
67

Learning Objectives

 Aft er studying this lesson, students will be able to:

• To gain knowledge on the various fl ow of control in Python language.

• To learn through the syntax how to use conditional construct to improve the effi ciency of
the program fl ow.

• To apply iteration structures to develop code to repeat the program segment for specifi c
number of times or till the condition is satisfi ed.

Introduction6.1

 Programs may contain set of statements. Th ese statements are the executable segments
that yield the result. In general, statements are executed sequentially, that is the statements
are executed one aft er another. Th ere may be situations in our real life programming where
we need to skip a segment or set of statements and execute another segment based on the test
of a condition. Th is is called alternative or branching. Also, we may need to execute a set of
statements multiple times, called iteration or looping. In this chapter we are to focus on the
various control structures in Python, their syntax and learn how to develop the programs
using them.

Control Structures6.2
 A program statement that causes a jump of control from one part of the program to
another is called control structure or control statement. As you have already learnt in C++,
these control statements are compound statements used to alter the control fl ow of the process
or program depending on the state of the process.

Unit II CHAPTER 6

CONTROL STRUCTURES

68XII Std Computer Science Control Structures

	 There are three important control structures

Sequential

Alternative or
Branching

Iterative or Looping

6.2.1 Sequential Statement

	 A sequential statement is composed of a sequence of statements which are executed
one after another. A code to print your name, address and phone number is an example of
sequential statement.

Program to print your name and address - example for sequential statement
print ("Hello! This is Shyam")
print ("43, Second Lane, North Car Street, TN")

Output
Hello! This is Shyam
43, Second Lane, North Car Street, TN

Example 6.1

6.2.2 Alternative or Branching Statement

	 In our day-to-day life we need to take various decisions and choose an alternate path
to achieve our goal. May be we would have taken an alternate route to reach our destination
when we find the usual road by which we travel is blocked. This type of decision making is
what we are to learn through alternative or branching statement. Checking whether the given
number is positive or negative, even or odd can all be done using alternative or branching
statement.

Python provides the following types of alternative or branching statements:

•	 Simple if statement	 •	 if..else statement	 •	 if..elif statement

(i) Simple if statement
	 Simple if is the simplest of all decision making statements. Condition should be in the
form of relational or logical expression.

69XII Std Computer Science Control Structures

Syntax:
	 if <condition>:	
			 statements-block1

In the above syntax if the condition is true statements - block 1 will be executed.

Program to check the age and print whether eligible for voting
x=int (input("Enter your age :"))
if x>=18:
	 print ("You are eligible for voting")

Output 1:
	 Enter your age :34
	 You are eligible for voting

Output 2:
	 Enter your age :16
	 >>>

Example 6.2

	 As you can see in the second execution no output will be printed, only the Python
prompt will be displayed because the program does not check the alternative process when the
condition is failed.

(ii) if..else statement
	 The if .. else statement provides control to check the true block as well as the false
block. Following is the syntax of ‘if..else’ statement.

Syntax:
if <condition>:
	 statements-block 1
else:
	 statements-block 2

70XII Std Computer Science Control Structures

if condition is
true

Statement
block -1

Statement
block -2

Exit

Entry

condition
if condition is

false

Fig. 6.1 if..else statement execution

	 if..else statement thus provides two possibilities and the condition determines which
BLOCK is to be executed.

a = int(input("Enter any number :"))
if a%2==0:
	 print (a, " is an even number")
else:
	 print (a, " is an odd number")

Output 1:
	 Enter any number :56
	 56 is an even number

Output 2:
	 Enter any number :67
	 67 is an odd number

Example 6.3: #Program to check if the accepted number odd or even

	 An alternate method to rewrite the above program is also available in Python. The
complete if..else can also written as:

Syntax:

	 variable = variable1 if condition else variable 2

71XII Std Computer Science Control Structures

	 The condition specified in the if is checked, if it is true, the value of variable1 is
stored in variable on the left side of the assignment, otherwise variable2 is taken as the
value.

Note

a = int (input("Enter any number :"))
x="even" if a%2==0 else "odd"
print (a, " is ",x)

Output 1:
	 Enter any number :3
	 3 is odd

Output 2:
	 Enter any number :22
	 22 is even

Example 6.4: #Program to check if the accepted number is odd or even
(using alternate method of if...else)

(iii) Nested if..elif...else statement:
	 When we need to construct a chain of if statement(s) then ‘elif ’ clause can be used
instead of ‘else’.

Syntax:
if <condition-1>:
	 statements-block 1
elif <condition-2>:
	 statements-block 2
else:
	 statements-block n

	 In the syntax of if..elif..else mentioned above, condition-1 is tested if it is true then
statements-block1 is executed, otherwise the control checks condition-2, if it is true statements-
block2 is executed and even if it fails statements-block n mentioned in else part is executed.

72XII Std Computer Science Control Structures

Test
Expression

of if

Test
Expression

of elifBody of if

Body of elif
Body of else

false

false
True

True

Fig 6.2 if..elif..else statement execution

	 ‘elif ’ clause combines if..else-if..else statements to one if..elif…else. ‘elif ’ can be
considered to be abbreviation of ‘else if ’. In an ‘if ’ statement there is no limit of ‘elif ’ clause
that can be used, but an ‘else’ clause if used should be placed at the end.

if..elif..else statement is similar to nested if statement which you have learnt in C++.

Note

73XII Std Computer Science Control Structures

Average Grade
>=80 and above A
>=70 and <80 B
>=60 and <70 C
>=50 and <60 D
Otherwise E

m1=int (input(“Enter mark in first subject : ”))
m2=int (input(“Enter mark in second subject : ”))
avg= (m1+m2)/2
if avg>=80:
	 print (“Grade : A”)
elif avg>=70 and avg<80:
	 print (“Grade : B”)
elif avg>=60 and avg<70:
	 print (“Grade : C”)
elif avg>=50 and avg<60:
	 print (“Grade : D”)
else:
	 print (“Grade : E”)

Output 1:
	 Enter mark in first subject : 34
	 Enter mark in second subject : 78
	 Grade : D

Output 2 :
	 Enter mark in first subject : 67
	 Enter mark in second subject : 73
	 Grade : B

Example 6.5: #Program to illustrate the use of nested if statement

	 The two blocks of code in our example of if-statement are both indented four
spaces, which is a typical amount of indentation for Python. In most other programming
languages, indentation is used only to help make the code look pretty. But in Python, it
is required to indicate to which block of code the statement belongs to.

Note

74XII Std Computer Science Control Structures

ch=input (“Enter a character :”)
to check if the letter is vowel
if ch in (‘a’, ‘A’, ‘e’, ‘E’, ‘i’, ‘I’, ‘o’, ‘O’, ‘u’, ‘U’):
	 print (ch,’ is a vowel’)
to check if the letter typed is not ‘a’ or ‘b’ or ‘c’
if ch not in (‘a’, ’b’, ’c’):
	 print (ch,’ the letter is not a/b/c’)

Output 1:
	 Enter a character :e
	 e is a vowel

Output 2:
	 Enter a character :x
	 x the letter is not a/b/c

Example 6.5a: #Program to illustrate the use of ‘in’ and ‘not in’ in if statement

6.2.3. Iteration or Looping constructs

	 Iteration or loop are used in situation when the user need to execute a block of code
several of times or till the condition is satisfied. A loop statement allows to execute a statement
or group of statements multiple times.

Condition

Statement 1

Statement 2

...
Statementn

Further
Statements
of Program

else
Statement 1

Statement 2

...
Statementn

False

True

Fig 6.3 Diagram to illustrate how looping construct gets executed

Python provides two types of looping constructs:
•	 while loop
•	 for loop

75XII Std Computer Science Control Structures

(i) while loop
	 The syntax of while loop in Python has the following syntax:

Syntax:
while <condition>:
	 statements block 1
[else:
	 statements block2]

Condition

Conditional Code

while Expression:
Statement (s)

if conditions is true

if condition is
false

Fig 6.4 while loop execution
	 In the while loop, the condition is any valid Boolean expression returning True or
False. The else part of while is optional part of while. The statements block1 is kept executed
till the condition is True. If the else part is written, it is executed when the condition is tested
False. Recall while loop belongs to entry check loop type, that is it is not executed even once if
the condition is tested False in the beginning.

i=10 # intializing part of the control variable
while (i<=15): # test condition
 print (i,end='\t') # statements - block 1
 i=i+1 # Updation of the control variable

Output:
	 10 11 12 13 14 15

Example 6.6: program to illustrate the use of while loop - to print all numbers
from 10 to 15

76XII Std Computer Science Control Structures

	 That the control variable is i, which is initialized to 10, the condition is tested
i<=15, if true value of i gets printed, then the control variable i gets updated as i=i+1 (this
can also be written as i +=1 using shorthand assignment operator). When i becomes 16,
the condition is tested False and this will terminate the loop.

Note

print can have end, sep as parameters. end parameter can be used when we need to give
any escape sequences like ‘\t’ for tab, ‘\n’ for new line and so on. sep as parameter can be
used to specify any special characters like, (comma) ; (semicolon) as separator between
values (Recall the concept which you have learnt in previous chapter about the formatting
options in print()).

Note

Following is an example for using else part within while loop.

i=10 # intializing part of the control variable
while (i<=15): # test condition
 print (i,end='\t') # statements - block 1
 i=i+1 # Updation of the control variable
else:
 print ("\nValue of i when the loop exit ",i)

Output: 1
	 10 11 12 13 14 15
	 Value of i when the loop exit 16

Example 6.7: program to illustrate the use of while loop - with else part

(ii) for loop
	 for loop is the most comfortable loop. It is also an entry check loop. The condition is
checked in the beginning and the body of the loop(statements-block 1) is executed if it is only
True otherwise the loop is not executed.

Syntax:
for counter_variable in sequence:
	 statements-block 1
[else:			 # optional block
	 statements-block 2]

	 The counter_variable mentioned in the syntax is similar to the control variable that we

77XII Std Computer Science Control Structures

used in the for loop of C++ and the sequence refers to the initial, final and increment value.
Usually in Python, for loop uses the range() function in the sequence to specify the initial, final
and increment values. range() generates a list of values starting from start till stop-1.

The syntax of range() is as follows:

range (start,stop,[step])

Where,

start	 –	 refers to the initial value

stop	 –	 refers to the final value

step	 –	 refers to increment value, this is optional part.

range (1,30,1) will start the range of values from 1 and end at 29
range (2,30,2) will start the range of values from 2 and end at 28
range (30,3,-3) - will start the range of values from 30 and end at 6
range (20) will consider this value 20 as the end value(or upper limit) and starts the

range count from 0 to 19 (remember always range() will work till stop -1
value only)

Example 6.8: Examples for range()

Last item
reached?

Body of for

Exit loop

for each item
in sequence

Yes

No

Fig 6.5 for loop execution

78XII Std Computer Science Control Structures

for i in range (2,10,2):
	 print (i, end=' ')

Output:
2 4 6 8

Example 6.9: #program to illustrate the use of for loop - to print single
digit even number

Following is an illustration using else part in for loop

for i in range(2,10,2):
	 print (i,end=' ')
else:
	 print ("\nEnd of the loop")

Output:
	 2 4 6 8
	 End of the loop

Example 6.10 : #program to illustrate the use of for loop - to print single
digit even number with else part

In Python, indentation is important in loop and other control statements. Indentation
only creates blocks and sub-blocks like how we create blocks within a set of { } in languages
like C, C++ etc.

Note

	 Here is another program which illustrates the use of range() to find the sum of numbers
1 to 100

n = 100
sum = 0
for counter in range(1,n+1):
	 sum = sum + counter
print("Sum of 1 until %d: %d" % (n,sum))
Output:
	 Sum of 1 until 100: 5050
	 In the above code, n is initialized to 100, sum is initialized to 0, the for loop
starts executing from 1, for every iteration the value of sum is added with the value
of counter variable and stored in sum. Note that the for loop will iterate from 1 till
the upper limit -1 (ie. Value of n is set as 100, so this loop will iterate for values from
1 to 99 only, that is the reason why we have set the upper limit as n+1)

Example 6.11: # program to calculate the sum of numbers 1 to 100

79XII Std Computer Science Control Structures

	 range () can also take values from string, list, dictionary etc. which will be dealt
in the later chapters.

Note

Following is an example to illustrate the use of string in range()

for word in 'Computer':
	 print (word,end=' ')
else:
	 print ("\nEnd of the loop")

Output
	 C o m p u t e r
	 End of the loop

Example 6.12: program to illustrate the use of string in range() of for loop

(iii) Nested loop structure
	 A loop placed within another loop is called as nested loop structure. One can place a
while within another while; for within another for; for within while and while within for to
construct such nested loops.

Following is an example to illustrate the use of for loop to print the following pattern

	 1
	 1	 2
	 1	 2	 3
	 1	 2	 3	 4
	 1	 2	 3	 4	 5

i=1
while (i<=6):
	 for j in range (1,i):
		 print (j,end='\t')
	 print (end='\n')
	 i +=1

Example 6.13: program to illustrate the use nested loop -for within while loop

80XII Std Computer Science Control Structures

Output:
	 1
	 1	 2
	 1	 2	 3
	 1	 2	 3	 4
	 1	 2	 3	 4	 5

6.2.4 Jump Statements in Python
	 The jump statement in Python, is used to unconditionally transfer the control from one
part of the program to another. There are three keywords to achieve jump statements in Python
: break, continue, pass. The following flowchart illustrates the use of break and continue.

Condition

Further
Statements
of Program

else
Statement 1

Statement 2

...
Statementn

False

True

Statement 1

...
break

...
continue

...
Statementn

Fig 6.6 Use of break, continue statement in loop structure

(i) break statement
	 The break statement terminates the loop containing it. Control of the program flows to
the statement immediately after the body of the loop.

	 A while or for loop will iterate till the condition is tested false, but one can even transfer
the control out of the loop (terminate) with help of break statement. When the break statement
is executed, the control flow of the program comes out of the loop and starts executing the
segment of code after the loop structure.

	 If break statement is inside a nested loop (loop inside another loop), break will
terminate the innermost loop.

81XII Std Computer Science Control Structures

Syntax:
	 break

Condition

break?

no

Enter loop

false

true

yes

Exit loop

Remaining body of loop

Fig 6.7 Working of break statement

	 The working of break statement in for loop and while loop is shown below.

for var in sequence:
	 if condition:
		 break
		 #code inside for loop
#code outside for loop
while test expression:
	 #code inside while loop
	 if condition:
		 break
	 #code inside while loop
#code outside while loop

82XII Std Computer Science Control Structures

for word in “Jump Statement”:
	 if word = = “e”:
		 break
		 print (word, end= ' ')

Output:
	 Jump Stat

Example 6.14: Program to illustrate the use of break statement inside
for loop

	 The above program will repeat the iteration with the given “Jump Statement” as string.
Each letter of the given string sequence is tested till the letter ‘e’ is encountered, when it is
encountered the control is transferred outside the loop block or it terminates. As shown in the
output, it is displayed till the letter ‘e’ is checked after which the loop gets terminated.

	 One has to note an important point here is that ‘if a loop is left by break, the else part
is not executed’. To explain this lets us enhance the previous program with an ‘else’ part and
see what output will be:

for word in “Jump Statement”:
	 if word = = “e”:
		 break
		 print (word, end=”)
else:
		 print (“End of the loop”)
print (“\n End of the program”)

Output:
	 Jump Stat
	 End of the program

Example 6.15: Program to illustrate the use of break statement inside
for loop

	 Note that the break statement has even skipped the ‘else’ part of the loop and has
transferred the control to the next line following the loop block.

(ii) continue statement
	 Continue statement unlike the break statement is used to skip the remaining part of a
loop and start with next iteration.

83XII Std Computer Science Control Structures

Syntax:
	 continue

Test
Expression

of loop

continue?

no

Enter loop

false

true

yes

Exit loop

Remaining body of loop

Fig 6.8 Working of continue statement

	 The working of continue statement in for and while loop is shown below.

for var in sequence:
	 # code inside for loop
	 if condition:
		 continue
		 #code inside for loop
#code outside for loop
while test expression:
	 #code inside while loop
	 if condition:
		 continue
		 #code inside while loop
#code outside while loop

84XII Std Computer Science Control Structures

 for word in “Jump Statement”:
	 if word = = “e”:
		 continue
	 print (word, end = ' ')
print (“\n End of the program”)
Output:
	 Jump Statmnt
	 End of the program

Example 6.16: Program to illustrate the use of continue statement inside
for loop

	 The above program is same as the program we had written for ‘break’ statement except
that we have replaced it with ‘continue’. As you can see in the output except the letter ‘e’ all the
other letters get printed.

(iii) pass statement
	 pass statement in Python programming is a null statement. pass statement when
executed by the interpreter it is completely ignored. Nothing happens when pass is executed,
it results in no operation.

	 pass statement can be used in ‘if ’ clause as well as within loop construct, when you do
not want any statements or commands within that block to be executed.

Syntax:
	 pass

a=int (input(“Enter any number :”))
if (a==0):
	 pass
else:
	 print (“non zero value is accepted”)
Output:
	 Enter any number :3
	 non zero value is accepted
	 When the above code is executed if the input value is 0 (zero)
then no action will be performed, for all the other input values the
output will be as follows:

Example 6.17: Program to illustrate the use of pass statement

85XII Std Computer Science Control Structures

	 pass statement is generally used as a placeholder. When we have a loop or function
that is to be implemented in the future and not now, we cannot develop such functions
or loops with empty body segment because the interpreter would raise an error. So, to
avoid this we can use pass statement to construct a body that does nothing.

Note

for val in “Computer”:
	 pass
print (“End of the loop, loop structure will be built in future”)

Output:
	 End of the loop, loop structure will be built in future.

Example 6.18: Program to illustrate the use of pass statement in for loop

•	 Programs consists of statements which are executed in sequence, to alter the
flow we use control statements.

•	 A program statement that causes a jump of control from one part of the
program to another is called control structure or control statement.

•	 Three types of flow of control are
	 o	 Sequencing
	 o	 Branching or Alternative
	 o	 Iteration
•	 In Python, branching is done using various forms of ‘if ’ structures.
•	 Indentation plays a vital role in Python programming, it is the indentation

that group statements no need to use {}.
•	 Python Interpreter will throw error for all indentation errors.
•	 To accept input at runtime, earlier versions of Python supported raw_input(),

latest versions support input().
•	 print() supports the use of escape sequence to format the output to the user’s

choice.
•	 range() is used to supply a range of values in for loop.
•	 break, continue, pass act as jump statements in Python.
•	 pass statement is a null statement, it is generally used as a place holder.

Points to remember:

86XII Std Computer Science Control Structures

Hands on Experience

1.	 Write a program to check whether the given character is a vowel or not.

2.	 Using if..else..elif statement check smallest of three numbers.

3.	 Write a program to check if a number is Positive, Negative or zero.

4.	 Write a program to display Fibonacci series 0 1 1 2 3 4 5…… (upto n terms)

5.	 Write a program to display sum of natural numbers, upto n.

6.	 Write a program to check if the given number is a palindrome or not.

7.	 Write a program to print the following pattern
	 * * * * *
	 * * * *
	 * * *
	 * *
	 *
8.	 Write a program to check if the year is leap year or not.

Evaluation

Part - I

Choose the best answer	 1 Marks

1.	 How many important control structures are there in Python?

A) 3	 B) 4

C) 5	 D) 6

2.	 elif can be considered to be abbreviation of

A) nested if	 B) if..else

C) else if	 D) if..elif

3.	 What plays a vital role in Python programming?

A) Statements	 B) Control

C) Structure	 D) Indentation

4.	 Which statement is generally used as a placeholder?

A) continue	 B) break

C) pass	 D) goto

87XII Std Computer Science Control Structures

5.	 The condition in the if statement should be in the form of

	 A) Arithmetic or Relational expression

	 B) Arithmetic or Logical expression

	 C) Relational or Logical expression

	 D) Arithmetic

6.	 Which is the most comfortable loop?

A) do..while	 B) while

C) for	 D) if..elif

7.	 What is the output of the following snippet?

	 i=1

	 while True:

		 if i%3 ==0:

			 break

		 print(i,end='')

		 i +=1

A) 12	 B) 123

C) 1234	 D) 124

8.	 What is the output of the following snippet?

	 T=1

	 while T:

		 print(True)

		 break

A) False	 B) True

C) 0	 D) 1

9.	 Which amongst this is not a jump statement ?

A) for	 B) pass

C) continue	 D) break

10.	 Which punctuation should be used in the blank?

	 if <condition>_

		 statements-block 1
	 else:

		 statements-block 2

A) ;	 B) :

C) ::	 D) !

88XII Std Computer Science Control Structures

Part -II

Answer the following questions	 2 Marks
1.	 List the control structures in Python.

2.	 Write note on break statement.
3.	 Write is the syntax of if..else statement

4.	 Define control structure.

5.	 Write note on range () in loop

Part -III

Answer the following questions	 3 Marks

1.	 Write a program to display

	 A

	 A B

	 A B C

	 A B C D

	 A B C D E
2.	 Write note on if..else structure.

3.	 Using if..else..elif statement write a suitable program to display largest of 3 numbers.

4.	 Write the syntax of while loop.

5.	 List the differences between break and continue statements.

Part -IV

Answer the following questions	 5 Marks

1.	 Write a detail note on for loop

2.	 Write a detail note on if..else..elif statement with suitable example.

3.	 Write a program to display all 3 digit odd numbers.

4.	 Write a program to display multiplication table for a given number.

	XII Std - CS EM Introduction Pages
	XII Std - CS EM Chapter-1
	XII Std - CS EM Chapter-2
	XII Std - CS EM Chapter-3
	XII Std - CS EM Chapter-4
	XII Std - CS EM Python Interleaf Page
	XII Std - CS EM Chapter-5
	XII Std - CS EM Chapter-6

