number of properties given below to fill the blank space to make a correct statement. Atomic mass, Covalent radius, Ionic radius (X⁻), Ionization energy, Electron affinity, Electronegativity, Hydration energy of uninegative ion (X⁻), 9. Upto argon find the number of elements which have lower IE_1 as compared to He. The number of pairs, in which EA of the second element is more than that of the first element is : 10. [O, S], [C, N], [O, N], [N, P], [Cl⁺, F⁺], [K⁺, Na⁺] For an element the successive ionisation energy values (in eV/atom), are given below. 11. 14.534, 29.601, 47.448, 77.472, 97.888, 552.057, 667.029 Find the number of valence shell electrons in that element. Subjective :
 - 12. Calculate E.N. of chlorine atom on Pauling scale if I.E. of Cl⁻ is 4eV & of E.A. of Cl⁺ is + 13.0 eV.
 - **13.** Increasing order of ionic size : $13^{2} + 7^{2$

N³⁻, Na⁺, F⁻, O²⁻, Mg²⁺

Ε

EXERCISE # S-2

		Paragraph fo	or Questions 1 to 2					
	First electron gain enth	alpy (in <u>kJ</u>) of few el	ements are given below	<i>v</i> .				
	i list electron gain entit	mol ⁹ mol ⁹		v -				
		Elements	ΔH_{eg}					
		I	-60					
			-45					
		IV	-295					
		V	+ 48					
	Answer the following	questions on the basis	of above data:					
1.	Which element may be	e an inert gas						
	(A) I	(B) III	(C) IV	(D) V				
2.	Which element is most	t non-metallic among	all the elements -					
	(A) I	(B) II	(C) III	(D) IV				
		Paragraph fo	or Questions 3 to 4					
	The IE, and the IE, i	in KJ/mol of a few el	lements designated by	y U, V, W, X are shown below.				
	Atom	IE,	IE,					
	U	2464	6110					
	V	610	7542					
	W	928	1810					
	Х	1588	3410					
	Based on the above i	nformation answer th	e follwoing question	:-				
3.	Which of the element	s represent a noble g	as.	(=) = ·				
	(A) U	(B) V	(C) W	(D) X				
4.	Which of the following	ng element belongs to	o group 1 (IA).					
	(A) U		(C) W	(D) X				
		Paragraph fo	or Question 5 to 7					
	Nature of bond can be	predicted on the basis	of electronegativity of	f bonded atoms, greater difference				
ie pó5	in electronegativity (X), more will be the po	larity of bond, and pol	lar bond are easily broken in polar				
03_Exercis	solvent like water. For	r hydroxy acids $X_0 - 1$	X _A difference predict	the nature of oxide formed by the				
ing\Eng\	element A.							
nical banc	$ \mathbf{X}_{0} - \mathbf{X}_{A} \ge \mathbf{X}_{0} - \mathbf{X}_{H} $	$_{\rm H}$ then A–O–H snow	basic nature (NaOH					
ole & Che	$ \mathbf{X}_{0} - \mathbf{X}_{A} \le \mathbf{X}_{0} - \mathbf{X}_{H} $	H then A–O–H show	acidic nature $(H-O-I)$					
Periodicted	with the help of EN V	$alues [EN_A = 1.8, EN_A = 1.8]$	$N_{\rm B} = 2.6, {\rm EN}_{\rm C} = 1.6,$	$EN_D = 2.8$] answer the following				
number,	questions for the com	questions for the compounds HAO, HBO, HCO, HDO.						
Manthan D.	Compounds whose ac	lueous solution is acio	lic and order of their	acidic strength				
m \Sheet	(A) AOH, COH ;	AOH < COH	(B) HDO, HBO	; $HDO > HBO$				
rture/Che	(C) AOH, COH ;	AOH > COH	(D) HDO, HBO	; HDO < HBO				
o.	Compounds whose ac	lueous solution is basi	ic and order of their b	basic strength				
JEE(Adva	(A) AOH, COH ;	AOH < COH	(B) HDO, HBO	; $HDO > HBO$				
HAI\Kota'	(C) AOH, COH ;	AOH > COH	(D) HDO, HBO	; HDO < HBO				
40g/90	Percentage ionic chara	acter of compound A	B IS					
Pod	(A) 42.42%	(B) 24.24%	(C) 15.04%	(D) None of these				

Paragraph for Question 8 to 12

All the simple salt dissolve in water, producing ions and consequently the solution conduct electricity. In this process water molecule surround both the cations and anions & release energy. This process is called hydration & energy released is called hydration energy & it depends on size of gaseous ions. Answer the following questions with respect to given cations.

 Na^{+}, Mg^{2+}, Al^{3+}

			1 va , 1 v	ng , m						
8.	Order of exte	nt of hyd	Iration							
	(A) $Na^+ = M_1$	$g^{2+} = Al$	3+	(B) $Na^+ > Mg^{2+} > 1$	Al ³⁺					
	(C) $Al^{+3} > M$	$g^{2+} > N_{2}$	\mathfrak{a}^+	(D) $Al^{+3} > Mg^{2+} <$	Na ⁺					
9.	Order of hyd	lration e	nergy							
	(A) $Na^+ = M_1$	$g^{2+} = Al$	3+	(B) $Na^+ > Mg^{2+} > Al^{3+}$						
	(C) $Al^{+3} > M$	$g^{2+} > N_{2}$	\mathfrak{a}^+	(D) $Al^{+3} > Mg^{2+} < Na^{+}$						
10.	Order of size	of hydra	ted ion.							
	(A) $Na^+ = M_1$	$g^{2+} = Al$	3+	(B) $Na^+ > Mg^{2+} > Al^{3+}$						
	(C) $Al^{+3} > M$	$g^{2+} > N_{2}$	\mathfrak{a}^+	(D) $Al^{+3} > Mg^{2+} <$	Na ⁺					
11.	Order of ioni	e mobilit	у							
	(A) $Na^+ = M_1$	$g^{2+} = Al$	3+	(B) $Na^+ > Mg^{2+} > .$	Al^{3+}					
	(C) $Al^{+3} > M$	$g^{2+} > N_{2}$	a ⁺	(D) $Al^{+3} > Mg^{2+} <$	Na ⁺					
12.	Order of size	of gased	ous ions.							
	(A) $Na^+ = M_1$	$g^{2+} = Al$	3+	(B) $Na^+ > Mg^{2+} > 1$	Al^{3+}					
	(C) $Al^{+3} > M$	$g^{2+} > N_{2}$	a^+	(D) $Al^{+3} > Mg^{2+} <$	Na ⁺					
Para	graph for Que	estion 13	to 14 are based on th	e following information	0 n .					
	Four elemen	nts P, Q,	R & S have ground sta	te electronic configurat	ion as:					
	$P \rightarrow 1s^2 2s^2$	² 2p ⁶ 3s	$s^2 3p^3$	$Q \rightarrow 1s^2 \ 2s^2 \ 2p^6 \ 3$	s^2 $3p^1$					
	$R \rightarrow 1s^2 2s^2$	² 2p ⁶ 3s	$s^2 3p^6 3d^{10} 4s^2 4p^3$	$S \rightarrow 1s^2 \ 2s^2 \ 2p^6 \ 3$	$3s^2 3p^6 3d^{10} 4s^2 4p^1$					
13.	Comment w	hich of th	e following option repr	esent the correct order of	of true (T) & false (F) statement					
	I size of P <	< size of	Q	II size of $R < size$	e of S					
	III size of P	< size o	f R (appreciable differe	ence) IV size of Q < size of S (appreciable diffe						
	(A) TTTT		(B) TTTF	(C) FFTT	(D) TTFF					
14.	Order of IE	1 values	among the following is	S						
	(A) P > R >	S > Q	(B) $P < R < S < Q$	(C) R > S > P > Q	(D) P > S > R > Q					
Mate	ching List									
15.	Column	-I		Column-II						
	Element			Period and gro	oup number respectively					
	(P) Si			(1) 4, 3						
	(Q) Sc			(2) 3, 14						
	(R) Ga			(3) 6, 13						
Cod	$(S) 1\ell$			(4) 4, 13						
Cou	е. Р О	R	S							
	(A) $2 1$	3	4							
	(B) 1 2	4	3							
	(C) 2 1	4	3							
	(D) 4 3	1	2							
56										

Match a	the	column
---------	-----	--------

16. Match the column :

Column I	Column II
(A) Highest density	(P) Lithium
(B) Metallic character	(Q) Osmium
(C) Lightest Metal	(R) Mercury
(D) Liquid at room temperature	(S) Bromine

17. If electrons are filled in the sub shells of an atom in the following order 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 4f...... then match the following element in List I with block in List II.

List-I	List-II
(A) K(19)	(P) s-Block
(B) Fe(26)	(Q) p-Block
(C) Ga(31)	(R) d-Block
(D) Sn(50)	(S) f-block

18. Match the characteristics mentioned in List II with the process in List I.

List I

- (A) O (g) + $e^- \rightarrow O^-$ (g) (B) O^- (g) + $e^- \rightarrow O^{2^-}$ (g)
- (C) $Na^{-}(g) \rightarrow Na(g) + e^{-}$
- (D) $Mg^+(g) + e^- \rightarrow Mg(g)$
- **19.** Match the column :

Column I

- (A) Cl
- (B) F
- (C) Cu
- (D) He

List II

- (P) Positve electron gain enthalpy
- (Q) Negative electron gain enthalpy
- (R) Exothermic
- (S) Endothermic

Column II

- (P) Metal
- (Q) Highest negative electron gain enthalpy
- (R) Most Electronegative element
- (S) Highest ionisation energy.

EXERCISE # JEE-MAIN

- According to the Periodic law of elements, the variation in properties of elements is related to their :- [AIEEE-2003]
 - (1) Nuclear masses (2) Atomic numbers
 - (3) Nuclear neutron-proton number ratio (4) Atomic masses

2. The atomic numbers of vanadium, (V), chromium (Cr), manganese (Mn) and iron (Fe) are respectively 23, 24, 25 and 26. Which one of these may be expected to have the highest second ionization enthalpy?

[AIEEE-2003]

(1) Cr (2) Mn (3) Fe (4) V

3. Among Al_2O_3 , SiO_2 , P_2O_5 and SO_3 , the correct order of acid strength is :-[AIEEE-2004](1) $Al_2O_3 < SiO_2 < SO_3 < P_2O_5$ (2) $SiO_2 < SO_3 < Al_2O_3 < P_2O_5$ (3) $SO_3 < P_2O_5 < SiO_2 < Al_2O_3$ (4) $Al_2O_3 < SiO_2 < P_2O_5 < SO_3$

4. The formation of the oxide ion O²⁻(g) requires first an exothermic and then an endothermic step as shown below :- [AIEEE-2004]

 $O(g) + e^- = O^-(g), \quad \Delta H^\circ = -142 \text{ kJ mol}^{-1}$

$$O^{-}(g) + e^{-} = O^{2-}(g), \Delta H^{\circ} = 844 \text{ kJ mol}^{-1}$$

This is because :-

- (1) O^{-} ion will tend to resist the addition of another electron
- (2) Oxygen has high electron affinity
- (3) Oxygen is more electronegative
- (4) O^{-} ion has comparitively larger size than oxygen atom
- 5. In which of the following arrangements, the order is NOT according to the property indicated below?

[AIEEE-2005]

- (1) $Al^{3+} < Mg^{2+} < Na^{1+} < F^-$ increasing ionic size
- (2) $B \le C \le N \le O$ increasing first ionization enthalpy
- (3) I < Br < F < Cl increasing electron gain enthalpy (with negative sign)
- (4) Li < Na < K < Rb increasing metallic radius
- Which of the following oxides is amphoteric in character?

(1) SnO_2 (2) SiO_2 (3) CO_2

7. Which of the following factors may be regarded as the main cause of lanthanide contraction ?

[AIEEE-2005]

- (1) poor shielding of one of 4f electron by another in the subshell
- (2) effective shielding of one of 4f electrons by another in the subshell
- (3) poorer shielding of 5d electrons by 4f electrons
- (4) greater shielding of 5d electrons by 4f electrons
- 8. The increasing order of the first ionization enthalpies of the elements B, P, S and F (lowest first) is:-

[AIEEE-2006]

(1) F < S < P < B (2) P < S < B < F (3) B < P < S < F (4) B < S < P < F

6.

ALLEN

[AIEEE-2005] (4) CaO

AL			Periodic	fable	ð	Perodic	: proper	ties
9.	The set representing the correct or	der of ionic r	adius is :-			[.	AIEEE-2(0091
	(1) $Li^+ > Na^+ > Mg^{2+} > Be^{2+}$		(2) $Mg^{2+} > Be$	$2^{+} > Li^{+}$	> N	Ja ⁺		
	(3) $Li^+ > Be^{2+} > Na^+ > Mg^{2+}$		(4) $Na^+ > Li^+$	$> Mg^{2+}$	> Be	e ²⁺		
10.	The correct order of electron gain e	enthalpy with	negative sign of	F, Cl, Br	and	I, having	atomic nun	nber
	9, 17, 35 and 53 respectively, is :-	-	0 0			[AIEEE-2(011]
	(1) $I > Br > Cl > F$ (2) $F > Cl$	> Br > I	(3) $Cl > F > E$	Br > I	(4)	Br > Cl	> I > F	
11.	The increasing order of the ionic	radii of the	given isoelectror	nic speci	les is	s:- [,	AIEEE-2(012]
	(1) K^+ , S^{2-} , Ca^{2+} , Cl^-		(2) Cl ⁻ , Ca ²⁺ ,	K^+, S^{2-}				
	(3) S^{2-} , Cl ⁻ , Ca ²⁺ , K ⁺		(4) Ca^{2+} , K^+ ,	CI^{-}, S^{2-}				
12.	In which of the following arrangem	ents, the sec	juence is not stri	ctly acco	ordin	g to the p	roperty wri	itten
	against it ?		L	5		[JEE	-MAIN 2(012]
	(1) $CO_2 < SiO_2 < SnO_2 < PbO_2$: increasing	oxidising powe	r		-	(On-L	ine)
	(2) $B \le C \le O \le N$: increasing f	irst ionisatio	on enthalpy				,	,
	(3) $NH_2 < PH_2 < AsH_2 < SbH_2$:	increasing 1	basic strength					
	(4) $HF < HCl < HBr < HI : increases$	easing acid s	strength					
13.	Which of the following represents	the correct o	order of increasin	g first io	niza	tion entha	ulpy for Ca.	Ba.
	S. Se and Ar ?		0		[JEE	-MAIN-2(013]	
	(1) $Ca < S < Ba < Se < Ar$		(2) $S < Se < 0$	Ca < Ba	< A	ur Io		1
	(3) Ba $<$ Ca $<$ Se $<$ S $<$ Ar		(4) Ca < Ba S	< Se <	Ar			
14.	The first ionisation potential of Na	a is 5.1 eV.	The value of ele	ctron ga	in e	nthalpy of	f Na ⁺ will ł	be :-
	r i i i i i i i i i i i i i i i i i i i			0		LIEE	-MAIN-2(0131
	(1) - 2.55 eV $(2) - 5.1 eV$	eV	(3) - 10.2 eV		(4)	$+2.55 e^{-1}$	V	
15.	Electron gain enthalpy with negat	ive sign of f	luorine is less th	an that	ofc	hlorine du	ie to :	
		0		[.]]	EE-N	MAIN 20	13 (On-Li	ne)]
	(1) Smaller size of chlorine atom		(2) Bigger size of 2p orbital of fluorine					
	(3) High ionization enthalpy of flu	lorine	(4) Smaller siz	e of flue	orine	e atom		
16.	Given		()	[J]	EE-N	MAIN 20	13 (On-Li	ne)]
	Reaction	Energy Cl	nange (in kJ)	10			`	/-
	$Li(s) \longrightarrow Li(g)$	161	- <u>B</u> - (-)					
	$Li(g) \longrightarrow Li^+(g)$	520						
	$\frac{1}{2} F_2(g) \longrightarrow F(g)$	77						
	$F(g) + e^- \longrightarrow F^-(g)$	(Electron g	gain enthalpy)					
	$\text{Li}^+(g) + F^-(g) \longrightarrow \text{Li}F(s)$	-1047						
	$\operatorname{Li}(s) + \frac{1}{2}\operatorname{F}_2(g) \longrightarrow \operatorname{Li} \operatorname{F}(s)$	-617						
	Based on data provided, the value	e of electron	gain enthalpy c	of fluorir	ne w	ould be :		
	(1) -300 kJ mol^{-1} (2) -328 k	kJ mol ^{−1}	(3) –350 kJ m	ol ⁻¹	(4)	–228 kJ	mol ⁻¹	

Е

	enemisiry			ALLEN				
17.	The order of increas	ing sizes of atomic rad	lii among the elements	O, S, Se and As is : [IFF-MAIN 2013 (On-Line)]				
	(1) $As < S < O < S$	e	(2) $O < S < As$	< Se				
	(3) Se $<$ S $<$ As $<$ (0	(4) $O < S < Se$	< As				
18.	Which is the correc	t order of second ioni	ization potential of C,	N, O and F in the following?				
			1	[JEE-MAIN 2013 (On-Line)]				
	(1) $O > F > N > C$		(2) $O > N > F >$	> C				
	(3) $C > N > O > F$		(4) $F > O > N >$	> C				
19.	Which of the follow Y?	wing series correctly	represents relations	between the elements from X to [JEE-MAIN 2014 (On-Line)]				
	$X \longrightarrow Y$							
	(1) $_{18}\text{Ar} \rightarrow {}_{54}\text{Xe}$	Noble character in	ncreases					
	(2) $_{3}\text{Li} \rightarrow {}_{19}\text{K}$	Ionization enthalp	by increases					
	(3) $_{6}C \rightarrow _{32}Ge$	Atomic radii incre	eases					
	(4) $_9F \rightarrow {}_{35}Br$	Electron gain entl	halpy with negative sig	n increases				
20.	The ionic radii (in A	Å) of N ^{3–} , O ^{2–} and F [–]	are respectively :-	[JEE-MAIN 2015 (Off-Line)]				
	(1) 1.71, 1.40 and 1	.36	(2) 1.71, 1.36 an	d 1.40				
	(3) 1.36, 1.40 and 1	.71	(4) 1.36, 1.71 an	d 1.40				
21.	In the long form of the	ne periodic table, the v	alence shell electronic c	onfiguration of 5s ² 5p ⁴ corresponds				
	to the element prese	ent in:	[JEE-MAIN 2015 (On-Line)]					
	(1) Group 16 and p	eriod 5	(2) Group 17 and	(2) Group 17 and period 6				
	(3) Group 17 and p	eriod 5	(4) Group 16 and	l period 6				
22.	Which of the follow	ring atoms has the hig	ghest first ionization en	rergy ?				
	(1) Sc	(2) Rb	(3) Na	[JEE- MAIN 2010 (OII-LINE)] (4) K				
23.	The non-metal that	does not exhibit posit	ive oxidation state is :	(+) K				
		F		[JEE-MAIN 2016 (On-Line)]				
	(1) Oxygen	(2) Fluorine	(3) Iodine	(4) Chlorine				
24.	The electronic conf	guration with the high	hest ionization enthalp	y is:- [JEE-MAIN 2017]				
	(1) [Ar] $3d^{10}4s^2 4p^3$	3	(2) [Ne] $3s^2 3p^1$					
	(3) [Ne] $3s^2 3p^2$		(4) [Ne] $3s^2 3p^3$					

25. Consider the following ionization enthalpies of two elements 'A' and 'B':

Element	Ionization enthalpy (kJ/mol)							
	1 st	2 nd	3 rd					
Α	899	1757	14847					
В	737	1450	7731					

ALLEN

[JEE-MAIN 2017]

[JEE-MAIN 2017]

[JEE-MAIN 2017]

(4) acid and base

Which of the following statements is correct?

(1) Both A and B belong to group-2 where A comes below B

(2) Both A and B belong to group-1 where A comes below B

(3) Both A and B belong to group-1 where B comes below A

(4) Both A and B belong to group-2 where B comes below A

26. In the following reactions, ZnO is respectively acting as a/an :

(a) $ZnO + Na_2O \rightarrow Na_2ZnO_2$

(b) $ZnO + CO_2 \rightarrow ZnCO_3$

(1) base and acid (2) base and base (3) acid and acid

27. The group having isoelectronic species is :-

- (1) O²⁻, F⁻, Na⁺, Mg²⁺
- (3) O²⁻, F⁻, Na , Mg²⁺

(2) O⁻, F⁻, Na , Mg⁺ (4) O⁻, F⁻, Na⁺, Mg²⁺

EXERCISE # JEE-ADVANCED

1.	Statement-1 : F atom has a less negative electron gain enthalpy than Cl atom. [JEE 2								
	Statement-2 : Additive lectron in F atom.	onal electron is repelled 1	more efficiently by 3p ele	ectron in Cl at	om than by 2p				
	(A) Statement-1 is tru	ue, statement-2 is true ar	nd statement-2 is correct	t explanation	for statement-1.				
	(B) Statement-1 is true	, statement-2 is true and sta	atement-2 is NOT the corr	rect explanation	n for statement-1.				
	(C) Statement-1 is true, statement-2 is false.								
	(D) Statement-1 is fa	lse, statement-2 is true.							
2.	The correct order of	radii is:			[JEE 2000]				
	(A) $N < Be < B$	(B) $F^- < O^{2-} < N^{3-}$	(C) Na < Li < K	(D) $Fe^{3+} <$	$\mathrm{Fe}^{2^+} < \mathrm{Fe}^{4^+}$				
3.	The IE_1 of Be is great	ter than that of B.	[T/F]		[JEE 2001]				
4.	The set representing	correct order of IP_1 is	S		[JEE 2001]				
	(A) $K > Na > Li$	(B) Be > Mg > Ca	(C) $B > C > N$	(D) Fe > S	Si > C				
5.	Identify the least stat	ble ion amongst the follo	wing:		[JEE 2002]				
	(A) Li	(B) Be [−]	(C) B ⁻	(D) C-					
6.	The increasing order	of atomic radii of the	following group 13 elem	ments is					
	 (A) Al < Ga < In < (C) Al < In < Ga < 	T1 T1	 (B) Ga < Al < In < (D) Al < Ga < Tl < 	Tl In	[JEE 2016]				
7.	The option(s) with o	nly amphoteric oxides i	s (are):		[JEE 2017]				
	(A) Cr ₂ O ₃ , CrO, Sn	O, PbO							
	(B) NO, B ₂ O ₃ , PbO, SnO ₂								
	(C) Cr ₂ O ₃ , BeO, Sn	O, SnO ₂							
	(D) ZnO, Al ₂ O ₃ , Pb	O, PbO ₂							

ALLEN

ALLEN _

ANSWERS KEY

_	EXERCISE # 0-1											
Que.	1	2	3	4	5	6	7	8	9	10		
Ans.	D	А	А	D	А	В	С	А	С	А		
Que.	11	12	13	14	15	16	17	18	19	20		
Ans.	С	В	А	В	С	С	В	С	В	С		
Que.	21	22	23	24	25	26	27	28	29	30		
Ans.	В	С	С	В	А	С	Α	С	А	В		
Que.	31	32	33	34	35	36	37	38	39	40		
Ans.	D	В	В	D	С	С	D	С	D	В		
Que.	41	42	43	44	45	46	47	48	49			
Ans.	С	В	B	А	A	С	А	D	D			

EXERCISE # 0-2

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	A,B,C,D	A, B, D	A, C	B, C	A, B, C	A, B	B, D	A, B	B, C	A,B,C,D
Que.	11	12	13	14	15	16	17			
Ans.	A, B, D	A, B	A, C, D	B, C, D	A, B, D	A, B, C	A, C			

EXERCISE # S-1

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	6	4	3	3	4	0	3	3	17	4
Que.	11	12		13						
Ans.	5	3.03	$Mg^{2+} < N$	$a^+ < F^- <$	$O^{2-} < N^{3-}$					

EXERCISE # S-2

Que.	1	2	3	4	5	6	7	8	9	10	
Ans.	D	С	Α	В	В	Α	C	С	С	С	
Que.	11	12	13	14	15	16					
Ans.	В	В	В	А	С	$(A) \rightarrow Q; (B) \rightarrow P, Q, R; (C) \rightarrow P; (D) \rightarrow R, S$					
Que.			17			18					
Ans.	(A	$\rightarrow R$; (B)	\rightarrow R;(C)-	→Q ; (D)–	→ S	$(A) \rightarrow 0$	Q,R ; (B) -	→ P,S ; (C	$) \rightarrow S; (D)$	$\rightarrow Q,R$	
Que.			19								
Ans.	(A) -	\rightarrow Q; (B) \cdot	\rightarrow R; (C)	\rightarrow P; (D)	\rightarrow S						

EXERCISE # JEE-MAIN

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	2	1	4	1	2	1	3	4	4	3
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	4	3	3	2	4	2	4	1	3	1
Que.	21	22	23	24	25	26	27			
Ans.	1	1	2	4	4	4	1			
EXERCISE # JEE-ADVANCED										

Ε

CHEMICAL BONDING

KEY CONCEPT

CHEMICAL BOND

- (a) The attractive force which holds various constituents (atoms, ions, etc.) together in different chemical species is called a chemical bond.
- (b) It is the combination of two or more chemical species involving redistribution of e⁻ among them.
- (c) This process is accompanied with decrease in energy.
- (d) Decrease in energy strengthens the bond.
- (e) Therefore, molecules are more stable than atoms.

CAUSE OF CHEMICAL COMBINATION

- 1. Tendency to acquire minimum energy :
- 2. Tendency to acquire noble gas configuration (Octet rule) :

Atoms combine to complete an octet of electrons in their outer most shell. Hence all atoms have a tendency to acquire octet (ns²np⁶) configuration or to attain nearest noble gas configuration in their outermost orbit. This can be achieved by combining with other atom or ion.

 $F \rightarrow B < F (6 e)$

F

LIMITIATION OF OCTET RULE

1. Contraction of octet (incomplete octet)

 $\underline{Be}F_2 \quad \underline{B}F_3 \quad \underline{Al}Cl_3 \quad \underline{B}Cl_3$

 $(4e^{-})$ $(6e^{-})$ $(6e^{-})$ $(6e^{-})$

These compounds are hypovalent.

2. Expansion of Octet (due to empty d-orbitals)

PCl ₅	SF_6	ClF ₃	BrF ₅	IF_7	
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	F
(10e ⁻)	(12e ⁻)	(10e ⁻)	(12e ⁻)	(14e ⁻)	F (12 e)

These compounds are hypervalent.

3. Odd electron species

Ex. NO, NO₂, ClO_2 etc.

OTHER EXCEPTIONS OF OCTET RULE

1. Compounds of Noble gases

Noble gases which have already completed their octets (or duplet in case of He.) should not form compounds. However, their compounds like XeF_2 , XeF_6 & KrF_2 etc., have been actually prepared.

2. Transition metal ions

	Cr^{3+}	Mn^{2+}	Fe ²⁺	
	$[Ar]3d^3$	$[Ar]3d^5$	$[Ar]3d^6$	
	[2, 8, 11]	[2, 8, 13]	[2, 8, 14]	
•	Pseudo inert gas configuration [(n-1)d ¹⁰ ns ² np ⁶]			
	Zn^{2+}	Cd^{2+}		
	$[Ar]3d^{10}$	[Kr]4d ¹⁰		

3

node06 \B0AH+A\\Kota\LEE[Advanced]\Nurture\Chem\Sheer\Quartum number, Periodic table & Chemical bonding\Eng\04_Theory.pd5

ELECTROVALENT OR IONIC BOND

(a) The chemical bond formed between two or more atoms as a result of the complete transfer of one or more electrons from one atom to another is called as Ionic or electrovalent bond.

Example

(i) $Mg + O \longrightarrow Mg^{+2} + O^{-2} = MgO$ $2, 8, 2 2e^{-}$

electrovalency of Mg = 2

electrovalency of O = 2

Note : Ionic bond is non-directional.

FACTORS FAVOURING IONIC BONDING

- (a) Less Ionization energy of atom forming cation
- (b) Higher electron affinity of atom forming anion
- (c) Greater Lattice energy of formed product.
- (d) Greater Electronegativity difference between atoms forming cation & anion.

COVALENT BOND

(a) A covalent bond is formed by the mutual sharing of electrons between two atoms.

$$(H \bigcirc H) H - H$$

$$(H \bigcirc N) = 0$$

$$(H \bigcirc H) H - H$$

$$(H \bigcirc N) = 0$$

$$(H \bigcirc H) H - H$$

$$(H \bigcirc N) = 0$$

$$(H \frown N) = 0$$

$$(H \bigcirc N) = 0$$

$$(H \frown N)$$

- (b) The shared pair of electrons must have opposite spins, and are localised between two atoms concerned.
- (c) On the basis of electrons being shared between two atoms the bonds are of three types -

Covalency : Capacity to form covalent bond is known as covalency

It is represented by (–) small line. – means single bond; = means double bond; = means triple bond.

+ Covalent bonds are directional in nature

COORDINATE BOND (DATIVE BOND)

The bond formed between two atom in which contribution of an electron pair is made by one of them while the sharing is done by both.

Lewis Dot structures:

- Arrangement of various atoms in a molecule & types of bonding present in it but no idea of geometry of the molecule.
- ✤ In most cases we can construct a Lewis structure in three steps :
 - (1) Decide on the number of electrons that are included in the structure by adding together the number of all the valence electrons provided by the atoms.
 - (2) Write the chemical symbols of the atoms in the arrangement that shows which atoms are bonded together.
 - (3) Distribute the electrons in pairs so that there is one pair of electrons forming a single bond between each pair of atom bonded together and then supply electron pairs (to form lone pairs or multiple bonds) until each atom has an octet.
- + In oxy acids all 'H' atoms are attached to oxygen as -OH groups except in H_3PO_3 (dibasic), H_3PO_2 (monobasic) & $H_4P_2O_5$ (dibasic). Which are directly bonded to central atom.

Applications :

node06 \B0AH:A1\Kota\EE[Advanced]\Nurture\Chem\Sheet\Quantum number, Periodic table & Chemical banding\Eng\04_Theory.p65

Е

- ✤ To know various linkages present
- ✤ To calculate formal charge of various elements.

Lewis dot structures, in general, do not represent the actual shapes of the molecules. In case of polyatomic ions, the net charge is possessed by the ion as a whole and not by a particular atom. It is, however, feasible to assign a formal charge on each atom.

Formal Charge :
$$Q_F = N_A - N_{L,P.} - \frac{1}{2} N_{B,P.}$$

Where :
 $N_A = Total number of valence electron in the free atom
 $N_{L,P.} = Total number of bonding (lone pair) electrons
 $N_{B,P.} = Total number of bonding(shared) electrons$
Molecule
Structure
Formal Charge
 O_3
 $Q_1 = 6 - 2 - \frac{1}{2} (6) = +1$
 $O(2) = 6 - 4 - \frac{1}{2} (4) = 0$
 $O(3) = 6 - 6 - \frac{1}{2} (2) = -1$
CO
 $C = 4 - 2 - \frac{1}{2} \times 6 = -1$
 $O = 6 - 2 - \frac{1}{2} \times 6 = -1$
 $O = 6 - 2 - \frac{1}{2} \times 6 = +1$
 NH_4^+
 $\left[\begin{array}{c} H_1^{1} \\ H_1^{1} \end{array} \right]^+$
 $N = 5 - 0 - \frac{1}{2} (8) = +1$
 $On each H = 1 - 0 - \frac{1}{2} (2) = 0$$$

RESONANCE*

When a molecule cannot be completely represented by a single Lewis structure but it's characteristic properties can be described by two or more different structures, with similar energy position of nuclei, bonding and non-bonding pairs of electrons, then the true structure is said to be resonance hybrid of these structures. The phenomenon is called resonance and different contributing structures are called resonating structures or canonical structures.

- Resonance stabilizes the molecule as the energy of the resonance hybrid is less than the energy of any single canonical structure.
- Resonance averages the bond characteristics as a whole.
- The canonical forms have no real existence.

ALLEN

Resonance Structure of Some Molecules/Ions :

(i) Azide ion, N_3^- :

The azide ion may be represented as -

$$: \overline{N} = \overset{+}{N} = \overline{N}: \longleftrightarrow : \overset{2^{-}}{N} = \overset{+}{N} = N: \longleftrightarrow : N = \overset{+}{N} - \overset{2^{-}}{N}:$$

$$I \qquad II \qquad III$$

The structures II and III contribute equally and the molecule has almost double bond character in each N–N bond.

*Descriptive discussion of concept of resonance will be done in Organic Chemistry.

VALENCE BOND THEORY

Valence bond theory was introduced by Heitler and London (1927) and developed further by Pauling and others. A discussion of the valence bond theory is based on the knowledge of atomic orbitals, electronic configurations of elements, the overlap criteria of atomic orbitals and the hybridization of atomic orbitals.

Formation of H₂ molecule :

When two 'H'-atoms approaches towards each other for the formation of H_2 molecule. The following interactions takes place.

(i) e-e repulsion

(ii) e-p attraction

(iii) p-p repulsion

Experimentally, it has been found that the magnitude of attractive forces is more than the repulsive forces. As a result, when two atoms approach each other then potential energy decreases. Ultimately a stage is reached where the net force of attraction balances the force of repulsion and system acquires minimum energy.

Internuclear separation The potential energy curve for the formation of H_1 molecule as a function of internuclear distance of the H atoms. The minimum in the curve corresponds to the most stable state of H_2 .

JEE-Chemistry

At this stage two hydrogen atoms are said to be bonded together to form a stable molecule having the bond length of 74 pm. Since the energy gets released when the bond is formed between two hydrogen atoms, the hydrogen molecule is more stable than that of isolated hydrogen atoms.

Bond Length : Internuclear distance at minimum potential energy is called bond length.

Bond Dissociation Energy : The amount of energy released when one mole of same type of bonds are formed is called B.D.E.

434.2 kJ/mol of energy is required to dissociate one mole of H_2 molecule.

 $H_2(g) + 434.2 \text{ kJ mol}^- \rightarrow H(g) + H(g)$

ORBITAL OVERLAP CONCEPT

In the formation of hydrogen molecule, there is a minimum energy state when two hydrogen atoms are so near that their atomic orbitals undergo partial interpenetration. This partial merging of atomic orbitals is called overlapping of atomic orbitals which results in the pairing of electrons. The extent of overlap decides the strength of a covalent bond. In general, greater the overlap the stronger is the bond formed between two atoms. Therefore, according to orbital overlap concept, the formation of a covalent bond between two atoms results by pairing of electrons, present in the valence shell having opposite spins.

Directional Properties of Bonds :

The valence bond theory explains the formation and directional properties of bonds in polyatomic molecules like CH_4 , NH_3 and H_2O , etc. in terms of overlap and hybridisation of atomic orbitals.

Types of Overlapping and Nature of Covalent Bonds

The covalent bond may be classified into following types depending upon the types of overlapping :-(i) sigma(σ) bond (ii) pi (π) bond (iii) delta(δ) bond

- (i) Sigma (σ) bond : This type of covalent bond is formed by the end to end (head on or axial) overlap of bonding orbitals along the internuclear axis. This can be formed by any one of the following types of combinations of atomic orbitals.
 - s-s overlapping : In this case, there is overlap of two half filled s-orbitals along the internuclear axis as shown below :

• s-p overlapping: This type of overlap occurs between half filled s-orbital of one atom and half filled p-orbital of another atom.

• p-p overlapping : This type of overlap takes place between half filled similar p-orbitals of the two approaching atoms.

(ii) $pi(\pi)$ bond : In the formation of π bond the atomic orbitals overlap in such a way that their axis remain parallel to each other and perpendicular to the internuclear axis. The orbitals formed due to sidewise overlapping consists of two saucer type charged clouds above and below the plane of the participating atoms.

(iii) delta (δ) bond : are the covalent bonds where four lobes of d-orbital of one atom overlap with four lobes of the similar d-orbital of other atom. Except d_{z^2} all d orbitals form δ bond.

Strength of sigma and pi Bonds :

Basically the strength of a bond depends upon the extent of overlapping- In case of sigma bond, the overlapping of orbitals takes place to a larger extent. Hence, it is stronger as compared to the pi bond where the extent of overlapping occurs to a smaller extent. Further, it is important to note that pi bond between two atoms is formed in addition to a sigma bond. It is always present in the molecules containing multiple bond (double or triple bonds)

Advantages of VBT :

- It explain various bond characteristics e.g., bond length, bond strength.
- It explains the quantitative relationship between the extent of overlapping and bond dissociation energy.
- This theory accounts for shape and nature of bonding of the molecule whose covalency is not according to the number of half-filled orbitals present in the ground state.
- This theory redefined the stability of molecules e.g. BF_3 , $AlCl_3$, PCl_5 , SF_6 etc which are exception to octet rule.

Disadvantages of VBT :

- According to this theory three bond angle in CH₄ should be 90°, as these are formed by p-p overlapping, but actually it has four 109°28 angles. In NH₃ & H₂O, angle should be 90°. This is in disagreement with the actual bond angles of 107° & 104.5° in NH₃ & H₂O molecules respectively.
- In order to explain the characteristic geometrical shapes of polyatomic molecules like CH₄, NH₃, H₂O etc. Pauling introduced the concept of hybridisation.

Е

ALLEN

HYBRIDISATION

The phenomenon of intermixing of the orbitals of slightly different energies so as to redistribute their energies, resulting in the formation of new set of orbitals of equivalent energies and shape. For example when one 2s and three 2p-orbitals of carbon hybridise, there is the formation of four new sp³ hybrid orbitals.

Salient features of hybridisation: The main features of hybridisation are as under :

- 1. The number of hybrid orbitals is equal to the number of the atomic orbitals that get hybridised.
- 2. The hybridised orbitals are always equivalent in energy and shape.
- 3. The hybrid orbitals are more effective in forming stable bonds than the pure atomic orbitals.
- 4. These hybrid orbitals are directed in space in some preferred direction to have minimum repulsion between electron pairs and thus a stable arrangement. Therefore, the type of hybridisation indicates the geometry of the molecules.

Important conditions for hybridisation

(i) The orbitals present in the valence shell of the atom are hybridised.

(ii) The orbitals undergoing hybridisation should have almost equal energy.

(iii) Promotion of electron is not essential condition prior to hybridisation.

(iv) It is not necessary that only half filled orbitals participate in hybridisation. In some cases, even filled orbitals of valence shell take part in hybridisation.

Types of Hybridisation

There are various types of hybridisation involving s, p and d orbitals. The different types of hybridisation are as under :

(i) sp hybridisation
(ii) sp² hybridisation
(iii) sp³ hybridisation
(iv) sp³ d hybridisation:
(v) sp³ d² hybridisation:
(vi) sp³ d³ hybridisation:

Determination of hybridisation state -

To predict hybridisation following formula may be used :

Number of hybrid orbital = Steric Number (S.N.) = Number of σ -bond arround that atom + Number of lone pair on that atom.

Molecule	Method	Hybridisation
NH_4^+	S.N. = 4 + 0 = 4	sp ³ hybridisation.

Number of hybrid orbitals	Hybridisation
two	sp
three	sp ²
four	sp ³
five	sp ³ d
six	$sp^{3}d^{2}$
seven	sp ³ d ³

mode06\80AH-A1\Kota\EE[Advanced]\Nutrue\Crem\Steet\Quartum number, Periodictable & Chemical banding\Eng\04_Theory.p65

ALLEN

Hybridisation in Ionic solid species :

Species	Cationic part	Anionic part
PCl ₅	$PCl_{4}^{+}(sp^{3})$	$PCl_6^-(sp^3d^2)$
PBr ₅	$PBr_{4}^{+}(sp^{3})$	Br⁻
XeF ₆	$XeF_{5}^{+}(sp^{3}d^{2})$	F^-
N ₂ O ₅	NO ₂ ⁺ (sp)	$NO_{3}^{-}(sp^{2})$
I ₂ Cl ₆ (liquid)	ICl_2^+ (sp ³)	$ICl_4^{-}(sp^3d^2)$
Cl_2O_6	$\text{ClO}_2^+ (\text{sp}^2)$	$\text{ClO}_4^-(\text{sp}^3)$

VALENCE SHELL ELECTRON PAIR REPULSION THEORY (VSEPR)

- Molecules having covalent bond have definite geometry as covalent bonding has directional characteristics. A simple theory was given for the molecular shape of the covalent molecules by Gillespie and Nyholm in 1957.
- (b) This theory predicts the shape of the molecule by considering the most stable configuration of the bond angles in the molecule. This theory states
 - (i) Electron pairs in the valence shell of the central atom of a molecule, whether bonding or lone pairs are regarded as occupying localised orbitals. These orbitals arange themselves in so as to minimize the mutual electronic repulsions.
 - (ii) The magnitude of the different types of electronic repulsions follows the order given below:

lone pair-lone pair > lone pair - bonded pair > bonded pair - bonded pair

- (iii) The electronic repulsion between two pairs of electrons will be minimum if they are as far apart as possible.
- (iv) The actual shape of the molecules containing lone pairs is a little distorted from the basic shape as in the NH_3 and H_2O molecules, the bond angles are not 109°28' but 107° and 104.5° respectively due to presence of one lone pair in NH_3 and two lone pairs in H_2O .

JEE-Chemistry

SHAPES OF MOLECULES BASED ON VSEPR THEORY

Total no. of hybrid orbitals	No. of b.p. (bond pairs)	No. of unshared pair i.e. l _p	General formula	Type of hybridisation	Stereo chemical formula/str.	Shape	Exam.
2	2	0	AB ₂	sp	B-A-B	linear	BeCl ₂
3	3	0	AB ₃	sp ²	B 120° B A B	Trigonal planar	BCl ₃ , NO ₃ ⁻ GaF ₃ , CO ₃
3	2	1	AB ₂	sp ²	B <120° B	V or Bent or angular	SnCl ₂ , O ₃ ,SO ₂
4	4	0	AB_4	sp ³	B B B B	Tetrahedron	CH ₄ , SiF ₄ , NH ₄
4	3	1	AB ₃	sp ³	₿ В 8 В <109°	Trigonal pyramidal	NH ₃ , CH ₃ ⁻
4	2	2	AB ₂	sp ³	A B <109° B	V or Bent or angular	H ₂ O, SF ₂
4	1	3	AB	sp ³	B bond A n.A.	linear	ClO-
5	5	0	AB ₅	sp ³ d	$B \xrightarrow{90^{\circ}A} A \xrightarrow{120^{\circ}} B$	Trigonal bipyramidal	$PF_{5}, SF_{5}^{+}, SbBr_{5}, SbBr_{5}, XeO_{3}F_{2}$
5	4	1	AB ₄	sp ³ d	$:-A \stackrel{B}{\searrow}_{A} \stackrel{B}{\searrow}_{B}$	Seesaw	SF ₄
5	3	2	AB ₃	sp ³ d	$B \xrightarrow{<90^{\circ}} A$	T-shaped	ClF _{3,} BrF ₃
5	2	3	AB ₂	sp ³ d	:-A	Linear	$ICl_{2}^{-},$ $XeF_{2},$ I_{3}^{-}
6	6	0	AB ₆	sp ³ d ²	$\begin{array}{c} B \\ B \\ B \\ B \\ B \\ All \ bond \ \angle = 90^{\circ} \end{array}$	Octahedral or Square bipyramidal	$SF_6,$ IF_6^+
6	5	1	AB ₅	sp ³ d ²	B B B B C B All less than 90°	Square pyramidal	IF ₅ , XeOF ₄ , BrF ₅

ALLEN

Chemical Bonding

		M	
A			

6	4	2	AB_4	sp ³ d ²	B B B B B B B B B B B B B B B B B B B	Square planar	$IF_{4}^{-},$ $XeF_{4}^{-},$ ICl_{4}^{-}
7	7	0	AB ₇	sp ³ d ³	B B B B B B B B B B B B B B B B B B B	Pentagonal bipyramidal	IF ₇
7	6	1	AB ₆	sp ³ d ³	$ \begin{array}{c} B \\ $	Distorted octahedral	XeF ₆ , IF ₆ ⁻
7	5	2	AB ₅	sp ³ d ³		Pentagonal planar	XeF ₅ ⁻

BOND PARAMETERS

(I) Bond order

(III) Bond Angle

(II) Bond Length (Bond distance)(IV) Bond Enthalpy

(I) Bond order :

The Bond Order is given by the number of bonds between the two atoms in a molecule.

The bond order, for example in H_2 (with a single shared electron pair), in O_2 (with two shared electron pairs) and in N_2 (with three shared electron pairs) is 1,2,3 respectively.

Note : Isoelectronic molecules and ions have identical bond orders; for example, F_2 and O_2^{2-} have bond order 1. N_2 , CO and NO⁺ have bond order 3.

Note : A general correlation useful for understanding the stablities of molecules is that: with increase in bond order, bond enthalpy increases and bond length decreases.

(II) Bond Length :-

Bond length is defined as the equilibrium distance between the nuclei of two bonded atoms in a molecule. Bond lengths are measured by spectroscopic, X-ray diffraction and electron-diffraction techniques about which you will learn in higher classes.

Factors affecting bond length

- (a) Size of atoms
- (c) Effect of Resonance
- (b) Effect of bond order or number of bonds
- (d) Effect of Electronegativity difference

(f) Effect of Hybridisation

(III) Bond angle :

It is defined as the angle between the orbitals containing bonding electron pairs around the central atom in a molecule/complex ion. Bond angle is expressed in degree which can be experimentally

determined by spectroscopic methods. For example H– \hat{O} –H bond angle in water can be represented as under :

JEE-Chemistry

Comparison of bond angles.

- (a) If central atoms are in different hybridisations then it can be compared.
- (b) If same hybridisation but different central atoms then bond angle would be more of the molecule in which central atom is more E.N. eg. OF_2 , SF_2

(c) Molecules having same C.A. but different substituent then bond angle increases as the size of attached atom increases except in symmetrical molecules and H₂O / F₂O , NH₃ / NF₃

Factors affecting bond angle

- (a) State of Hybridisation
- (b) Presence of lone pair
- (c) Electronegativity of central atom
- (d) Electronegativity of surrounding atom
- (e) Size of surrounding atom
- (f) Lone pairs may sometimes be transferred from a filled shell of one atom to an unfilled shell of another bonded atom, causing less repulsion.
- (g) Multiple bond orbital repel other orbitals more strongly than single bond orbitals.

(IV) Bond Enthalpy

It is defined as the amount of energy required to break one mole of bonds of a particular type between two atoms in a gaseous state. The unit of bond enthalpy is kJ mol⁻¹. For example, the H – H bond enthalpy in hydrogen molecule is 435.8 kJ mol⁻¹.

 $H_2(g) \longrightarrow H(g) + H(g); \Delta_a H^\circ = 435.8 \text{ kJ mol}^{-1}$

⇒ In polyatomic molecules the term mean or average bond enthalpy is used. It is obtained by dividing total bond dissociation enthalpy by the number of bonds broken as explained below in case of water molecule,

$$\begin{split} H_2O(g) &\longrightarrow H(g) + OH(g); \ \Delta_a H_1^{\circ} = 502 \ kJ \ mol^{-1} \\ OH(g) &\longrightarrow H(g) + O(g); \ \Delta_a H_2^{\circ} = 427 \ kJ \ mol^{-1} \end{split}$$

Average bond enthalpy = $\frac{502 + 427}{2}$ = 464.5 kJ mol⁻¹

SUMMARY OF THE THREE MAIN TYPES OF BONDS

node06 \B0AH.A1\Koto\LEE[Advanced]\Nurture\Chen\Steet\Quartum number, Periodictable & Chemical banding\Eng\04_Theory.p65

Ε

DIPOLE MOMENT

ALLEN

- The degree of polarity of covalent bond is given by the dipole moment (μ)
- It is the product of the either charge and the distance between them.

$$\mathbf{A}^{\mathbf{A}+}_{\mathbf{d}} \mathbf{B}^{\mathbf{A}+}_{\mathbf{d}}$$

Electronegativity of A < Electronegativity of B

$$\mu = \delta \times d$$

- Dipole moment is a vector quantity.
 The direction of dipole moment is represented by →
- Units = Cm (S.I.) or esu cm(CGS) or Debye (common unit)
- 1 D = 10^{-18} esu cm = 3.33×10^{-30} coulomb m

Dipole moment depends on

- + Electronegativity difference between bonded atoms
- ✦ Direction of bond dipole moment
- ✦ Angle between various bonds
- ✦ Influence of unshared e⁻ pairs
- ✦ Magnitude of polarity of the molecule
- + Symmetrical / Unsymmetrical shape.

Application of dipole moment

To determine the polarity and geometry of molecules

• To the calculate the percentage of ionic character

% ionic character = $\frac{\text{observed } \mu}{\text{calculated } \mu \text{ (for } 100 \% \text{ ionic)}} \times 100 \%$

Hydrogen bonding: When a hydrogen atom is bonded to a highly electronegative atom (like F, O or N) comes under the influence of another strongly electronegative atom, then a weak electrostatic force of attraction is developed between them, which is called as hydrogen bond. Types of H-bonding: Intermolecular H-bond (i) This type of H-bonding takes place between two moleules. Ex. ROH, H₂O, R - OH & H₂O R Н Н R R R Н 0 – H ... O – H. O – H ... O – H ... O – H 0 – H ... O – H, (ii) In such compounds molecular wt., M.P, & B.P. are high. (iii) Extent of Inter molecular H-bonding \uparrow viscosity & density \uparrow .

Intramolecular H-bond

HYDROGEN BONDING

Normally when 2 hydroxyl groups are present on the same carbon atom i.e. gem diols are unstable, but "chloralhydrate" is a stable molecule due to formation of H-bond.

Properties influenced by hydrogen bonding

- (a) Abnormal behaviour of water.
- (b) Association of molecules eg. dimersiation of CH₃COOH, HCOOH
- (c) Dissociation of a polar species.
- (d) Abnormal melting point & boiling point.
- (e) Enhanced solubility in water.

+ Metallic bonds :

Electron gas model or sea model, with metal atom existing as kernels along with less firmly held valence electrons & bonds between various kernels (at the lattice site) & valence electrons are known as metallic bonds.

ALLOTROPES OF CARBON FAMILY

Carbon exhibits many allotropic forms; both crystalline as well as amorphous. Diamond and graphite are two well-known crystalline forms of carbon. In 1985, third form of carbon known as **fullerenes** was discovered by H.W.Kroto, E.Smalley and R.F.Curl. For this discovery they were awarded the Nobel Prize in 1996.

Si, Ge and Sn have a diamond type of structure, though Sn exists as a metallic form. Pb exists only in the metallic form. Ge is unusual because the liquid expands when it forms the solid. This property is unique to Ga, Ge and Bi.

 $\begin{array}{c} \alpha - Sn \\ \text{grey tin} \\ \text{(Diamond structure)} \end{array} \xrightarrow{\begin{array}{c} 13.2^{\circ}C \\ \text{white tin} \\ \text{(metallic)} \end{array}} \beta - Sn \\ \text{white tin} \\ \text{(metallic)} \end{array}$

Diamond (kinetically most stable allotrope of carbon, meta stable phase of carbon)

It has a crystalline lattice. In diamond each carbon atom undergoes sp³ hybridisation and linked to four other carbon atoms by using hybridised orbitals in tetrahedral fashion. The C–C bond length is 154 pm. The structure extends in space and produces a rigid three dimensional network of carbon atoms.

The structure of diamond

In this structure, directional covalent bonds are present throughout the lattice. It is very difficult to break extended covalent bonding and, therefore, diamond is a very hard substance. It is used as an abrasive for sharpening hard tools, in making dyes and in the manufacture of tungsten filaments for electric light bulbs.

Problem

Diamond is covalent, yet it has high melting point. Why ?

Solution

Diamond has a three-dimensional network involving strong C—C bonds, which are very difficult to break and, in turn has high melting point.

Graphite (Thermodynamically most stable allotrope of carbon)

Graphite has layered structure. Layers are held by van der Waals forces and distance between two layers is 340 pm. Each layer is composed of planar hexagonal rings of carbon atoms. C—C bond length within the layer is 141.5 pm. Each carbon atom in hexagonal ring undergoes sp² hybridisation and makes three sigma bonds with three neighbouring carbon atoms. Fourth electron forms a π bond. The electrons are delocalised over the whole sheet. Thus, graphite is lusturous. Electrons are mobile and,

The structure of graphite

therefore, graphite conducts electricity along the sheet. Graphite cleaves easily between the layers and, therefore, it is very soft and slippery. For this reason graphite is used as a dry lubricant in machines running at high temperature, where oil cannot be used as a lubricant.

Fullerenes

Fullerenes are made by the heating of graphite in an electric arc in the presence of inert gases such as helium or argon. The sooty material formed by condensation of vapourised C_n small molecules consists of mainly C_{60} with smaller quantity of C_{70} and traces of fullerenes consisting of even number of carbon atoms up to 350 or above. Fullerenes are the only pure form of carbon because they have smooth structure without having 'dangling' bonds. Fullerenes are cage like molecules. C_{60} molecule has a shape like soccer ball and called **Buckminsterfullerene**.

It contains twenty, six- membered rings and twelve, five membered rings. A six membered ring is fused with six or five membered rings but a five membered ring can only fuse with six membered rings. All the carbon atoms are equal and they undergo sp^2 hybridisation. Each carbon atom forms three sigma bonds with other three carbon atoms. The remaining electron at each carbon is delocalised in molecular orbitals, which in turn give aromatic character to molecule. However, because of non-planar nature of fullerenes, their aromatic character gets diminished and reactivity increases.

This ball shaped molecule has 60 vertices and each one is occupied by one carbon atom and it also contains both single and double bonds with C–C distances of 143.5 pm and 138.3 pm respectively. Spherical fullerenes are also called *bucky balls* in short.

[The structure of C_{60} , Buckminsterfullerene : Note that molecule has the shape of a soccer ball (football)]

It is very important to know that graphite is thermodynamically most stable allotrope of carbon and, therefore, ΔH_f of graphite is taken as zero. ΔH_f values of diamond and fullerene, C_{60} are 1.90 and 38.1 kJ mol⁻¹, respectively.

Other forms of elemental carbon like carbon black, coke, and charcoal are all impure forms of graphite or fullerenes. Carbon black is obtained by burning hydrocarbons in a limited supply of air. Charcoal and coke are obtained by heating wood or coal respectively at high temperatures in the absence of air.

Uses of Carbon

ALLEN

Graphite fibres embedded in plastic material form high strength, lightweight composites. The composites are used in products such as tennis rackets, fishing rods, aircrafts and canoes. Being good conductor, graphite is used for electrodes in batteries and industrial electrolysis. Crucibles made from graphite are inert to dilute acids and alkalies. Being highly porous, activated charcoal is used in adsorbing poisonous gases; also used in water filters to remove organic contaminators and in airconditioning system to control odour. Carbon black is used as black pigment in black ink and as filler in automobile tyres. Coke is used as a fuel and largely as a reducing agent in metallurgy. Diamond is a precious stone and used in jewellery. It is measured in carats (1 carat = 200 mg).

ALLOTROPES OF OXYGEN FAMILY

Oxygen occurs as two non-metallic forms, dioxygen O_2 and ozone O_3 . Dioxygen O_2 is stable as a diatomic molecule. O_3 molecule is diamagnetic while O_2 is paramagnetic.

Six allotropes of selenium are known.

Tellurium has only one crystalline form, which is silvery white and semimetallic.

This is similar to grey Se, but has stronger metallic interaction.

Sulphur Allotropic forms :

Sulphur forms numerous allotropes of which the yellow rhombic (α -sulphur) and monoclinic (β -sulphur) forms are the most important. The stable form at room temperature is rhombic sulphur, which transforms to monoclinic sulphur when heated above 369 K.

Rhombic sulphur (α -sulphur) (*Most stable sulphur allotrope at room temperature*)

This allotrope is yellow in colour, m.p. 385.8 K and specific gravity 2.06. Rhombic sulphur crystals are formed on evaporating the solution of roll sulphur in CS_2 . It is insoluble in water but dissolves to some extent in benzene, alcohol and ether. It is readily soluble in CS_2 .

Monoclinic sulphur (β-sulphur)

Its m.p. is 393 K and specific gravity 1.98. It is soluble in CS_2 while water insoluble. This form of sulphur is prepared by melting rhombic sulphur in a dish and cooling, till crust is formed. Two holes are made in the crust and the remaining liquid poured out. On removing the crust, colourless needle shaped crystals of β -sulphur are formed. It is stable above 369 K and transforms into α -sulphur below it. Conversely, α -sulphur is stable below 369 K and transforms into β -sulphur above this. At 369 K, both the forms are stable. This temperature is called transition temperature.

Both rhombic and monoclinic sulphur have S_8 molecules. These S_8 molecules are packed to give different crystal structures. The S_8 ring in both the forms is puckered and has a crown shape. The molecular dimensions are given in the figure.

Several other modifications of sulphur containing 6-20 sulphur atoms per ring have been synthesised in the last two decades. In cyclo- S_6 , the ring adopts the chair form and the molecular dimensions are as shown in figure. At elevated temperatures (~1000 K), S_2 is the dominant species and is paramagnetic just like O_2 .

ALLEN

Note : Engel's sulphur (ε -sulphur) is unstable and contains S₆ rings arranged in the chair conformation. It is made by pouring Na₂S₂O₃ solution into concentrated HCl and extracting the S with toluene. Plastic sulphur-(χ) is obtained by pouring liquid sulphur into water.

Example

Which form of sulphur shows paramagnetic behaviour ?

Solution

In vapour state sulphur partly exists as S_2 molecule which has two unpaired electrons in the antibonding π^* orbitals like O_2 and, hence, exhibits paramagnetism.

Allotropes of Nitrogen Family :

Solid As, Sb and Bi each exist in several allotropic forms. Arsenic vapour contains tetrahedral As_4 molecules. A reactive yellow form of the solid resembles white phosphorus and is thought to contain tetrahedral As_4 units. Sb also has a yellow form. All three elements have much less reactive metallic or α -forms.

PHOSPHORUS ALLOTROPIC FORMS

Phosphorus is found in many allotropic forms, the important ones being white, red and black. White phosphorus is a translucent, white, waxy solid. It is poisonous, insoluble in water but soluble in carbon disulphide and glows in dark (chemiluminescence). It dissolves in boiling NaOH solution in an inert atmosphere giving PH_{3} .

 $P_4 + 3NaOH + 3H_2O \longrightarrow PH_3 + 3NaH_2PO_2$ (Sodium hypophosphite)

White Phosphorus

White phosphorus is less stable and therefore, more reactive than the other solid phases under normal conditions because of angular strain in the P_4 molecule where the angles are only 60°. It readily catches fire in air to give dense white fumes of P_4O_{10} .

 $P_4 + 5O_2 \rightarrow P_4O_{10}$

It consists of discrete tetrahedral P_4 molecule as shown in Fig.

Red phosphorus is obtained by heating white phosphorus at 573K in an inert atmosphere for several days. When red phosphorus is heated under high pressure, a series of phases of black phosphorus is formed.

Red phosphorus possesses iron grey lustre. It is odourless, nonpoisonous and insoluble in water as well as in carbon disulphide. Chemically, red phosphorus is much less reactive than white phosphorus. It does not glow in the dark.

It is polymeric, consisting of chains of P_4 tetrahedra linked together in the manner as shown in Fig.

Black phosphorus has two forms α -black phosphorus and β -black phosphorus. α -Black phosphorus is formed when red phosphorus is heated in a sealed tube at 803K. It can be sublimed in air and has opaque monoclinic or rhombohedral crystals. It does not oxidise in air. β -Black phosphorus is prepared by heating white phosphorus at 473 K under high pressure. It does not burn in air upto 673 K.

Thermodynamic stability order : Black phosphorus > Red phosphorus > White phosphorus **Reactivity order :** Black phosphorus < Red phosphorus < White phosphorus

ALLOTROPIC FORM OF SO3

Е

QUESTION OF HYDROGEN BONDING

- Q.1 Explain the structure of Boric acid in solid state.
- Q.2 Boiling point of o-Nitrophenol is less than meta and para nitrophenol. Why?
- Q.3 Maleic acid is more acidic than fumaric acid. Why?
- Q.4 H-F is only liquid among halogen acid. Why?
- Q.5 Ammonia is more easily liquefied than HCl, explain.
- Q.6 Why ice floats on water?
- Q.7 Water shows maximum density at 4°C. Why?
- Q.8 HI is the strongest halogen acid, whereas H–F is the weakest. Why?
- Q.9 Wood pieces are used to hold ice-cream. Why?
- Q.10 KHF₂ is possible but not KHBr₂ or KHI₂. Why?
- Q.11 O Nitrophenol is less soluble in H_2O than p Nitrophenol. Why?
- Q.12 o-Hydroxy benzaldehyde is a liquid at room temperature while p-hydroxy benzaldehyde is a high melting solid.
- Q.13 Glycerol is more viscous than ethanol. Explain.
- Q.14 CH_4 and H_2O have nearly same molecular weight. Yet CH_4 has a boiling point 112 K and water 373 K. Explain.
- Q.15 The experimental molecular weight of acetic acid in just double than theoretical molecular weight of acetic acid. Why?
- Q.16 Although chlorine has same electronegativity as nitrogen but the former does not form effective H-bonding. Explain.
- Q.17 Molar entropy change of vapourization of acetic acid is less than that of water. Explain
- Q.18 Heat of vapourization of water is higher than HF, however strength of H-bond in HF is higher than water. Explain

EXERCISE # 0-1

IONIC BOND

(Only one option is correct)

(On)	iy one option is corre	(())		
1.	The compound which	ch contains ionic as well	as covalent bonds is	
	(A) $C_2H_4Cl_2$	(B) CH ₃ I	(C) KCN	(D) H ₂ O ₂
2.	A bond formed betw	veen two like atoms can	not be	
	(A) ionic	(B) covalent	(C) coordinate	(D) metallic
3.	An ionic bond A^+B^-	is most likely to be for	med when :	
	(A) the ionization en	nergy of A is high and the	ne electron gain entha	py of <i>B</i> is low
	(B) the ionization en	hergy of A is low and the	e electron gain enthal	py of <i>B</i> is high
	(C) the ionization er	nergy of A and the electr	on gain enthalpy of B	both are high
	(D) the ionization en	hergy of A and the electron	on gain enthalpy of B	both are low
CO	VALENT BOND , C	O-ORDINATE BOND	& LEWIS STRUCT	URE
4.	PCl_5 exists but NCl	does not because :		
	(A) Nitrogen has no	vacant 2 <i>d</i> -orbitals	(B) NCl_5 is unstab	le
	(C) Nitrogen atom i	s much smaller than P	(D) Nitrogen is hig	shly inert
5.	Which of the follow	ing species are hyperval	ent?	
	(1) PCl ₅ ,	(2) BF ₃ ,	(3) XeF ₂ ,	(4) CO ₃ ^{2–}
	(A) 1, 2, 3	(B) 1, 3	(C) 3, 4	(D) 1, 2
6.	The types of bond p	present in $N_2O_{5(g)}$ are		
	(A) only covalent	(B) only ionic	(C) ionic and cova	lent (D) covalent & coordinate
7.	Which of the follow	ing molecule does not h	ave coordinate bonds	?
	(A) CH ₃ –NC	(B) CO	(C) O ₃	(D) CO_3^{2-}
8.	Which of the follow	ing Lewis dot diagrams	is(are) incorrect ?	
	•• ••	: <i>Ċl</i> :		H H
	(A) $Na - O - Cl$	(B) $; ; ; - c - ; ; :$	(C) 2 $H - \dot{N} - H$	$[S]^{2-}(D) H - N - N - H$
		: <u>c</u> l:	Ĺ Ĥ]	
9.	The possible structu	re(s) of monothiocarbon	ate ion is :	
	r	()		
	: C :		S	•S•

10.

(A)

(A) 2

0

11.	In the following com	pound $CH_2 = CH - CH$	$H_2 - C \equiv CH$, the $C_2 - C$	T_3 bond is of the type :	
	(A) sp–sp ²	(B) sp^3-sp^3	(C) $sp-sp^3$	(D) sp^2-sp^3	
12.	Which of the following	g has a geometry different	from the other three speci	ies (having the same geometry)?	
	(A) BF_4^-	(B) SO_4^{2-}	(C) XeF ₄	(D) PH_4^+	
13.	Maximum bond energ	gy is in :			
	(A) F ₂	(B) N ₂	(C) O ₂	(D) equal	
14.	The hybridisation and	l shape of BrF ₃ molecule	are :		
	(A) sp^3d and bent T	shape	(B) sp^2d^2 and tetragon	nal	
	(C) sp ³ d and bent		(D) none of these		
15.	The shape of methyl c	cation (CH_3^+) is likely to b	be:		
	(A) linear	(B) pyramidal	(C) planar	(D) spherical	
16.	The structure of XeF ₂	involves hybridization o	f the type :		
	(A) sp^3	(B) sp ²	(C) sp^3d	(D) sp^3d^2	
17.	Which of the followin	ng has been arranged in in	creasing order of length	of the hybrid orbitals?	
	(A) sp $<$ sp ² $<$ sp ³	(B) $sp^3 < sp^2 < sp$	(C) $sp^2 < sp^3 < sp$	(D) $sp^2 < sp < sp^3$	
18.	In the context of carbo	on, which of the following	g is arranged in the correc	ct order of electronegativity :	
	(A) $sp > sp^2 > sp^3$	(B) $sp^3 > sp^2 > sp$	(C) $sp^2 > sp > sp^3$	(D) $sp^3 < sp < sp^2$	
19.	When 2s–2s, 2p–2p a	and 2p–2s orbitals overla	p, the bond strength dec	reases in the order :	
	(A) $p - p > s - s > p$	D-S	(B) $p - p > p - s > s$	(B) $p - p > p - s > s - s$	
	(C) $s - s > p - p > p$	$\mathbf{D} - \mathbf{S}$	(D) $s - s > p - s > p$	9 – p	
20.	Carbon atoms in $C_2($	$CN)_4$ are :			
	(A) sp-hybridized		(B) <i>sp</i> ² -hybridized		
	(C) <i>sp</i> - and sp^2 hybrid	dized	(D) sp , sp^2 and sp^3 - h	nybridized	
21.	The bond angle and h	ybridization in ether (CH	I ₃ OCH ₃) is :		
	(A) 106°51', <i>sp</i> ³	(B) 104°31', sp^3	(C) > 109° 28', sp^3	(D) None of these	
22.	The structure of XeF	₆ in vapour phase is			
	(A) pentagonal bipyra	midal	(B) trigonal bipyramid	al	
	(\mathbf{C}) 1 $(1, 1, 1)$		(D) square hinvramid		

ALLEN -

DIP	OLE MOMENT & HYDROGEN BONDING	
23.	Which of the following has been arranged in ord	er of decreasing dipole moment ?
	(A) $CH_3Cl > CH_3F > CH_3Br > CH_3I$	(B) $CH_3F > CH_3Cl > CH_3Br > CH_3I$
	(C) $CH_{3}Cl > CH_{3}Br > CH_{3}I > CH_{3}F$	(D) $CH_{3}F > CH_{3}Cl > CH_{3}I > CH_{3}Br$
24.	The experimental value of the dipole moment	of HCl is 1.03 D. The length of the $H-Cl$ bond is
	1.275 Å. The percentage of ionic character in	<i>HCl</i> is nearly :
	(A) 43 (B) 21	(C) 17 (D) 7
25.	Ethanol has a higher boiling point than dimethyl ethe	r though they have the same molecular weight. This is due
	to:	
	(A) resonance	(B) coordinate bonding
	(C) hydrogen bonding	(D) ionic bonding
26.	Which of the following compounds would have	e significant intermolecular hydrogen bonding?
	HF, CH_3OH, N_2O_4, CH_4	
	(A) HF , N_2O_4 (B) HF , CH_4 , CH_2OH	(C) HF, CH_2OH (D) CH_2OH , CH_4
27.	For H_2O_2 , H_2S , H_2O and HF, the correct order	er of decreasing strength of hydrogen bonding is :
	(A) $H_2O > HF > H_2O_2 > H_2S$	(B) $HF > H_2O_2 > H_2O > H_2S$
	(C) $HF > H_2O > H_2O_2 > H_2S$	(D) $H_2O_2 > H_2O > HF > H_2S$
28.	Which one of the following does not have inte	ermolecular H-bonding?
	(A) H ₂ O (B) <i>o</i> -nitro phenol	(C) HF (D) CH ₂ COOH
29.	The order of strength of hydrogen bonds is:	
	(A) NHN > OHO > FHF	(B) NHN < OHO < FHF
	(C) NHN > OHO $<$ FHF	(D) NHN $<$ OHO $>$ FHF
30.	The <i>H</i> bond in solid <i>HF</i> can be best represent	ed as:
		(D) H_{1} H_{2} H_{3} H_{4}
	(A) $H = F H = F H = F$	(B) F F
	F_{\cdots}	H H
	(C) H H H H	(D) F F F F
	F	
MIS	CELLEANEOUS	11
31.	The formal charges on the three O-atoms in C	P_3 molecule are
	(A) 0, 0, 0 (B) 0, 0, -1	(C) 0, 0, +1 (D) 0, +1, -1
32.	The types of bonds present in $CuSO_4 \cdot 5H_2O$ a	re e
	(A) electrovalent and covalent	temicial bo
	(B) electrovalent, coordinate covalent & H-bo	ond a
	(C) covalent, coordinate covalent & H-bonds	r, Periodia
	(D) electrovalent, covalent, coordinate covaler	it & H-bond
33.	If ethylene molecule lies in X-Y plane then no	odal planes of the π -bond will lie in
	(A) XZ plane	(B) YZ plane
	(C) In a plane that bisects C–C axis	(D) XY plane
34.	Two ice cubes are pressed over each other and	l unite to form one cube. Which force is responsible
	for holding them together :	, bovver(A
	(A) van der Waal's forces	(B) Covalent attraction
	(C) Hydrogen bond formation	(D) Dipole-dipole attraction
88		
-		

ALLEN

5.

ode06 \B0AH.A1\Kota\EEEAdvarced\\Nutrure\Chem\Sheet\Quantum number, Periodetable & Chemical banding\Eng\05_Exercise.p65

Е

EXERCISE # 0-2

IONIC BOND, COVALENT BOND & COORDINATE BOND

1.	Which of the follo	wing compounds cont	ain ionic, covalent and o	co-ordinate bonds?
	(A) NH ₄ Cl	(B) KCN	(C) NaBF ₄	(D) NaOH

2. Which of the following statements is/are true?

(A) Covalent bonds are directional

- (B) Ionic bonds are nondirectional
- (C) A polar bond is formed between two atoms which have the same electronegativity value.
- (D) The presence of polar bonds in a polyatomic molecule suggests that it has zero dipole moment
- **3.** To which of the following species octet rule is not applicable :
 - (A) BrF_5 (B) SF_6 (C) IF_7 (D) CO

LEWIS STRUCTURE & BOND LENGTH

4. $O_3(\text{ozone})$ molecule can be equally represented by the structures I and II shown below

which of the following values of x are not correct

(A) 148 pm(B) 121 pm(C) less than 121 pm(D) more than 148 pmSelect the correct statement -

- (A) C–O bond length of CO molecule is higher than the C–O bond length of CO_2
- (B) C–O bond length of CO molecule is lower than the C–O bond length of CO₂
- (C) N–O bond length of NO_3^- ion is higher than the N–O bond length of NO_2^-
- (D) N–O bond length of NO_3^- ion is lower than the N–O bond length of NO_2^-

VBT, HYBRIDISATION & VSEPR THEORY

6. Which of the following statement(s) is / are not correct?

(A) Hybridization is the mixing of atomic orbitals of large energy difference.

- (B) sp²-hybrid orbitals are formed from two p atomic orbitals and one s- atomic orbital
- (C) sp^3d^2 -hybrid orbitals are all at 90° to one another

(D) sp³-hybrid orbitals are directed towards the corners of a regular tetrahedron

7. Which of the following species are linear ?

(A) ICl_2^- (B) I_3^- (C) N_3^- (D) ClO_2^+

JEE-Chemistry

- 8. Which of the following molecules have bent shape. Where A is central atom, B is surrounding atom and E is lone pair -(A) AB_2E_2 (B) AB_2E (C) AB_3E (D) AB_2 9. In which of the following process(s) hybridisation of underlined atom does not change – (A) $\underline{N}H_3 + BF_3 \rightarrow H_3N.BF_3$ (B) $\underline{Si}F_4 + 2F^{\Theta} \rightarrow [SiF_6]^{2-}$ (C) $BH_3 + \underbrace{\bigcirc}_{\underline{O}} \rightarrow H_3B \leftarrow \bigcirc$ (D) $H_3\underline{B}O_3 \xrightarrow{OH^-} [B(OH)_4]^-$
- 10. Which of the following 'd' orbital(s) participate in the hybridistaion for Xe in the cationic part of $XeF_6(s)$
 - (A) d_{xy} (B) $d_{x^2-y^2}$ (C) d_{z^2} (D) d_{y^2}

DIPOLE MOMENT & HYDROGEN BOND

11. Which of the following compounds possesses zero dipole moment?

(A) Water	(B) Benzene
(C) Carbon tetrachloride	(D) Boron trifluoride

- **12.** Which of the following statements are correct?
 - (A) The crystal lattice of ice is formed by covalent as well as hydrogen bonds
 - (B) The density of water increases when heated from 0° C to 4° C
 - (C) Above 4° C the thermal agitation of water molecules increases. Therefore, intermolecular distance increases and water starts expanding
 - (D) The density of water decreases from 0° C to a maximum at 4° C
- **13.** In which of the following chemical species hydrogen bonding takes places -(A) $Na_2HPO_3(s)$ (B) $K_2HPO_4(s)$ (C) $KHCO_3(s)$ (D) $NaHCO_3(s)$

MISCELLEANEOUS & STRUCTURE

- 14. Which of the following oxyacids of sulphur contain S S bonds?
 - (A) $H_2S_2O_8$ (B) $H_2S_2O_6$ (C) $H_2S_2O_4$ (D) $H_2S_2O_5$
- **15.** Molecule(s) having both polar and non polar bonds is / are
 - (A) O_2F_2 (B) S_2Cl_2 (C) N_2H_4 (D) S_2F_{10}
- 16. Which of the following molecule is/are planar -
 - (A) CH_2CI_2 (B) $B_3N_3H_6$ (C) SO_3 (D) NF_3

Integer Type Answer :

- In solid N⁺_aCl⁻ one Na⁺ is surrounded by six Cl⁻ ions find out total number of directional bonds formed by each Na⁺ with Cl⁻ ions.
- 2. Find out total number of $p\pi$ -d π bonds present in SO₂ molecule
- 3. Find out total number of $p\pi$ - $p\pi$ bonds present in SO₄²⁻
- 4. How many number of atomic orbitals are required, so that their mixing produces hybrid orbitals each having % of s-character nearly equal to 17%.
- 5. Calculate the maximum number of atoms lying in one plane of PCl_3F_2 .
- 6. Find the lone pair-bond pair ratio for $[SiF_6]^{2-}$
- 7. A diatomic molecule has a dipole moment of 1.2 D. If bond length is 1.0 Å, what percentage of an electronic charge exists on each atom.

[Add the digits untill you are getting single digit. e.g. If the answer is 537, then 5 + 3 + 7 = 15] again 1 + 5 = 6 and 6 is to be written as answer.

8. Total number of sp^3 hybridised atom(s) in given hydrocarbon.

- 9. Find the number of lone pair on central atom of ICl_{4}^{-}
- 10. Find the number of acid(s) which are having hypo prefix in it's name from the following. H₃PO₄, H₃BO₃, H₃PO₃, H₃PO₂, HClO₃, HClO, (HNO)₂, H₄P₂O₆
- 11. Find the number of planar molecules/ions which are cyclic –

 $B_3N_3H_6$, $C_3N_3Cl_3^{}$, $(BO_2^{-})_3^{}$, $S_2O_8^{2-}$

12. Find the maximum number of plane having maximum number of atoms in CH_4 .

13. Find the number of molecule having dipole moment less than the dipole moment of

14. Find the number of molecules having intramolecular hydrogen bonding in the following : ice, o-boric acid, o-nitrophenol, o-chlorophenol, chloral hydrate, o-salicyaldehyde
15. Find the number of chemical species which are planar from in the following.

 XeF_{5}^{Θ} , XeF_{5}^{+} , HCN, CO₂, SO₂

ode06 \B0AH:A1\KotaVIEE[Advarced]\Nurture\Chem\Sheet\Quantum number, Periodc1tdble & Chemical banding\Eng\05_Exercise.p65

Е

(Comprehension) (Q.1 to Q.2)

Bond angle and bond polarity are important parameters associated for bonding in molecule.

1. Which of the following bond angle order is incorrect.

	(A) $NH_3 > PH_3$		(B) $BF_3 < BH_3$		
	(C) $O(CH_3)_2 < O(C_2H_3)_2$	$I_{5})_{2}$	(D) $CO_{3}^{2-} < CO_{3}^{2-}$	2	
2.	Which of the followin	g molecule is pol	ar and non-planar	-	
	(A) CH_2Cl_2	(B) PCl ₅	(C) SO ₂	(D) XeF ₄	
(Con	nprehension) (Q.3 to Q	2.4)			
	During the formation	of a covalent b	ond each participating	atom usually acquires elec	etronic
	configuration to that of	f nearest noble gas	s, and the shared electron	pair remains localized betwee	een the
	bonded nuclei. Besides	these shared elect	rons there are certain ele	ctron pairs which remains lo	calized
	on C.A. or on substitu	ent or both and a	re called non bonding o	r lone pair electrons.	
3.	Which of the following	g species does / d	o not follow octet rule:		
	(A) Hypovalent		(B) Hypervalent		
		-			

- (C) Odd electron molecules (D) All In SO_3^{2-} the total number of lone pairs and bond pairs are respectively
 - (B) 9 and 8 (C) 9 and 4 (A) 18 and 4 (D) 7 and 4

(Comprehension) (0.5 to 0.7)

4.

Hybridisation is a theoretical concept, as state of hybridisation cannot be detected even by spectroscopically; unlike intermediates or transition state in various reactions. but it corrects the predictions which are based simple on overlapping of pure atomic orbitals. VSEPR theory predicts precisely shape and bond angle in a given molecule.

- 5. In which pair of molecules bond angles are not same:
 - (A) CCl_4 & SiCl_4 (B) NH_4^+ & NH_4^+ (C) $ClF_{6}^{+} \& SF_{6}$ (D) None
- 6. The molecules / ions which are planar as well as polar.
 - (B) SnCl_2 , I_3^+ , NH_2^- , IF_3 (D) NO_2^- , XeF_4 , ICl_4^- , NH_2^+ (A) BF_3 , H_2O , HF, NH_2^-
 - (C) CO_3^{2-} , I_3^{-} , SF₂, XeF₂

7. The correct order of energy levels of hybrid orbitals.

(C) $sp^2 > sp^3 > sp$ (D) $sp^3 > sp > sp^2$ (A) $sp > sp^2 > sp^3$ (B) sp < sp² < sp³ (Comprehension) (Q.8 to Q.10)

As one moves from sp hybridisation to sp³. % of s-character in hybrid orbital decreases from 50% to 25% and p-character increases from 50% to 75% and in any hybrid orbital total % of s & p- character remains 100%. By increasing p-character the hybrid orbitals become elongated hence, their overlapping extent decreases that is results into weak bond energy also bond angle decreases.

- Statement-1: On decreasing s-character in hybrid orbitals, bond angle decreases. 8.
 - Statement-2 : p-orbitals are at 90° to one another.
 - (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
 - (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
 - (C) Statement-1 is true, statement-2 is false.
 - (D) Statement-1 is false, statement-2 is true.

9. The type of overlapping which produces bond of maximum bond energy is:

(A) $sp^3 - 1s$

ALLEN.

(C) sp -1s

- (D) All have same bond energy

The molecule having bond pair in which % of s character is minimum for the central atom's hybrid 10. orbital.

(A) SiF_4

Match the Column :

11. Match the column

- Column-I (molecules)
- (A) $\underline{PCl}_{s}(\theta = 120^{\circ}), (\theta' = 90^{\circ})$
- (B) <u>NH₂($\theta = 107^{\circ}$)</u>
- (C) <u>Si</u>H₄($\theta = 109^{\circ} 28'$) (R)
- (D) $\underline{SO}_{2}(\theta = 116^{\circ})$

12. **Column I**

- (A) BrF_3
- (B) TeF_5
- (C) IF_7
- (D) XeF_4

13. **Column I**

- (A) I (CN)₂
- (B) CO_3^{2-}
- (C) $XeO_{2}F_{2}$
- (D) SOF_4

Column I 14.

- $(A) H_2 S_2 O_5$
- (B) $H_6 B_2 O_7^{2-}$
- (C) $H_4P_2O_6$ (tetrabasic)
- $(D) H_6 Si_2 O_7$

Column-I 15.

- (P) XeF_4
- $(Q) BrF_5$
- (R) ClF_3
- (S) SO_3^{2-}
- Code :

node06 \B0AH.A1\Kota\UEE[Advanced]\\Nurture\Chem\Sheet\Quantum number, Periodictable & Chemical banding\Eng\05_Exercise.pd5

Ε

	Р	Q	R	S
(A)	1	2	3	4
(B)	2	4	1	3
(C)	2	4	3	1
(D)	3	1	4	2

- (B) $sp^2 1s$
- (C) CH₃⁺ (B) BCl₃ (D) CO₂

Column-II (correct about molecule)

- (P) Number of the given bond angle (θ or θ) is = One
- (Q) Number of the given bond angle (θ or θ ') is = Three
- (R) Number of the given bond angle (θ or θ) is = Six
- (S) d-orbital(s) is/are involved in hybrdisation of central atom
- (T) Lone pair at underlined atom is present

Column II

- (P) Atleast one angle $\leq 90^{\circ}$
- (Q) Central atom is sp^3d^2 hybridised
- (R) Non planar
- (S) Polar

Column II

- (P) Having $p\pi p\pi$ bond & $\mu_D = 0$
- (Q) Having $p\pi$ - $d\pi$ bond & $\mu_D \neq 0$
- (R) Planar
- (S) Central atom is sp^3d

Column II

- (P) Central atom is sp³ hybridised
- (Q) M–O–M i.e. oxo linkage is present
- (R) M-M linkage is present
- (S) Non planar

Column-II

- (1) $sp^{3}d$ hybridised with 2 lone pair on central atom
- (2) sp^3d^2 hybridised with 2 lone pair on central atom
- (3) sp^3 hybridised with 1 lone pair on central atom
- (4) sp^3d^2 hybridised with 1 lone pair on central atom

JEE-Chemistry

ALLEN

16. Column–I

- (P) NH_4Cl
- (Q) $K[HF_2]$
- $(R) \ B_3 N_3 H_6$
- (S) SiC

Column-II

- (1) diamond like structure
- (2) Benzene like structure
- (3) Both hydrogen bond and ionic bond exist
- (4) Both covalent bond and ionic bond exist

Code :

	Р	Q	R	S
(A)	4	3	2	1
(B)	3	4	2	1
(C)	3	4	1	2
(D)	4	1	3	2

MATCHING LIST TYPE 1 × 3 Q. (THREE LIST TYPE Q.)

Column - I	Column - III	
(P) d _{yz}	(1) p _y	(i) 1 lobe – 1 lobe overlap
(Q) s	(2) p _x	(ii) 2 lobe – 2 lobe overlap
(R) d_{xz}	(3) d _{yz}	(iii) 4 lobe – 4 lobe overlap
(S) p _z	(4) s	(iv) Zero overlap

17. Which of the following combination results in π -bond formation if internuclear axis is z-axis

(A) (P), (1), (ii) (B) (P), (4), (i) (C) (R), (4), (iv) (D) (R), (3), (ii)

18. Which of the following combination results in σ -bond formation if internuclear axis is z-axis

(A) (P), (1), (ii) (B) (Q), (3), (ii) (C) (Q), (4), (i) (D) (R), (2), (ii)

19. Which of the following combination results in δ -bond formation if internuclear axis is x-axis (A) (P), (1), (i) (B) (P), (3), (iii) (C) (R), (3), (iv) (D) (P), (2), (ii)

1.	Which of the following	ng statements is true?		[AIEEE-20)02]
	(1) HF is less polar th	han HBr			
	(2) Water does not co	ontain any ions			
	(3) Chemical bond fo	rmation takes place who	en forces of attraction or	vercome the forces of repul	sion
	(4) In covalent bond,	transfer of electrons tak	tes place		
2.	Which one of the follo	owing pairs of molecules	s will have permanent dip	ole moments for both mem	bers
	(1) NO_2 and CO_2		(2) NO_2 and O_3	[AIEEE-20)03]
	(3) SiF_4 and CO_2		(4) SiF_4 and NO_2		
3.	The pair of species h	aving identical shapes for	or molecules of both spe	cies is [AIEEE-20)03]
	(1) XeF ₂ , CO ₂	(2) BF ₃ , PCl ₃	(3) PF_{5} , IF_{5}	(4) CF_4 , SF_4	
I .	The correct order of	bond angles (smallest	first) in H ₂ S, NH ₃ , BF ₃	and SiH ₄ is :-[AIEEE-20	004]
	(1) $H_2S < NH_3 < S$	$iH_4 < BF_3$	(2) $NH_3 < H_2S <$	$SiH_4 < BF_3$	
	(3) $H_2S < SiH_4 < 1$	$NH_3 < BF_3$	(4) $H_2S < NH_3 < 1$	$BF_3 < SiH_4$	
5.	Lattice energy of an	ionic compound depend	ls upon	[AIEEE-20)05]
	(1) charge on the ion	only	(2) size of the ion or	ıly	
	(3) packing of the ion	n only	(4) charge and size of	of the ion	
	Of the following sets	which one does not con	ntain isoelectronic speci	es? [AIEEE-20)05]
	(1) PO_4^{3-} , SO_4^{2-} , ClC	0_{4}^{-}	(2) CN^{-} , N ₂ , C ₂ ²⁻		
	(3) SO_3^{2-} , CO_3^{2-} , NO	_ 3	(4) BO_3^{3-} , CO_3^{2-} , NO	$\overline{O_3}$	
7.	In which of the follow	wing molecules/ions are	all the bonds not equal	? [AIEEE-20)06]
	(1) XeF ₄	(2) BF_4^-	(3) SF ₄	(4) SiF ₄	
5.	Which of the following	ng hydrogen bonds is th	e strongest	[AIEEE-20)071
	(1) F–HF	(2) O–HO	(3) O–HF	(4) O–HN	_
•	The hybridisation of	orbitals of N atom in N	NO_3^- , NO_2^+ and NH_4^+ are	e respectively:- [AIEEE-20	011]
	(1) sp, sp^{3} , sp^{2}	(2) sp^2 , sp^3 , sp	(3) sp, sp ² , sp ³	(4) sp^2 , sp , sp^3	-
0.	The structure of IF_7	is :-		[AIEEE-20)11]
	(1) octahedral		(2) pentagonal bipy	ramid	
	(3) square pyramid		(4) trigonal bipyram	id	
1.	Which of the follow	ing has maximum numb	per of lone pairs associa	ted with Xe [AIEEE-20)11]
	(1) XeO ₃	(2) XeF ₄	(3) XeF ₆	(4) XeF ₂	
2.	The molecule having	smallest bond angle is	:-	[AIEEE-20)12]
	(1) PCl ₃	(2) NCl ₃	(3) AsCl ₃	(4) SbCl ₃	
3.	In which of the follo	wing pairs the two spec	cies are not isostructura	1? [AIEEE-20)12]
	(1) AlF_6^{3-} and SF_6	(2) CO_3^{2-} and NO_3^{-}	(3) PCl_4^+ and $SiCl_4$	(4) PF_5 and BrF_5	

EXERCISE # JEE-MAIN

ALLEN

A		

14.	The number of S-S	S bonds in SO ₃ , $S_2O_3^{2-}$,	$S_2O_6^{2-}$ and $S_2O_8^{2-}$ respectively.	ectively are :-	
				[JEE-M	AINS-2012]
	(1) 1, 0, 1, 0	(2) 0, 1, 1, 0	(3) 1, 0, 0, 1	(4) 0, 1, 0, 1	(On line)
15.	Among the following	ng species which two hav	ve trigonal bipyramidal sh	ape? [JEE-MAIN	[S-2012]
	(I) NI ₃	(II) I_3^-	(III) SO ₃ ^{2–}	(IV) NO_3^-	(On line)
	(1) II and III	(2) III and IV	(3) I and IV	(4) I and III	
16.	Which of the follow	ring has the square plana	r structure :-	[JEE-M	AINS-2012]
	(1) NH_4^+	(2) CCl ₄	(3) XeF ₄	(4) BF ₄	(On line)
17.	The compound of λ	Kenon with zero dipole m	noment is :-	[JEE-M	AINS-2012]
	(1) XeO ₃	(2) XeO ₂	(3) XeF_4	(4) $XeOF_4$	(On line)
18.	Among the following	ng the molecule with the l	lowest dipole moment is :-	[JEE-MAINS	-2012]
	(1) CHCl_3	(2) CH_2Cl_2	(3) CCl ₄	(4) CH_3Cl	(On line)
19.	The formation of m	olecular complex BF ₃ -	NH ₃ results in a change ir	n hybridisation of bo	oron :-
			2	[JEE-M	AINS-2012]
	(1) from sp^3 to sp^3	d	(2) from sp^2 to dsp^2	2	(On line)
	(3) from sp^3 to sp^2		(4) from sp^2 to sp^3		
20.	Trigonal bipyramic	lal geometry is shown l	ру:	[JEE-M	AINS-2013]
	(1) XeO_3F_2	(2) $XeOF_2$	(3) XeO ₃	(4) FXeOSO,	F (On line)
21.	Which one of the t	following molecules is p	polar?	[JEE-M	AINS-2013]
	(1) CF_4	(2) SbF_5	(3) IF ₅	(4) XeF_4	(On line)
22.	Oxidation state of	sulphur in anions SO_3^{2-}	$S_2O_4^{2-}$ and $S_2O_6^{2-}$ increa	ses in the orders :	
		З,		[JEE-M	AINS-2013]
	(1) $S_2O_6^{2-} < S_2O_4^{2-}$	$1 < SO_{3}^{2-}$	(2) $SO_3^{2-} < S_2O_4^{2-}$	$< S_2 O_6^{2-}$	(On line)
	(3) $S_2O_4^{2-} < SO_3^{2-}$	$< S_2 O_6^{2-}$	(4) $S_2O_4^{2-} < S_2O_6^{2-} <$	SO_3^{2-}	
23.	XeO_4 molecule is t	tetrahedral having :		JEE-M	AINS-2013]
	(1) Two $p\pi$ -d π bo	nds	(2) Four $p\pi$ -d π bor	nds	(On line)
	(3) One $p\pi$ -d π box	nd	(4) Three $p\pi$ -d π bo	onds	
24.	Bond distance in	n HF is 9.17×10^{-11}	m. Dipole moment of	of HF is 6.104 >	< 10 ⁻³⁰ Cm.
	The percent ionic c	haracter in HF will be :	(electron charge = 1.60 >	× 10 ⁻¹⁹ C) [JEE-M	AINS-2013]
	(1) 61.0%		(2) 38.0%		(On line)
	(3) 35.5%		(4) 41.5%		
25.	The shape of IF_6^- is	:		[JEE-M	AINS-2013]
	(1) distorted octahe	edron	(2) Pyramidal		(On line)
	(3) Octahedral		(4) Square antiprism	n	
26.	Which has trigonal	bipyramidal shape?		[JEE-M	AINS-2013]
	(1) $XeOF_4$	(2) XeO_3	(3) $XeO_{3}F_{2}$	(4) $XeOF_2$	(On line)
~ ′					
70					

Chemical Bonding

27. The catenation tendency of C. Si and Ge is in the order Ge < Si < C. The bond energies (in kJ mol⁻¹) of C — C, Si — Si and Ge—Ge bonds are respectively : [JEE-MAINS-2013 (On line)] (2) 348, 297, 260 (3) 297, 348, 260 (1) 348, 260, 297 (4) 260, 297, 348 In which of the following sets, all the given species are isostructural? [JEE-MAINS-2013 (On line)] 28. (1) BF₃, NF₃, PF₃, AlF₃ (2) PCl₂, AlCl₂, BCl₂, SbCl₂ (3) BF_4^- , CCl_4 , NH_4^+ , PCl_4^+ (4) CO₂, NO₂, ClO₂, SiO₂ 29. For which of the following molecule significant $\mu \neq 0$ [JEE-M-2014] (1) Only (c) (2) (c) and (d) (3) Only (a)(4) (a) and (b) 30. Among the following oxoacids, the correct decreasing order of acid strength is :-[JEE-M-2014] (1) $HClO_4 > HClO_3 > HClO_2 > HOCl$ (2) $HClO_2 > HClO_4 > HClO_3 > HOCl$ (3) $HOCl > HClO_2 > HClO_3 > HClO_4$ (4) $HClO_4 > HOCl > HClO_2 > HClO_3$ The number and type of bonds in C_2^{2-} ion in Ca C_2 are: 31. [AIEEE-2005, AIEEE-2011, JEE-MAINS-2014 (On line)] (1) Two σ bonds and one π – bond (2) Two σ bonds and two π – bonds (3) One σ bond and two π – bonds (4) One σ bond and one π – bond For the compounds 32. [JEE-MAINS-2014] CH₃Cl, CH₃Br, CH₃I and CH₃F, (On line) the correct order of increasing C-halogen bond length is : (1) $CH_3F < CH_3Br < CH_3Cl < CH_3I$ (2) $CH_{3}F < CH_{3}Cl < CH_{3}Br < CH_{3}I$ (3) $CH_3Cl < CH_3Br < CH_3F < CH_3I$ (4) $CH_3F < CH_3I < CH_3Br < CH_3Cl$ Shapes of certain interhalogen compounds are stated below. Which one of them is not correctly stated? 33. [JEE-MAINS-2014] (1) IF₇: Pentagonal bipyramid (2) BrF₅: Trigonal bipyramid (On line) (3) ICl_3 : Planar dimeric (4) BrF₃ : Planar T-shaped 34. Which of the following molecules has two sigma(σ) and two pi(π) bonds :- [JEE-MAINS-2014] (1) HCN (2) C₂H₂Cl₂ $(3) N_{2}F_{2}$ (4) $C_{2}H_{4}$ (On line) [JEE-MAINS(offline)-2016] 35. The species in which the N atom is in a state of sp hybridization is (1) NO₂ (4) NO_{3}^{-} (2) NO_{2}^{+} (3) NO₂-The pair in which phosphorous atoms have a formal oxidation state of +3 is :-36. (1) Pyrophosphorous and pyrophosphoric acids [JEE-MAINS(offline)-2016] (2) Orthophosphorous and pyrophosphorous acids (3) Pyrophosphorous and hypophosphoric acids (4) Orthophosphorous and hypophosphoric acids Е

ALLEN

ode06 \B0AH-A1\Kota\EE[Advanced]\Nuture\Chem\Shee1\Quantum number, Periodertable & Chemical bonding\Eng\05_Exercise p65

JEE-Chemistry

37.	The group of molecules having identical shape is	[JEE-MAINS(online)-2016]			
	(1) SF_4 , XeF_4 , CCl_4	(2) ClF_3 , $XeOF_2$,	XeF ₃ ⁺		
	(3) PCl_5 , IF_5 , XeO_2F_2	(4) BF ₃ , PCl ₃ , Xe	O ₃		
38.	Assertion : Among the carbon allotropes, diamon of electricity.	nd is an insulator, wh	ereas, graphite is a good conductor [JEE-MAINS(online)-2016]		
	<i>Reason</i> : Hybridization of carbon in diamond a	and graphite are sp ³ a	and sp ² , respectively.		
	(1) Assertion is incorrect statement, but the reas	son is correct.			
	(2)Both assertion and reason are correct, and the	ne reason is the corre	ect explanation for the assertion.		
	(3) Both assertion and reason are incorrect.				
	(4) Both assertion and reson are correct, but the	e reason is not the co	rrect explanation for the assertion.		
39.	Aqueous solution of which salt will not $1s^22s^22p^63s^23p^6$?	contain ions with	the electronic configuration [JEE-MAINS(online)-2016]		
	(1) NaCl (2) CaI ₂	(3) KBr	(4) NaF		
40.	The correct sequence of decreasing number and $H_2S_2O_7$ is:-	er of π -bonds in the	the structures of H_2SO_3 , H_2SO_4 [JEE-MAINS(online)-2017]		
	(1) $H_2S_2O_7 > H_2SO_4 > H_2SO_3$	(2) $H_2SO_3 > H_2SO_3$	$O_4 > H_2 S_2 O_7$		
41	(3) $H_2S_2O_7 > H_2SO_3 > H_2SO_4$ The immediate of the heiling project for the	(4) $H_2SO_4 > H_2S_2O_7 > H_2SO_3$			
41.	The increasing order of the boiling points for the	(II) C H Cl	IFF-MAINS(online)-2017		
	(III) $C_2H_5CH_3$	$(IV) C_2H_5OCH_3$	[J121 -141 XI 45(01111() - 201 7]		
	(1) (III) \leq (II) \leq (IV)	(2) (II) $<$ (III) $<$ (I	V) < (I)		
	(3) $(IV) < (III) < (I) < (II)$	(4) (III) $<$ (IV) $<$ (II) < (I)		
42.	The number of P–OH bonds and the oxidation star respectively are:-	te of phosphorus ato	m in pyrophosphoric acid $(H_4P_2O_7)$ [JEE-MAINS(online)-2017]		
	(1) five and four	(2) five and five			
	(3) four and five	(4) four and four			
43.	The group having triangular planar structures is	:-	[JEE-MAINS(online)-2017]		
	(1) $CO_3^{2-}, NO_3^{-}, SO_3$	(2) NCl_3, BCl_3, SO_3	3		
	(3) NH_3, SO_3, CO_3^{2-}	(4) BF_3, NF_3, CO_3^{2-}			
44.	The number of S=O and S–OH bonds present in pare :	eroxodisulphuric acid	and pyrosulphuric acid respectively [JEE-MAINS(online)-2017]		
	(1) (2 and 4) and (2 and 4)	(2) (4 and 2) and (2	2 and 4)		
	(3) (2 and 2) and (2 and 2)	(4) (4 and 2) and (4	4 and 2)		

ALLEN

EXERCISE # JEE-ADVANCED

Integer Type :

1.	The number of water	molecule(s) directly both	nded to the metal centre	in CuSO ₄ .5H ₂ O) is						
2. 3.	Based on VSEPR the The difference in the	Based on VSEPR theory, the number of 90 degree F–Br–F angles in BrF ₅ is [JEE 2009] The difference in the oxidation numbers of the two types of sulphur atoms in $Na_2S_4O_6$ is. [JEE 2010]									
4.	The total number of I	one-pairs of electrons in	n melamine is	[JEF	E Adv. 2013]						
5.	The sum of the number	er of lone pairs of electro	ons on each central atom	in the following	g species is. [JEE 2017]						
	$[\text{TeBr}_6]^{2-}$, $[\text{BrF}_2]^+$, S	NF_3 and $[XeF_3]^-$									
	[Atomic number : N	= 7, F $=$ 9, S $=$ 16, Br	= 35, Te $= 52$, Xe $= 54$	4]							
One	or more than one cor	rect :									
6.	The linear structure is	s assumed by :			[IIT-1991]						
	(A) SnCl ₄	(B) NCO ⁻	(C) CS ₂	(D) NO_2^+							
7.	Which of the following	ng has zero dipole mom	ent?		[IIT-1993]						
	(A) ClF	(B) PCl ₃	(C) SiF ₄	(D) CFCl ₃							
8.	Among the following	molecules, which one i	s planar ?		[IIT-1994]						
0	(A) BCl ₃ Which of the fallowir	(B) SO_2Cl_2	(C) NH_3	(D) NF_3	FTTT 10051						
9.	(A) H S	(B) NH	(C) CO	(D) SO	[111-1995]						
10.	Which contains both	polar and non-polar bor	$(0) \ 0 \ 0 \ 2$ nds ?	$(D) SO_2$	[IIT-1997]						
	(A) CH ₄	(B) HCN	(C) H ₂ O ₂	(D) NH ₄ Cl							
11.	Which of the following	ng compounds has sp ² h	ybridisation ?		[IIT-1997]						
	(A) CO ₂	(B) SO ₂	(C) N ₂ O	(D) CO							
12.	Which one of the foll	owing molecules is plar	nar?		[IIT-1996]						
	(A) NF ₃	(B) NCl ₃	(C) BF ₃	(D) PH ₃							
13.	The number and type	of bonds between two	carbon atoms in CaC_2 a	re :	[IIT-1996]						
	(A) 1σ and 1π	(B) 1σ and 2π	(C) 1σ and 1.5π	(D) 1σ							
14.	Among the species N	F_3 , NO ₃ , BF ₃ , H ₃ O ⁺ and	HN ₃ , identify the isost	ructural species	:[IIT-1996]						
	(A) (NF_3, NO_3) and	$(BF_{3}, H_{3}O^{+})$	(B) (NF_3, HN_3) and ((NO_3^-, BF_3)							
	(C) (NF_3, H_3O^+) and	(NO_3^-, BF_3)	(D) (NF ₃ , H_3O^+) and	(HN_3, BF_3)							
15.	Among the following	the one that is polar an	d has the central atom w	with sp ² hybridis	ation is :						
	(A) H_2CO_3	(B) SiF_4	(C) BF_3	(D) HClO,	[IIT-1997]						
16.	The geometry & the t	type of hybrid orbitals p	resent about the central	atom in BF_2 is	: [JEE '98]						
	(A) linear, sp	1	(B) trigonal planar. sp	2							
	(C) tetrahedral sp^3		(D) pyramidal. sp^3								
	() · · · · · · · · · · · · · · · · · ·		() I J ······, ~r								

rode06 \B0AH.A1\Kora\JEEEAdvanced}\Nurture\Chem\Shee1\Quantum number, Periodictable & Chenical bonding\Eng\05_Exercise.p65

JEE-Chemistry

- ALLEN Which one of the following statement (s) is (are) correct? [JEE 1998] 17. (A) The electronic configuration of Cr is [Ar] $3d^5 4s^1$.(Atomic No. of Cr = 24) (B) The magnetic quantum number may have a negative value (C) In silver atom, 23 electrons have a spin of one type and 24 of the opposite type. (Atomic No. of Ag = 47)(D) The oxidation state of nitrogen in HN_3 is -3. Element X is strongly electronegative and element Y is strongly electropositive. Both are univalent. The 18. compound formed would be : [JEE 1998] (A) $X^{\rightarrow} Y$ (B) $X^{T}Y^{+}$ (C) $X^+ Y^-$ (D) $Y \rightarrow X$ The correct order of increasing C - O bond length of, CO, CO_3^{2-} , CO₂ is 19. [**JEE** '99] (B) $CO_2 < CO_3^{2-} < CO_3^{2-}$ (A) $CO_3^{2-} < CO_2 < CO_2$ (D) $CO < CO_2 < CO_3^{2-1}$ (C) $CO < CO_3^{2-} < CO_2$ The geometry of H₂S and its dipole moment are 20. [**JEE** '99] (A) angular & non zero (B) angular & zero (C) linear & non zero (D) linear & zero In compounds type E Cl_3 , where E = B, P, As or Bi, the angles Cl - E - Cl for different E are in 21. the order [**JEE** '99] (A) B > P = As = Bi(B) $B > P > A_S > B_i$ (C) B < P = As = Bi(D) B < P < As < Bi22. The most likely representation of resonance structure of p-nitrophenoxide is: (D) (A) **(B)** (C) 23. Amongst H₂O, H₂S, H₂Se and H₂Te, the one with the highest boiling point is [**JEE 2000**]
 - (A) H₂O because of hydrogen bonding
 - (B) H₂Te because of higher molecular weight
 - (C) H₂S because of hydrogen bonding
 - (D) H₂Se because of lower molecular weight
- 24. The hybridization of atomic orbitals of nitrogen in NO_2^+ , NO_3^- and NH_4^+ are [JEE 2000]
 - (A) sp², sp³ and sp² respectively
 (B) sp, sp² and sp³ respectively
 (C) sp², sp and sp³ respectively
 (D) sp², sp³ and sp respectively
- 25. The correct order of hybridization of the central atom in the following species NH_3 , $PtCl_4^{-2}$, PCl_5 and BCl₂ is [JEE 2001]
 - (A) dsp^2 , sp^3d , sp^2 and sp^3 (B) sp^3 , dsp^2 , sp^3d , sp^2 (C) dsp^2 , sp^2 , sp^3 , sp^3d (D) dsp^2 , sp^3 , sp^2 , sp^3d

mode06\B0AHA1\Kobb\EEEAdvarced|\Nuture\Chem\Sheet\Quantum number, Periodictable & Chemical bonding\Eng\05_Exercise p

AL	LEN			Cnem	ical Bonaing
26.	Specify hybridizati	on of N and B atoms in a	a 1 : 1 complex of BF_3 a	and NH ₃	[JEE 2002]
	(A) N : tetrahedral	, sp ³ ; B : tetrahedral, sp ³	3		
	(B) N : pyramidal,	sp ³ ; B : pyramidal, sp ³			
	(C) N : pyramidal,	sp^3 ; B : planar, sp^2			
	(D) N : pyramidal,	sp ³ ; B : tetrahedral, sp ³			
27.	The nodal plane in	the π -bond of ethene is l	ocated in		[JEE 2002]
	(A) the molecular p	lane			
	(B) a plane parallel	to the molecular plane			
	(C) a plane perpend	licular to the molecular pl	lane which bisects, the car	bon-carbon σ bo	ond at right angle
	(D) a plane perpend	dicular to the molecular p	plane which contains, the	carbon-carbon l	oond.
28.	Which of the follow	ving are isoelectronic and	isostructural? NO ₃ ⁻ , CO	$P_{3}^{2-}, ClO_{3}^{-}, SO_{3}^{-}$	[JEE 2003]
	(A) NO_3^-, CO_3^{2-}	(B) SO ₃ , NO_3^-	(C) ClO_{3}^{-}, CO_{3}^{2-}	(D) CO_3^{2-}	,SO ₃
29.	Which species has	the maximum number of	of lone pair of electrons	on the central a	atom ?
	1		1		[JEE 2005]
	(A) ClO_3^-	(B) XeF ₄	(C) SF ₄	(D) I_3^{-}	
30.	The percentage of	p-character in the orbit	als forming P–P bonds in	n P_4 is	[JEE 2007]
	(A) 25	(B) 33	(C) 50	(D) 75	
31.	The structure of X	eO ₃ is			[JEE 2007]
	(A) linear	(B) planar	(C) pyramidal	(D) T-shap	bed
32.	Statement-1 : p-H	Iydroxybenzoic acid has	a lower boiling point the	nan o-hydroxyb	enzoic acid.
	because				
	Statement-2 : o-H	lydroxybenzoic acid has	intramolecular hydroge	n bonding.	[JEE 2007]
	(A) Statement-1 is	True, Statement-2 is Tr	ue; Statement-2 is a corre	ect explanation	for Statement-1.
	(B) Statement-1 is T	True, Statement-2 is True;	Statement-2 is NOT a con	rrect explanation	for Statement-1.
ivercise pó5	(C) Statement-1 is	True, Statement-2 is Fa	llse.		
g/Eng/05_E	(D) Statement-1 is	False, Statement-2 is Tr	rue.		
igal 33.	Statement-1 : In v	water, orthoboric acid b	ehaves as a weak monot	basic acid.	
ble & Chen	because				
er, feriodich	Statement-2 : In v	vater, orthoboric acid ac	ets as a proton donor.		[JEE 2007]
	(A) Statement-1 is	True, Statement-2 is Tr	ue; Statement-2 is a corre	ect explanation	for Statement-1.
Sheet/Que	(B) Statement-1 is T	True, Statement-2 is True;	Statement-2 is NOT a con	rrect explanation	for Statement-1.
urture/Chem	(C) Statement-1 is	True, Statement-2 is Fa	llse.		
vanced)/Nu	(D) Statement-1 is	False, Statement-2 is Th	rue.		
(oho')EEE(Ad					
\BOAH-AIN					
nodeUc					
E		•			101

JEE-Chemistry

34.	The nitrogen ox	ide(s) that contain(s) N-N	bond(s) is/are		[JEE 2009]
	(A) N ₂ O	(B) N ₂ O ₃	(C) N ₂ O ₄	(D) N ₂ O ₅	
35.	The species hav	ing pyramidal shape is/are			[JEE 2010]
	(A) SO ₃	(B) BrF_3	(C) $SiO_3^{}$	(D) OSF ₂	
36.	Which ordering	of compounds is according	g to the decreasing order	r of the oxidation sta	te of nitrogen-
	(A) HNO ₃ , NO	, NH ₄ Cl, N ₂	(B) HNO ₃ , NO,	N ₂ , NH ₄ Cl	[JEE 2012]
	(C) HNO ₃ , NH	⁴ Cl, NO, N ₂	(D) NO, HNO ₃ ,	NH ₄ Cl, N ₂	
37.	The shape of X	eO_2F_2 molecule is :			[JEE 2012]
	(A) Trigonal bip	yramidal	(B) Square plana	r	
	(C) tetrahedral		(D) see-saw		
38.	The compound	(s) with TWO lone pairs o	of electrons on the centra	al atom is(are)	[JEE 2016]
	(A) BrF ₅	(B) ClF ₃	(C) XeF ₄	(D) SF ₄	
39.	The crystalline	form of borax has			[JEE 2016]
	(A) Tetranuclea	$r \left[B_4 O_5 (OH)_4\right]^{2-} unit$			
	(B) All boron a	toms in the same plane			
	(C) Equal num	per of sp ² and sp ³ hybridiz	ed boron atoms		
	(D) One termin	al hydroxide per boron ato	om		
40.	The order of th	e oxidation state of the pl	hosphorus atom in H_3PC	O ₂ , H ₃ PO ₄ , H ₃ PO ₃	and $H_4P_2O_6$ is
	(A) $H_3PO_4 > H_3PO_4$	$H_4P_2O_6 > H_3PO_3 > H_3PO_2$			[JEE 2017]
	(B) $H_{3}PO_{3} > H_{3}PO_{3}$	$H_3PO_2 > H_3PO_4 > H_4P_2O_4$	6		
	(C) $H_3PO_2 > H_3$	$H_{3}PO_{3} > H_{4}P_{2}O_{6} > H_{3}PO_{4}$	L		
	(=)				

(D) $H_3PO_4 > H_3PO_2 > H_3PO_3 > H_4P_2O_6$

ANSWERS KEY

EXERCISE # 0-1

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	С	Α	В	Α	В	D	D	А	D	D
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	D	С	В	Α	С	С	А	А	В	С
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	С	С	Α	С	С	С	С	В	В	С
Que.	31	32	33	34			-			
Ans.	D	D	D	С						

EXERCISE # 0-2

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	A, C	A, B	A, B, C	A,B,C,D	B, C	A, C	A, B, C	A, B	A, C	B, C
Que.	11	12	13	14	15	16				
Ans.	B, C, D	A, B, C	B, C, D	B, C, D	A,B,C,D	B, C				

EXERCISE # S-1

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	0	1	0	6	4	3	7 (25%)	3	2	4
Que.	11	12	13	14	15					
Ans.	3	10	3	4	4					

EXERCISE # S-2

Que.	1	2	3	4	5	6	7	8	9	10		
Ans.	В	А	D	С	D	В	В	В	С	А		
Que.		1	1		12							
Ans.	(A)→Q,R	a,S;(B)→Q,	T;(C)→R;(D)→P,T	$(A) \rightarrow P, S (B) \rightarrow P, Q, R, S (C) \rightarrow P, R (D) \rightarrow P, Q$							
Que.			13			14						
Ans.	$(A) \rightarrow$	P,R,S (B) -	\rightarrow P,R (C) -	\rightarrow Q,S (D) -	→Q,S	$(A) \rightarrow P, R, S(B) \rightarrow P, Q, S(C) \rightarrow P, R, S(D) \rightarrow P, Q, S$						
Que.	15	16	17	18	19							
Ans.	В	A	А	С	В							

EXERCISE # JEE-MAIN

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	3	2	1	1	4	3	3	1	4	2
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	4	4	4	2	BONUS	3	3	3	4	1
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	3	3	2	4	1	3	2	3	2	1
Que.	31	32	33	34	35	36	37	38	39	40
Ans.	3	2	2	1	2	2	2	4	4	1
Que.	41	42	43	44						
Ans.	4	3	1	4						

EXERCISE # JEE-ADVANCED

- 1. Ans. 4
- 2. Ans. 0
- 3. Ans. 5
- 4. Ans. 6
- 5. Ans. 6

Que.	6	7	8	9	10	11	12	13	14	15
Ans.	B, C, D	С	А	A, B, D	С	В	С	В	С	А
Que.	16	17	18	19	20	21	22	23	24	25
Ans.	В	A,B,C	В	D	А	В	Α	А	В	В
Que.	26	27	28	29	30	31	32	33	34	35
Ans.	Α	А	А	D	D	С	D	С	A,B,C or A,C	D
Que.	36	37	38	39	40					
Ans.	В	D	B,C	A,C,D	Α					

ANSWER OF HYDROGEN BONDING

1.

Structure of boric acid; the dotted lines represent hydrogen bonds

ALLEN

Chemical Bonding

ALLEN

- 2. Inter molecular H-Bonding in case of para nitro phenol is strong enough to increase boiling point which is not favoured in o-Nitro phenol.
- **3.** Maleic acid anion gets stabilize due to intra molecular H-bonding which is not possible in anion of Fumaric acid. So H⁺ releasing tendency is more in case of maleic acid

4. Due to strong H-Bonding in H–F

- 5. Due to H-Bonding in NH_{3} .
- 6. Density of ice is higher than that of water due to cage like structure of ice volume of ice increases and density decreases.
- 7. On heating ice in temperature range 0-4°C H-bonds of ice break down, which decreases volume, hence density of H₂O increases. On heating ice after 4°C thermal vibrations of H₂O molecules increases which increases effective volume of ice, so density of ice again decreases.
- 8. H-I bond is weak as compare to H-F so it can be dissociated easily and can give H^+ easily.
- 9. The organic matter in wood participate in H-bonding with water molecules in ice-cream.

10.
$$K^{+}[F-H\cdots F^{-}]$$
 But $KHBr_2 \& KHI_2$ can't form H-Bond.
H-bonding

11. In o-Nitrophenol intra molecular H-bond is present which decreases it's solubility in water.

Ortho Nitro-phenol

- **12.** In o-hydroxy benzeldehyde intramolecular H-bond is present which is less stronger than intermolecular H-bond in p-hydroxy benzeldehyde.
- 13. Extent of H-bonding in glycerol is more as compare to ethanol so it is more viscous.
- **14.** Due to H-bonding in H₂O

ode0 \B0AH-A1\Koto\TEE[Advarced]\Nurture\Chem\Shee\Quantum rumber, Periodictable & Chemical bonding\Eng\05_Eversise.p65

15. Due to H-bonding in acetic acid it forms dimer so overall molecular weight is just double of original

Dimer of CH₃COOH

- **16.** Due to bigger size of 'Cl' atom it's interaction is not enough to evolve the aomount of energy which lies in the range of H-bond.
- 17. $(AcOH)_n \xrightarrow{\text{on vapour}} \frac{n}{2} (AcOH)_2$

} Not completely converted

But in $(H_2O)_n \xrightarrow{\text{on vapour}} n(H_2O)$

Here all H₂O molecule gets vapourised. So entropy change is more

18. As extent of H-bond is more in H_2O as compare to HF, heat of vaporisation of water is higher than HF.
