CBSE Board Class 10 Chapter 4- Quadratic Equations Objective Questions

Introduction to Quadratic Equations

1. What is the degree of a quadratic equation?

(A) 0 (B) 2

(C) 3

(D) 1

Answer: (B) 2

Solution: The standard form of quadratic equation is $ax^2 + bx + c = 0$, $a \neq 0$. So the degree of a quadratic equation is 2

2. Find the sum of the roots of the equation $x^2-8x+2=0$

- (A) 8
- (B) -8
- (C) 2
- (D) -6

Answer: (A) 8

Solution: For general quadratic equation $ax^2+bx+c=0$. Sum of the roots=-b/a For $x^2-8x+2=0$ Sum of the roots = - (-8/1) =8

Sum of the roots of the equation is 8

3. Which of the following is not quadratic equation?

(A) $x(2x + 3) = x^2 + 1$ (B) x(x + 1) + 8 = (x + 2) (x - 2)(C) $(x+2)^3 = x^3 - 4$ (D) $(x-2)^2 + 1 = 2x - 3$

Answer: (B) x(x + 1) + 8 = (x + 2) (x - 2)

Solution: (a) $(x-2)^2 + 1 = (2x - 3)$

$$x^{2} - 4x + 4 + 1 = 2x - 3$$
$$x^{2} - 4x + 4 + 1 - 2x + 3 = 0$$
$$x^{2} - 6x + 8 = 0$$

This is a quadratic equation.

(b)
$$(x+2)^3 = x^3 - 4$$

 $x^3 + 6x^2 + 12x + 8 = x^3 - 4$
 $6x^2 + 12x + 12 = 0$

This is a quadratic equation.

(c)
$$x(2x + 3) = x^{2} + 1$$

 $2x^{2} + 3x = x^{2} + 1$
 $x^{2} + 3x - 1 = 0$

This is a quadratic equation.

(d)
$$x(x + 1) + 8 = (x + 2) (x - 2)$$

 $x^{2} + x + 8 = x^{2} - 4$
 $x+12 = 0$

This is not a Quadratic equation.

- **4.** If the sum of the roots of a quadratic equation is 5 and the product of the roots is also 5, then the equation is
 - (A) x²+10x+5=0
 (B) x²-5x+5=0
 (C) x²+5x-5=0
 (D) x²-5x+10=0

Answer: (B) x²-5x+5=0

Solution: For a quadratic equation ax2+bx+c=0,

sum of roots = -ba product of roots = ca. sum of roots =5 = -ba product of roots = 5 = ca,

Thus, quadratic equation is $x^2-5x+5=0$

- **5.** A rectangular field has an area of 3 sq. units. The length is one more than twice the breadth 'x'. Frame an equation to represent this.
- (A) $x^2 2x+6=0$ (B) $x^2 - 2x+3=0$ (C) $2x^2+x-3=0$ (D) $2x^2+x-6=0$

Answer: (C) 2x²+x-3=0

Solution: Area of rectangle = length×breadth

Given, length = (2×breadth + 1)

Let the breadth of the field be x.

Length of the field = 2x+1

Area of the rectangular field = x (2x+1) = 3

 $2x^{2}+x=3$

$$2x^{2}+x-3=0$$

Solving QE by factorisation

- **6.** The roots of the quadratic equation $x^2+5x-14=0$ is
- (A) 2, 7
 (B) -2, 7
 (C) -2, -7
 (D) 2, -7

Answer: (D) 2, -7

Solutions: x²+5x-14=0

We need to split the coefficient of x such that the sum

of the factors is 5 and their product is -14.

So we will find the coefficient as 7 and -2.

The sum of 7 and -2 is 5 and product is -14.

So now re-write the equation

x²+7x-2x-14=0

Taking common terms out

x(x+7)-2(x+7) = 0

Again taking out the common terms

(x-2)(x+7)=0

Now equate the factors to zero to find the roots.

So the roots of the equation are 2,-7

- **7.** Factorize x² +5x+6 =0
- (A) (x-1)(x-3)
- (B) (x+1)(x+3)
- (C) (x-2)(x-3)
- (D) (x+2)(x+3)

Answer: (D) (x+2) (x+3)

Solution: Comparing $x^2 +5x+6 = 0$ to $ax^2 + bx + c = 0$, we have a=1, b=5 and c=6Now, we need to find two numbers whose product is 6 and whose sum is 5 Pairs of numbers whose product is 6

1, 6

-1,-6

2, 3

-2,-3

Of these pairs, the pair that gives the sum 5 is the third pair

Identifying the pair, we rewrite the given quadratic equation as

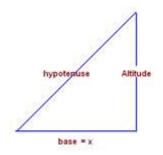
$$x^{2}$$
 +5x+6= x^{2} +2x+3x+6 = $x(x+2)$ +3(x+2)

$$= (x+2) (x+3)$$

- **8.** The altitude of a right triangle is 7 cm less than its base. If the hypotenuse is 13 cm, find the other two sides (in cm).
- (A) 12, 5
- (B) 7,2
- (C) 5,3
- (D) 2,5

Answer: (A) 12, 5

Solutions:



Let the base = x cm

Given that the altitude of a right triangle is 7 cm less than its base

Altitude is = x - 7 cm

Given that hypotenuse = 13cm

Applying Pythagoras theorem,

base²+ altitude² = hypotenuse²

Substituting the values, we get

$$\Rightarrow x^{2} + (x-7)^{2} = 13^{2}$$

$$\Rightarrow x^{2} + x^{2} + 49 - 14x = 169$$

$$\Rightarrow 2x^{2} - 14x + 49 - 169 = 0$$

$$\Rightarrow 2x^{2} - 14x - 120 = 0$$

Dividing with 2 on both sides the above equation simplifies to

$$\Rightarrow x^{2} - 7 x - 60 = 0$$

$$\Rightarrow x^{2} - 12 x + 5 x - 60 = 0$$

$$\Rightarrow x (x - 12) + 5 (x - 12) = 0$$

$$\Rightarrow (x - 12) (x + 5) = 0$$

$$\Rightarrow x - 12 = 0 \text{ or } x + 5 = 0$$

$$\Rightarrow x = 12 \text{ or } x = -5$$

Length cannot be negative so x cannot be equal to - 5

base x = 12cm; altitude = 12 - 7 = 5cm

- **9.** If a train travelled 5 km/hr faster, it would take one hour less to travel 210 km. The speed of the train is :
- (A) 60 km/hr
- (B) 70 km/hr
- (C) 35 km/hr
- (D) 30 km/hr

Answer: (D) 30 km/hr

Solution: Let the speed of the train be x km/hr. Distance travelled = 210 km

Time taken to travel 210 km = 210/x hours

When the speed is increased by 5 km/h, the new speed is (x+5)

Time taken to travel 210 km with the new speed is 210 / (x+5) hours

```
According to the question,

210/x-210/(x+5)=1

\Rightarrow 210(x+5)-210x=x(x+5)

\Rightarrow 210x+1050-210x=x^{2}+5x

\Rightarrow x^{2}+5x-1050=0

\Rightarrow (x+35)(x-30)=0

\Rightarrow x=-35, 30
```

The speed cannot be negative. Thus, the speed of the train is 30 km/hr

- **10.** If the solutions of the equation $x^2+3x-18=0$ are -6, 3 then the roots of the equation $2(x^2+3x-18)=0$ are
- (A) 3, 3
 (B) -6, 3
 (C) -12, 6
 (D) -6, 6

Answer: (B) -6, 3

Solution: The roots of a quadratic equation do not change when it is multiplied by a constant non-zero real number. So when the equation $x^2+3x-18=0$ is multiplied by 2, the roots still remain the same i.e. -6, 3.

Solving QE by completing square

11. The square of (5x + 1) is equal to 16. What isx?

(A) x = 4, ¼
(B) x =- 1,3/5
(C) x = 1,3/2
(D) x= -1, 4/5

Answer: (B) x =- 1, 3/5

Solution: Converting statement into an equation-

 $\Rightarrow (5x+1)^2 = 16 \text{ (Applying (a+b)}^2 \text{ formula)}$ $\Rightarrow 5x + 1 = \pm 4 \text{(Taking square root on both sides)}$ $\Rightarrow 5x = -5, 3$ $\Rightarrow x=-1, 3/5$

- **12.** Using the method of completion of squares find one of the roots of the equation $2x^2-7x+3=0$. Also, find the equation obtained after completion of the square.
- (A) 6, (x-7/4)²-25/16=0
- (B) 3, (x-7/4)²-25/16=0
- (C) 3, (x-7/2)²-25/16=0
- (D) 13, (x-7/2)²-25/16=0

Answer: (B) 3, $(x-7/4)^2-25/16=0$

Solution: $2x^2-7x+3=0$ Dividing by the coefficient of x^2 , we get $x^2-7/2x+3/2=0$; a=1, b=7/2, c=3/2 We get, $[x^2-2(7/4)x+(7/4)^2] - (7/4)^2+3/2=0$

The equation after completing the square is: $(x-7/4)^2-25/16=0$

Taking square root, $(x-7/4) = (\pm 5/4)$ Taking positive sign 5/4, x=3 Taking negative sign -5/4, x=1/2

13. Find the roots of the equation $5x^2-6x-2=0$ by the method of completing the square.

(A) x=3
(B) x=(5± √19)/3
(C) x= (3± √19)/5
(D) x=5

Answer: (C) x= (3± √19)/ 5

Solution: Multiplying the equation throughout by 5, we get $25x^2-30x-10=0$ This is the same as: $(5x)^2-[2\times (5x)\times 3] + 3^2-3^2-10=0$ $\Rightarrow (5x-3)^2-9-10=0$ $\Rightarrow (5x-3)^2-19=0$ $\Rightarrow (5x-3)^2=19$ $\Rightarrow 5x-3=\pm \sqrt{19}$

⇒x= (3± √19)/ 5

- **14.** There is a natural number x. Write down the expression for the product of x and its next natural number.
- (A) $2x^2+1$ (B) x^2-x (C) x^2+x (D) (x + 1)(x+2)

Answer: (C) x²+ x

Solution: If a natural number is x, the next natural number is greater than x by 1 and hence x+1. For eg. For 3, next natural number is 4. The product of the 2 numbers is $x(x+1) = x^2 + x$

15. What number should be added to x^2+6x to make it a perfect square?

(A) 36 (B) 18 (C) 9 (D) 72

Answer: (C) 9

Solution: The identity $(a+b)^2 = (a^2+2ab+b^2)$ represents a perfect square. If we observe carefully we can see that x^2+6x can be written in the form of $(a^2+2ab+b^2)$ by adding a constant. $x^2+2(x)$ (3) +constant. To make x^2+6x a perfect square, divide the co efficient of x by 2 and then add the square of the result to make this a perfect square. Hence, 6/2=3 and $3^2 = 9$

We should add 9 to make x^2+6x a perfect square.

Solving QE using quadratic formula

16. The equation $x^2+4x+c=0$ has real roots, then

(A) $C \ge 6$ (B) $C \le 8$ (C) $C \le 4$ (D) $C \ge 4$

Answer: (C) $C \le 4$

Solution: Step 1:- For, x²+4x+c=0, value of discriminant D=4²-4c=16-4c

Step 2:- The roots of quadratic equation are real only when $D \ge 0$

16–4c ≥ 0

Step 3:- c ≤ 4

- **17.** Find the discriminant of the quadratic equation $3x^2-5x+2=0$ and hence, find the nature of the roots.
 - (A) -1, no real roots
 - (B) 1, two equal roots
 - (C) -1, two distinct real roots
 - (D) 1, two distinct real roots

Answer: (D) 1, two distinct real roots

Solution: $D = b^2 - 4ac = (-5)^2 - 4 \times 3 \times 2 = 1 > 0$

 $D = 1 > 0 \Rightarrow$ Two distinct real roots.

18. Taylor purchased a rectangular plot of area 634 m². The length of the plot is 2 m more than thrice its breadth. Find the length and breadth (approximate values).

(A) 34.6 m & 11.20 m
(B) 44.6 m & 14.20 m
(C) 32 m & 16 m
(D) 88 m & 24 m

Answer: (B) 44.6 m & 14.20 m

Solution: Let x and y be the length and breadth of the rectangle respectively. Given, x=2+3y Area of the rectangle=length × breadth

=xy ⇒634= (2+3y) y ⇒634=2y+3y² So, 3y²+2y-634=0

The roots of the above quadratic equation will be

$$y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$y = \frac{-2 \pm \sqrt{2^2 - 4(3)(-634)}}{2(3)}$$

$$\Rightarrow \qquad y = \frac{-2 \pm \sqrt{4 + 7608}}{6}$$

$$\Rightarrow \qquad y = \frac{-2 \pm \sqrt{7612}}{6}$$

$$\Rightarrow \qquad y = \frac{-2 \pm 87.246}{6}$$

$$\Rightarrow \qquad y = \frac{-2 \pm 87.246}{6}$$

$$\Rightarrow \qquad y = \frac{-2 - 87.246}{6}$$

$$\Rightarrow \qquad y = \frac{-2 - 87.246}{6}$$

$$\Rightarrow \qquad y = 14.20 \text{ or}$$

$$y = -14.87$$
Considering positive value for breadth, we have y=14.20.
Using x=2+3y, we have

x=2+3(14.20) =44.6

Now, we have x=44.6 and y=14.20 (approximately).

19. If the equation $x^2+2(k+2) x+9k=0$ has equal roots, then values of k are

(A) 1,4 (B) -1,5 (C) -1,-4 (D) 1,-5

Answer: (A) 1, 4

Solution: Step 1:- For, $x^2+2(k+2) x+9k=0$, value of discriminant D= $[2(k+2)]^2-4(9k) = 4(K^2+4-5k)$

Step 2:- The roots of quadratic equation are real and equal only when D=0 $k^{2}+4-5k=0$ $\Rightarrow k^{2}-5k+4=0$ $\Rightarrow k^{2}-k-4k+4=0$ $\Rightarrow k(k-1)-4(k-1)=0$ $\Rightarrow (k-1)(k-4)=0$

Step 3:- k=4 or 1

20. Find the roots of the $3x^2 - 5x + 2 = 0$ quadratic equation, using the quadratic formula.

(A) (7±1)/6
(B) (4±1)/6
(C) (5±2)/6
(D) (5±1)/6

Answer: (D) (5±1)/6

Solution: Quadratic equation of the form $ax^2 + bx + c = 0$

The roots of the above quadratic equation will

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

be

a=3, b= -5 and c=2

$$x = \frac{-(5) \pm \sqrt{(-5)^2 - 4 \times 3 \times 2}}{2 \times 3}$$
$$x = \frac{(5) \pm \sqrt{25 - 24}}{6} \qquad = \frac{5 \pm 1}{6}$$

$$x = \frac{5+1}{6}, \frac{5-1}{6} = 1, \frac{2}{3}$$