Lewis theory and formal charge

- 1. In ammonium ion, bond in between ammonia molecule and a proton is form by-
 - (A) Complete transfer of electron from NH₃ to H⁺ (B) electrostatic attraction between NH₄⁺ & H⁺
 - (C) equal contribution of electrons by NH₂ & H⁺ (D) One sided sharing of electrons
- 2. The correct structure of CO and NO₂ are-

(A)
$$: C = 0:, 0 = N = 0$$

$$(B)$$
 : $C \triangleq O$:, $\left[O = N - O$: $\right]^{-1}$

(C)
$$: C = 0$$
: $[: 0 = N \rightarrow 0]$

$$(D) : C = O: [C = O: N]$$

(C) : C = O: $[O = N \rightarrow O]$ (D) : C = O: $[O = O \rightarrow N]$ Lewis structure of O_3 is drawn as O: therefore formal charge on oxygen atoms are-**3.**

(B)
$$0, +1, -1$$

$$(C) 0, +1, +1$$

$$(D) -1, +1, -1$$

Paragraph for Q.4 to Q.5

The formal charge of an atom in a polyatomic molecule or ion may be defined as the difference between the number of valence electrons of that atom in an isolated or free state and the number of electrons assigned to that atom in the Lewis structure. It is

expressed as:

Find the formal charge on "O" atom in given structure (I) & (II) respectively: 4.

$$(I) : O - C = N : \qquad (II) : O = C = N :$$

$$(A) -1, -1$$

$$(B) -2, 0$$

$$(C) -1, 0$$

(D)
$$0, -1$$

- 5. Select correct about CO₃²⁻ carbonate ion in one of the lewis structure based on the presence of two single bonds and one double bond between carbon and oxygen atoms:
 - (A) Total number of lone pair = 8
 - (B) Formal charge on two oxygen = -1 and one oxygen = zero
 - (C) Oxidation number of C = +4 & Formal charge on C = zero
 - (D) All are correct
- 6. The Lewis theory does not account for the-
 - (A) cause of bond formation

(B) Shape of molecules

(C) Strength of chemical bond

- Draw the Lewis structure and find Formal charge of each atom: 7.
 - 1. CO
- CO,
- NO₂
- NO_3^-
- CCl₃
- COCl,

- 7. N_3^-
- O_3
- CH₃Cl
- 10. NH_4^+
- 11. NH₂Cl
- 12. OCN-

- 13. CN-
- 14. SCN⁻
- 15. HCN
- 16. HNC
- SiF_{4} 17.
- 18. SnCl₂

	19.	$\mathrm{BF_4}^-$	20.	$\mathrm{BH_4}^-$	21.	$\mathrm{BeF_4}^{2-}$	22.	H_3O^+	23.	SO_3	24.	SO_2	
	25.	CO ₃ ²⁻	26.	NO ₂ Cl	27.	NOCl	28.	F_2O	29.	SO_4^{2-}	30.	PO_4^3	
	31.	SF ₂	32.	CF_{4}	33.	PF_5	34.	PF ₄ +	35.	PCl ₃	36.	PCl ₅	
	37.	SI_2	38.	SF ₆	39.	SO ₄ ²⁻	40.	POCl ₃	41.	ClO ₄ -	42.	OF_2	
	44.	NO_3^-	45.	ClO_4^-	46.	PCl ₄ ⁺	47.	I_3^+	48. C	48. ClO ₃		OCl ₂	
	50.	SnCl ₃ -	51.	HPO ₃ ²⁻	52.	SO ₃ ²⁻	53.	IO ₃ -	54.	XeO ₃	55.	NO ₂	
8.	Which of the following species does not obey octet rule?												
	(A) SiF_4 (B) PCl_5 (9)								(D) I	(D) BF_4			
9.	Hypervalent compound is(are):												
	(A) SO_3 (B) PO_4^{-3}					(((C) SO_4^{-2}			(D) All of these			
10.	The octet rule is not valid for the molecule:												
	$(A) CO_2 \qquad \qquad (B) H_2O$					(((C) SF ₂			(D) Al2(CH3)6			
11.	In w	In which of the excitation state of chlorine ClF ₃ is formed											
	(A) In ground state (B) In triple excited state (C) In single excited state (D) In double excited state												
12. Which of the following configuration shows second excitation state of													
	(A) 11 1 1 1 1						(B) 11 11 11 1						
	(C) 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												
13.	Highest extent of variable covalency is exhibited by.												
	(A) P and S (B) N and O						(C) N and P (D) F and Cl						
14.	Which of the following species are hypervalent?												
	(I) C	(I) ClO_4^- (II) BF_3 (III) SO_4^-				SO_4^{-2}	(IV) CO_3^{-2}						
	$(A) I, II, III \qquad \qquad (B) I, III \qquad (C) III, IV \qquad \qquad (D) I, III, IV$												
15.	Find	the number	of isc	electronic s	pecies	s from th	e followi	ng having	14 elec	trons.			
	Mg^{2+} , Na^+ , N^{3-} , S^{2-} , K^+ , CN^- , N_2 , NO^+ , PH_3 , P^+												
VBT based questions													
16.	A sig	ma bond is f	ormed	by the overla	apping	of							
	(A) s-s orbital alone						(B) s and p orbitals alone						
	(C) s-s, s-p or p-p orbitals along internuclear axis (D) p-p orbital along the sides												
17.	Which overlapping is involved in HCl molecule												
	(A) s	–s overlap		(B) p–p ove	erlap	(0	C) s–d ove	erlap	(D) s	-p overlap			
18.	Which of the following bonds will have directional character												
	(A) Ionic bond (B) Metallic bond						(C) Covalent bond (D) Both covalent & metallic					tallic	
19.	Which of the following compound is formed in the second excitation state of sulphur atom:												
	(A) S	SF_4		(B) SF ₆		(($C)$ SF_2		(D) I	None			
Simil	ar qu	estions belon	gs to N	CERT Text	Book								
Exce	rcise -	4.13, 4.19, 4	.22, 4.2	23, 4.25, 4.26	5								

8.

Answers

RACE # 12

1. (D) 2. (B) 3. (B) 4. (C) 5. (D) 6. (D) 8. (B) 9. (D) 10. (C) 11. (C)

12. (C) 13. (A) 14. (4) 15. (3) 16. (C) 17. (D) 18. (C) 19. (A)