Experiment - 15 : Refractive index of a glass slab using a travelling microscope

Real and Apparent Thickness of a Glass Slab

Diagram shows a section ABCD of a glass slab taken by a horizontal plane. The slab has thickness t.

Description: P is a point marked at the bottom of the slab. A ray of light PQ from P is incident at the top at the point Q at an angle of incidence i and refracts along QR at an angle r. It appears to come from P_1 .

P₁ is the virtual image of real object P formed on normal PSN.

PS is the real thickness of the slab.

P₁S is the apparent thickness of the slab.

Calculation

In \triangle SPQ, \angle SPQ = i (being alternate angle of i)

$$\sin i = \frac{SQ}{PQ}$$

In Δ SP1Q, \angle SP1Q = r (being corresponding angle of r)

$$\therefore \quad \sin r = \frac{SQ}{P_1Q}$$

From Snell's law, for light going from glass to air

$${}_{g}\mu_{a} = \frac{\sin i}{\sin r} = \frac{SQ / PQ}{SQ / P_{1}Q} = \frac{P_{1}Q}{PQ}$$
$${}_{o}\rho_{a}\mu_{g} = \frac{1}{{}_{g}\mu_{a}} = \frac{PQ}{P_{1}Q}$$

For a ray received normally along PSN, Q is very close to S.

Then PQ = PS and $P_1Q = P_1S$

and
$$_{a}\mu_{g} = \frac{PS}{P_{1}S} = \frac{\text{Real thickness}}{\text{Apparent thickness}}$$

 $_{a}\mu_{g} = \frac{\text{Real thickness of slab}}{\text{Apparent thickness of slab}}$

To determine refractive index of a glass slab, using a travelling microscope, the required apparatus is three glass slabs of different thickness but same material, a travelling microscope, lycopodium powder.

A Short Description of Travelling Microscope

It is a compound microscope fitted vertically on a vertical scale. It can be moved up and down, carrying a vernier scale moving along the main scale. In any position, the reading is taken by combining main scale and vernier scale reading.

We mark a cross (P) on a board and measure its distance as shown in fig. (a) with the travelling microscope. Then the glass-slab is placed over the cross. Now, the cross appears at (P₁) and its distance is measured using the travelling microscope.

Finally, we put some lycopodium powder(S) on top of the slab and measure its distance using the travelling microscope.

PS = Real Thickness of slab and $P_1S = \text{Apparent thickness of slab}$ Thus refractive index can be found as $\mu = \frac{\text{Real thickness of slab}}{\text{Apparent thickness of slab}} = \frac{PS}{P_1S}.$

MCQs Corner

Experiment – 15

66. A bird in air looks at a fish vertically below it and inside water; h_1 is the height of the bird above the surface of water and h_2 , the depth of the fish below the surface of water. If refractive index of water with respect to air be μ , then the distance of the fish observed by the bird is

(a) $h_1 + h_2$ (b) $h_1 + h_2/\mu$ (c) $\mu h_1 + h_2$ (d) $\mu h_1 + \mu h_2$

67. To determine refractive index of glass slab using a travelling microscope, minimum number of readings required are

(a) Two (b) Four (c) Three (d) Five

68. An experiment is performed to find the refractive index of glass using a travelling microscope. In this experiment distances are measured by

(a) a screw gauge provided on the microscope

(b) a vernier scale provided on the microscope

(c) a standard laboratory scale

(d) a meter scale provided on the microscope.

69. A plane mirror is placed at the bottom of a tank containing a liquid of refractive index μ . P is a small object at a height h above the mirror. An observer O, vertically above P, outside the liquid sees P and its image in the mirror. The apparent distance between these two will be

(a) $2 \mu/h$ (b) $2 h/\mu$ (c) $2 h/(\mu - 1)$ (d) $h[1 + (1/\mu)]$

70. A vessel contains a slab of glass 8 cm thick and refractive index 1.6. Over the slab, the vessel is filled by oil of refractive index μ upto a height 4.5 cm and also by another liquid i.e., water of refractive index 4/3 upto a height 6 cm as shown in figure. An observer looking down from above, observes that, a mark at the bottom of the glass slab appears to be raised upto position 6 cm from the bottom of the slab. The refractive index of oil (μ) is

71. Monochromatic light of wavelength λ_1 travelling in a medium of refractive index n_1 enters a denser medium of refractive index n_2 . The wavelength in the second medium is

(a)	$\lambda_1\left(rac{n_1}{n_2} ight)$	(b)	$\lambda_1\left(\frac{n_2}{n_1}\right)$
(c)	$\frac{\lambda_1(n_2-n_1)}{n_2}$	(d)	$\frac{\lambda_1(n_2-n_1)}{n_1}$

Answer Key

	66. (b)	67. (c)	68. (b)	69. (b)	70. (a)	71. (a)
--	---------	---------	---------	---------	---------	---------

Hints & Explanation

66. (b) : Apparent position of fish as seen by bird is $= h_1 + \left(\frac{h_2}{\mu}\right)$.

67. (c)

68. (b) : A travelling microscope moves horizontally on a main scale provided with a vernier scale, provided with the microscope.

69. (**b**) : The image of *P* will be formed at a distance *h* below the mirror. Apparent depth of $P = x_1 = \frac{(d-h)}{\mu}$ Apparent depth of the image of $P = x_2 = \frac{(d+h)}{\mu}$

Apparent distance between *P* and its image = $x_2 - x_1 = \frac{2h}{\mu}$.

70. (a) : The total shift (OI) is given byOI = shift due to glass + shift due to oil + shift due to water

$$\therefore 6 = 8\left(1 - \frac{1}{1.6}\right) + 4.5\left(1 - \frac{1}{\mu}\right) + 6\left(1 - \frac{1}{\frac{4}{3}}\right)$$

or $6 = \frac{8 \times 0.6}{1.6} + \left(4.5 - \frac{4.5}{\mu}\right) + \frac{6 \times 1}{4}$
or $\frac{4.5}{\mu} = 3 + 4.5 + 1.5 - 6 = 3 \text{ or } \mu = \frac{4.5}{3} = 1.5.$
71. (a) : $\lambda_a = \frac{c}{\nu}$ or $\lambda_m = \frac{\nu}{\nu} = \frac{c}{\mu_m \nu}$
 $\therefore \lambda_1 = \frac{c}{n_1 \nu}$ and $\lambda_2 = \frac{c}{n_2 \nu}$

or $\lambda_1 n_1 = \lambda_2 n_2$ and $\lambda_2 = \lambda_1 \left(\frac{n_1}{n_2} \right)$