

6.	Which of the following st	atement is incorrect?		
	a) One gram of C – 12 cor	tains Avogadro's number	of atoms.	
	b) One mole of oxygen gas	-		
	, , ,	gas contains Avogadro's n		
	d) One mole of electrons s			
				nds for 6.023×10^{23} electrons.
7.	The volume occupied by 1	•		
	a) 11.2 litre l	b) 5.6 litre	c) 22.4 litre	d) 44.8 litre
8.	In the nucleus of $_{20}$ Ca ⁴⁰ , 1	there are		Ans : (c) 22.4 litre
0.	a) 20 protons and 40 neut		b) 20 protons and 20 r	neutrons
	c) 20 protons and 40 elect		d) 40 protons and 20 e	
		10115	<i>·</i> · ·) 20 protons and 20 neutrons
9.	The gram molecular mass	s of oxygen molecule is		
	a) 16 g l	b) 18 g	c) 32 g	d) 17 g
				Ans : (c) 32 g
10.	1 mole of any substance (a) 6.023×10^{23}	contains molecules (5.023×10^{-23})		d) 12.046 × 10 ²³
	a) 0.025×10^{-1}	$0) 0.023 \times 10^{-3}$	$() 5.0113 \times 10^{-3}$	Ans : (a) 6.023×10^{23}
				Ans: (a) 0.025 × 10
<i>II.</i> I	Book Exercise – Fill in the	blanks		
1.	Atoms of different elements isobars.	s having mag	ss number, but	atomic numbers are called Ans : same, different
2.	Atoms of different elements	s having same number of	are called is	otones. Ans : neutrons
3.	Atoms of one element can	be transmuted into atoms	of other element by	
				Ans : artificial transmutation
4.	The sum of the numbers of	protons and neutrons of	an atom is called its	Ans : Mass number
5.	Relative atomic mass is oth	erwise known as		Ans : Standard atomic weight
6.	The average atomic mass o	f hydrogen is	_ amu.	Ans : 1.008
7.	If a molecule is made of sin	nilar kind of atoms, then i	t is called at	omic molecule. Ans : Homo
8.	The number of atoms prese	ent in a molecule is called	its	Ans : Atomicity
9.	One mole of any gas occup	ies ml at S.T.	.P.	Ans : 22400
10.	Atomicity of phosphorous is			Ans : 4
	Book Exercise – Match the			
		4 moles		
	<u> </u>	0.25 moles		
		2 moles		
	4. 112 g of N ₂ -	0.5 moles		
	• 2	13 moles		
	Ans :			
	1 8 q of O ₂ b 0	.25 moles		

1	8 g of O ₂	b	0.25 moles
2	2 4 g of H ₂		2 moles
3	52 g of He	е	13 moles
4	112 g of N_2	а	4 moles
5	35.5 g of Cl_2	d	0.5 moles

IV. Book Exercise – True or false (If false give the correct statement)

- 1. Two elements sometimes can form more than one compound. Ans : True.
- 2. Noble gases are Diatomic. Ans : False. Monoatomic.
- The gram atomic mass of an element has no unit. 3. Ans : False. Relative atomic mass of an element has no unit.
- 4. 1 mole of Gold and Silver contain same number of atoms. Ans : True.
- Molar mass of CO₂ is 42g. 5. Ans: False. 44 g.

V. Book Exercise – Assertion and Reason

Answer the following questions using the data given below:

- a) A and R are correct, R explains the A.
- b) A is correct, R is wrong.
- c) A is wrong, R is correct.
- d) A and R are correct, R doesn't explains A.
- Assertion: Atomic mass of aluminium is 27 1. Reason: An atom of aluminium is 27 times heavier than 1/12th of the mass of the C – 12 atom.

Ans: (d) A and R are correct, R doesn't explains A

Assertion: The Relative Molecular Mass of Chlorine is 35.5 a.m.u. 2. Reason: The natural abundance of Chlorine isotopes are not equal.

Ans: (a) A and R are correct, R explains the A

VI. Book Exercise – Short answer questions

1. Define: Relative atomic mass.

Relative atomic mass of an element in the ratio between the average mass of its isotopes to 1/12th part of the mass of a carbon-12 atoms. It is denoted as A. It is otherwise called Standard Atomic Weight.

Average mass of the isotopes of the element An =

 $\frac{1}{12}$ th of the mass of one carbon -12 atom

2. Write the different types of isotopes of oxygen and its percentage abundance.

Isotope	Mass (amu)	% abundance
₈ O ¹⁶	15.9949	99.757
₈ O ¹⁷	16.9991	0.038
₈ O ¹⁸	17.9992	0.205

Define: Atomicity. 3.

The number of atoms present in the molecule is called its Atomicity.

Atomicity = $\frac{\text{Molecular Mass}}{\Delta \text{tomic M}}$

Atomic Mass

4. Give any two examples for heterodiatomic molecules.

HCl, H_2O , NH_4 .

5. What is Molar volume of a gas?

One mole of any gas occupies 22.4 litre or 22400 ml at STP. The volume occupied by one mole of any gas at S.T.P is called molar volume.

6. Find the percentage of nitrogen in ammonia.

Molar mass of Ammonia	= 14 + 3 = 17 g.
% of Nitrogen	$= \frac{14}{17} \times 100 = 82.35\%.$

VII. Book Exercise – Long answer questions

1.	Calculate the number of wa	ter molecule present in one drop of water which weighs 0.18 g.
	Given Mass	= 0.18 g
	Avogadro Number	
	Molecular Mass of water	r = 18 g (H2O = 2(1) + 1(16) = 2 + 16 = 18)
	No. of water molecules	= Avogadro number × given man
		 Molecular Mass of water
		$= \frac{6.023 \times 10^{23} \times 0.18 \text{g}}{18 \text{g}}$
		18 g
		$= \frac{6.023 \times 10^{23} \times 0.18 \times 100}{100}$
		= 18×10 ²
		$- \frac{6.023 \times 10^{23} \times 18}{10^{23} \times 18}$
		$=$ 18×10^{2}
		$= \frac{6.023 \times 10^{23} \times 10^{-2} \times 18}{10^{-2} \times 18}$
		=
		$= 6.023 \times 10^{23} \times 10^{-2}$
		= 6.023×10^{21} molecules of water.
	3 moles of hydrogen (2 moles of ammonia (1 mole of nitrogen (<u>28</u> g) + 3 moles of hydrogen (<u>3×1</u> g) 2 moles of Ammonia (<u>34</u> g) 28, 3, 34	g)
3.	Calculate the number of mo i) 27g of Al ii) 1.51×10^{23} n	
		Mass
	i) No. of moles =	Atomic Mass
	=	<u> 27g </u> 27g
		27g
	=	= 1 mole.
		No. of molecules of NH₄Cl
	ii) No. of moles =	$= \frac{100 \text{ or molecules or mil_4cl}}{\text{Avogadro's number}}$
		-
	=	$\frac{1.51 \times 10^{23}}{6.023 \times 10^{23}}$
		1
	=	$=\frac{1}{4}$
	=	0.25 mole.

4. Give the salient features of "Modern atomic theory".

Modern Atomic Theory:

- + An atom is no longer indivisible (after the discovery of the electron, proton and neutron).
- + Atoms of the same element may have different atomic mass (discovery of **Isotopes** ₁₇Cl³⁵, ₁₇Cl³⁷).
- + Atoms of different elements may have same atomic masses (discovery of **Isobars** $_{20}Ar^{40}$, $_{20}Ca^{40}$).
- + Atoms of one element can be transmuted into atoms of other elements. In otherwords, atom is no longer indestructible (discovery of **artificial transmutation**).
- + Atoms may not always combine in a simple whole number ratio (Eg. Glucose $C_6H_{12}O_6$ C:H:O = 6:12:6 or 1:2:1 and Sucrose $C_{12}H_{22}O_{11}$ C:H:O = 12:22:11).
- + Atom is the smallest particle that take part in a chemical reaction.
- + The mass of an atom can be converted into energy (**E=MC**²).
- 5. Derive the relationship between Relative molecular mass and Vapour density. Relative Molecular Mass : The ratio of Mass of one molecule of gas or vapour to the mass of one atom of hydrogen.
 - Relative Molecular Mass = $\frac{\text{Mass of one molecule of gas or vapour}}{\text{Mass of one atom of hydrogen}}$ (1)

Vapour density : The ratio of mass of a certain volume of a gas or vapour to the mass of an equal volume of hydrogen, measured under the same conditions of temperature and pressure.

Vapour Density	=	Mass of 1 volume of gas or vapour Mass of 1 volume of hydrogen	(2)	
VD Applying Avogadro's law,	=	Mass of 1 volume of gas or vapour Mass of 1 volume of hydrogen	(3)	
VD Hence hydrogen is diatomic	=	Mass of 1 molecule of gas or vapour Mass of 1 molecule of hydrogen	(4)	
VD	=	$\frac{\text{Mass of 1 molecule of gas or vapour}}{\text{Mass of 2 \times atoms of hydrogen}}$	(5)	
VD Multiplying `2' on both sides	=	$\frac{\text{Mass of 1 molecule of gas or vapour}}{2 \times \text{mass of 1 atom of hydrogen}}$	(6)	
$2 \times VD$	=	$\frac{\cancel{2} \times \text{Mass of 1 molecule of gas or vapour}}{\cancel{2} \times \text{Mass of 1 atom of hydrogen}}$	(7)	
2 × VD	=	Mass of 1 molecule of gas or vapour Mass of 1 atom of hydrogen	(8)	
$2 \times VD$	=	Relative Molecular Mass	(9)	
VD	=	$\frac{\text{RMM}}{2}$ or $\frac{\text{Molecular Weight}}{2}$	(10)	

VIII. Book Exercise – HOT question

- 1. Calcium Carbonate is decomposed on heating in the following reaction. CaCO_3 \rightarrow CaO + CO_2
 - i) How many moles of Calcium Carbonate are involved in this reaction? Ans : 1 mole of Calcium carbonate.

ii) Calculate the gram molecular mass of Calcium Carbonate involved in this reaction. Ans : GMM of CaCO₃ = 1 (Ca) + 1 (C) + 3 (O)

=
$$1(40) + 1(12) + 3(16) = 1(40) + 1(12) + 48$$

= $40 + 12 + 48 = 100$ g.

 iii) How many moles of CO₂ are there in this equation? Ans: 1 mole of CO₂.

IX. Book Exercise – Solve the following problems

1. How many grams are there in the following?

- i) 2 moles of hydrogen molecule, H_2 . Mass = No. of moles × Molecular Mass. Mass = 2 × (2×1) = 4 g.
 - ii) 3 moles of chlorine molecule, Cl_2 . Mass = No. of moles × Molecular Mass. Mass = (35.5×2) × 3 = 71 × 3
 - = 213 g.
 - iii) 5 moles of sulphur molecule, S_8 . Mass = No. of moles × Molecular Mass.

 $Mass = (8 \times 32) \times 5$ $= 256 \times 5$

- = 1280 g.
- iv) 4 moles of phosphorous molecule, P_4 .
 - Mass = No. of moles \times Molecular Mass.
 - Mass = $(4 \times 31) \times 4$ = 124×4 = 496 q.
- **2.** Calculate the % of each element in calcium carbonate. (Atomic mass: C-12, O-16, Ca -40). CaCO₃.

Molar Mass of CaCO ₃	= 1 (Ca) + 1 (C) + 3 (O)
	= 1 (40) + 1 (12) + 3 (16)
	= 40 + 12 + 48
	= 100 g.
% of Ca in $CaCO_3$	$= \frac{\text{Mass of Ca}}{\frac{\text{Molar Mass of CaCO}_3}{40 \alpha}} \times 100$
	$= \frac{40 \text{ g}}{100 \text{ g}} \times 100$
	= 40%.
% of C in CaCO ₃	$= \frac{\text{Mass of Carbon}}{\text{Molar Mass of CaCO}_3} \times 100$
	$= \frac{12 g}{100 g} \times 100$ = 12%
	= 12%.
% of O in CaCO ₃	$= \frac{\text{Mass of Oxygen}}{\frac{\text{Molar Mass of Calcium}}{48 \alpha} \times 100}$
	$=\frac{48 g}{100 g} \times 100$
	= 48%.

3. Calculate the % of oxygen in $Al_2(SO_4)_3$. (Atomic mass: Al-12, O-16, S -32) $Al_2(SO_4)_3$.

Al₂(SO₄)₃. Molar Mass of Al₂(SO₄)₃ = 2 (Al) + 3 (S) + 12 (O) = 2 (27) + 3 (32) + 12 (16) = 54 + 96 + 192 = 342 g. % of Oxygen in Al₂(SO₄)₃ % of Oxygen = $\frac{\text{Mass of Oxygen}}{\text{Molecular Mass of Al}_2(SO_4)_3}$ = $\frac{192 \text{ g}}{342 \text{ g}} \times 100$ = 56.14%.

4. Calculate the % relative abundance of B -10 and B -11, if its average atomic mass is 10.804 amu. B10 and B11.

Let B10	= X%
B11	= (100 - X)%
Average atomic mass	s = $10X + \frac{11(100 - x)}{100} = 10.80$
10X + 11 (100–X)	$= 10.80 \times 100$
10X + 1100 - 11X	= 1080
1100 – X	= 1080
- X	= 1080 - 1100
– X	= -20
Х	= 20
B10 = 20%.	
B11 = (100–X) = 80%.	

Additional – Choose the best answer

1.	The first scientific theor	y of	f the atom was propos	ed l	ру		
	a) John Dalton	b)	J.J. Thomson	c)	Ruther Ford	d)	Neils Bohr
							Ans : (a) John Dalton
2.	The atoms are having sa	me	atomic number but di	ffer	in their mass numb	er is	known as
	a) Isobars	b)	Isotopes	c)	Isotones	d)	None
							Ans : (b) Isotopes
3.	The atoms are having sa	me	mass number but diff	er ir	their atomic numb	er is	known as
	a) Isobars	b)	Isotopes	c)	Isotones	d)	None
							Ans : (a) Isobars
4.	The atoms are having di of neutrons are called a			liffe	rent mass number b	ut it	contains same number
	a) Isobars	b)	Isotopes	c)	Isotones	d)	None
							Ans : (c) Isotones
5.	An Isotope of Carbon, w	hic	h contains <u>6</u> protons a	and	<u>6</u> neutrons.		
	a) 6 protons 6 neutrons	b)	6 protons 7 neutrons	c)	6 protons 8 neutron	s d)	8 protons 6 neutrons
						Ans :	(a) 6 protons 6 neutrons

6.	If the molecule is made	of similar kind of at	oms. The	n it is called		
	a) Homo Atomic Molecule	1	b)	Di Atomic Molecule		
	c) Hetero Atomic Molecule	е	d)	Poly Atomic Molecule	9	
				Ans	5 : (a	a) Homo Atomic Molecule
7.	If a molecule contains m	ore than three ator	ns, then i	t is called		
	a) Homo Atomic Molecule			Di Atomic Molecule		
	c) Tri Atomic Molecule		d)	Poly Atomic Molecule		
				A	ns :	(d) Poly Atomic Molecule
8.	Gram Atomic Mass of Ca					
	a) 16	b) 12	c)	10	d)	8
						Ans : (b) 12
9.	Gram Molecular Mass of				N	24 5
	a) 35.5 g	b) 34.5 g	c)	36.5 g	d)	31.5 g
						Ans : (c) 36.5 g
10.	The value of Avogadro n (0.022×10^{23})			$C_{000} \sim 10^{21}$	۲,	(0.000×10^{-21})
	a) 6.023×10^{23}	D) 6.023×10^{22}	C)	6.023×10^{21}	a)	6.023×10^{-21} Ans : (a) 6.023×10^{23}
	One litue is equal to					Alls : (a) 0.023×10^{-3}
11.	One litre is equal to a) 1 dm ²	$(h) 1 dm^3$	c)	1 cm ²	d)	1 mm ²
	a) i ulli-	D) I UIII ^e	C)		u)	Ans : (b) 1 dm ³
12	Gram molar volume of a	ac at STR ic				
12.	Gram molar volume of ga a) 22.4 lit			224 li t	d)	none
	a) 22.1 m	b) 22.5 IIC	C)		u)	Ans : (a) 22.4 lit
12	Gram molecular mass of	Wator	a			
13.		b) 16	-	15	d)	1.8
	a) 10	5) 10	0)	10	۵)	Ans : (a) 18
14.	Vapour density =					
	Vapour density =a) RMM × 2	b) RMM / 2	c)	$RAM \times 2$	d)	RMM / 2
	,	, ,	,		,	Ans : (b) RMM / 2
15.	Gram atomic mass of Hy	drogen	g.			
		b) 1	 c)	3	d)	4
						Ans : (b) 1
16.	Gram atomic mass of Nit	trogen	g.			
	a) 12	b) 14	c)	28	d)	20
						Ans : (b) 14
17.	Atomic mass of Hydroge	n is ar				
	a) 1.008	b) 1.006	c)	1.005	d)	1.004
						Ans : (a) 1.008
18.	Atomic mass of Helium is					
	a) 3.003	b) 4.003	c)	2.003	d)	1.003
						Ans : (b) 4.003
19.	Atomic mass of Lithium			0.454	D	0.442
	a) 7.641	b) 6.941	c)	8.451	d)	9.412
						Ans : (b) 6.941
20.	Atomic mass of Beryllium			7010	\ل	6021
	a) 9.012	b) 8.012	C)	7.012	a)	6021
						Ans : (a) 9.012

21.	Example of Triaton	nic molecule is				
	a) O ₂	b) O ₃	c) NH3	d)	none	
~~	.				Ans : (b)	03
22.		ass of Oxygen is		d)	26	
	a) 16	b) 30	c) 32	u)	26 Ans : (c)	32
		Addition	al – Fill in the blanks			_
1.	is made				Ans : Mat	ter
2.		eory of the atom was pro	posed by		Ans : John Dalt	
3.	An atom is				Ans : no long	
3. 4.			ent atomic mass. These ele	ments are c		jei
	Acomo or the sume c	action and a may have affected			Ans : Isotop	bes
5.	An example of isotop	oes			Ans : ₁₇ Cl ³⁵ . ₁₇ C	2 ³⁷
6.	Atoms of different el	ements may have same	atomic mass. These eleme	nts are calle	1, 1,	
					Ans : Isob	ars
7.	An example of Isoba	rs are			Ans : ₁₈ Ar ⁴⁰ . ₂₀ C	a ⁴⁰
8.	Atoms of one eleme indestructible.	nt can be ir	nto atoms of other element	ts. In other	words, atom is no lon Ans : transmut	-
9.	Atoms may not alwa	ys combine in a	whole number ratio.		Ans : sim	ple
10.	Atom is the	that takes part in ch	nemical reaction.		Ans : smallest parti	cle
11.	The of	an atom can be converte	ed into energy ($E=mc^2$).		Ans : ma	ass
12.	An atom contains su	ch as protons, neutrons	and		Ans : electro	ons
13.	have co	onsiderable mass.		An	s : Protons and neutro	ons
14.	does no	ot have a considerable m	ass.		Ans : Electro	ons
15.	The sum of the num	ber of protons and neutr	ons of an atom is called its	5	Ans : mass numl	ber
		n is measured in			Ans : atomic mass u	
17.	The mass of a proto	n or neutron is approxim	ately		Ans : 1 a	mu
	-	ich contains 6 protons an			Ans : isotope of carb	on
19.	is unifie	ed atomic mass.			Ans : A	
20.	Isotopic character of	hydrogen is			Ans : ₁ H ¹ , ₁ H ² ,	H ³
21.		s of an element is the rati 2 atom. It is otherwise ca	io between the average ma alled			the
22.		s is only a ratio, so it has			Ans : no u	-
		-	d in grams, it is called as _			
			5, _		Ans : Gram Atomic Ma	ass
24.	Gram atomic Mass o	f = 1g.			Ans : Hydrog	Jen
25.	Gram atomic mass o	of = 12g.			Ans : Carb	on
26.	Gram atomic mass o	of = 14g.			Ans : Nitrog	jen
27.	Gram atomic mass o	of = 16g.			Ans : Oxyg	jen
28.	Atomic mass of	= 1.			Ans : Hydrog	jen
29.	Atomic mass of	= 12.			Ans : Carb	on
30.	Atomic mass of	= 14.			Ans : Nitrog	len

31.	Atomic mass of = 16.	Ans : Oxygen
32.	Atomic mass of = 23.	Ans : Sodium
33.	Atomic mass of = 24.	Ans : Magnesium
34.	Atomic mass of = 32.	Ans : Sulphur
35.	The natural abundance of C-12 and C-13 are	Ans: 98.90% and 1.10%
36.	The average of the atomic mass of carbon is amu.	Ans : 12.011
37.	The average of the atomic mass of Hydrogen is amu.	Ans : 1.008
38.	The average of the atomic mass of Helium is amu.	Ans : 4.003
39.	The average of the atomic mass of Lithium is amu.	Ans : 6.941
40.	The average of the atomic mass of Beryllium is amu.	Ans : 9.012
41.	The average of the atomic mass of Boron is amu.	Ans : 1.008
42.	Mass of ₈ O ¹⁶ isotope is	Ans : 15.9949
43.	% of abundance ₈ O ¹⁶ isotope is	Ans : 99.757
44.	Mass of ₈ O ¹⁷ isotope is	Ans : 16.9991
45.	% of abundance ₈ O ¹⁷ isotope is	Ans : 0.038
46.	Mass of ₈ O ¹⁸ isotope is	Ans : 17.9992
47.	% of abundance ₈ O ¹⁸ is	Ans : 0.205
48.	Except noble gases, atoms of most of the elements are found in the co other elements. It is called as a	mbined form with itself or atoms of Ans : molecule
49.	A molecule is a combination of two or more held together by strong bonds.	chemical in chemical forces of attraction
50.	If the molecule is made of similar kind of atoms then it is called	
	The molecule that consist of atoms of different elements is called	
52.	The compound NH ₃ is a	Ans : hetero atomic molecule
	The number of atoms present in the molecule is called its	Ans : atomicity
	Number of atoms are present in Monoatomic is	Ans: 1
	Number of atoms are present in Diatomic .is	Ans : 2
	Number of atoms are present in triatomic is	Ans : 3
	Number of atoms are present in Polyatomic is	Ans : more than 3
	An example of mono atomic molecule is	Ans : Helium (He)
	An example of Di atomic molecule is	Ans : Hydrogen (H_2)
	An example of Tri atomic molecule is	Ans : Ozone (O_3)
	An example of poly atomic molecule is	Ans : Sulphur (S_8)
	An example of molecule is hydrogen chloride.	Ans : hetero atomic
	The relative molecular mass of a molecule is the ratio between the mass 1./12 th mass of an atom	of one molecule of the substance to Ans : carbon $- 12$
64.	Relative molecular mass is only a ratio. It has	Ans : no unit
	If the molecular mass of a compound is expressed in grams it is called _	
		Ans : gram molecular mass
66		And I grain molecular mass
00.	Gram molecular mass of is 18 g.	Ans : water

68.	Gram molecular mass of is 17 g.	Ans : ammonia
69.	Gram molecular mass of is 36.5	g. Ans : HCl
70.	The is obtained by adding toge molecule.	her the relative atomic masses of all the atoms present in a Ans : relative molecular mass
71.	Molecules are	Ans : less reactive
72.	Atoms are	Ans : highly reactive
73.	An atom is the particle of an element	nent. Ans : smallest
74.	A is the smallest particle of an el	ement or compound. Ans : molecule
75.	Atom does not have a	Ans : chemical bond
76.	Atoms in a are held by chemical	bonds. Ans : molecule
77.	The is the amount of substance there are atoms in exactly 12 g of the carbon	hat contains as many atoms or molecules or other particles as -12 isotope. Ans : mole
78.	was proposed the Avogadro num	ber. Ans : Amedo Avogadro
79.	Amedo Avogadro is an	Ans : Italian Scientist
80.	Value of Avogadro number is	Ans : 6.023 × 10 ²³
81.	One mole of substance contains	Ans : 6.023×10^{23} molecules
82.	Standard molar volume at STP =	. Ans : 22.4 litres
83.	STP means	Ans : Standard Temperature and Pressure
84.	Standard Temperature is	Ans : 273.15 K
85.	Standard Pressure is	Ans : 1.00 atm
86.	One mole of an element contains 6.023 $\times 10^{\text{-2}}$	•
		Ans : gram atomic mass
87.	One mole of matter contains 6.023×10^{-23} mc	lecules and it is equal to its Ans : gram molecular mass
88.	One mole of oxygen contains 6.023×10^{-2}	³ molecules of oxygen and its gram molecular mass is Ans: 32 g
89.	One mole of any gas occupies at	
		Ans : 22.4 litre (or) 22400 ml
90.	Number of moles =	Ans : Mass / Atomic mass
91.	Number of moles =	Ans : Mass / Molecular mass
92.	Number of moles =	Ans : Number of atoms / Avogadro number
93.	Number of moles =	Ans : Number of molecules / Avogadro number
94.	The of a compound represents t	ne mass of each element present in 100 g of the compound. Ans : percentage composition
95.	In 1811 Avogadro framed a	Ans : hypothesis
96.	Equal volume of all gases under similar cone molecules. This is called	litions of temperature and pressure contain equal number of Ans : Avogadro Hypothesis
97.	V = is stated that Avogadro hype	thesis. Ans : constant × n
98.	One litre =	Ans : 1 dm ³

99.	One litre of hydrogen contains the	number of molecules as ir	n one litre of oxygen. Ans : same
100.	The volume of the gas is to the	number of molecules of the	gas. Ans : directly proportional
101.	One molecule of hydrogen is react with one r	nolecule of chlorine to give 2	
			Ans : hydrogen chloride
102.	Avogadro explains		Ans : Gay–Lussac's law
103.	Avogadro helps in the determination of		Ans : atomicity of gases
104.	Avogadro derived the		Ans : molecular formula of gases
105.	Avogadro determines the relation between	and	
100	As a sector balance to determine (2)		: molecular mass, vapour density
	Avogadro helps to determine (22	-	
107.	The relative molecular mass is the ratio betw	een the mass of one molecu	le of the gas or vapour to mass of Ans : one atom of hydrogen
108.	is defined as the ratio of mass of volume of hydrogen, measured under the sar		
			Ans : Vapour density
109.	VD =		Ans : Relative molecular mass / 2
110.	VD =		Ans : RMM / 2
111.	VD =		Ans : Molecular weight / 2
112.	2 × VD =		Ans : RMM
113.	Gram molar mass of = 18 g.		Ans : water
114.	Gram molar mass of $CO_2 = $		Ans : 44 g
115.	Gram molar Mass of =308 g.		Ans : Ca ₃ (PO ₄) ₂
116.	Gram Molar mass of $H_2SO_4 = $		Ans : 98 g
117.	Atomicity of = 2.		Ans : Chlorine
118.	Atomicity of = 2.		Ans : Nitrogen
119.	Atomicity of = 2.		Ans : Oxygen
120.	Atomicity of = 3.		Ans : Ozone
121.	Atomicity of = 4.		Ans : Phosphorous
122.	Atomicity of = 8.		Ans : Sulphur
123.	is made up atoms.		Ans : Matter
124.	An atom is no longer		Ans : indivisible
125.	E =		Ans : MC ²
126.	The mass of an atom is measured in	(amu).	Ans : atomic mass unit
127.	Relative atomic mass is measured in	(amu).	Ans : Standard Atomic Weight
128.	Atomic mass of an element is expressed in te	rms of grams is called	Ans : Gram Atomic Mass
129.	The number of atoms present in the one mole	ecule of an element is called	Ans : Atomicity
	Avogadro number is denoted as		Ans : N
	STP is equal to,		Ans : 273.15 K, 1.00 atm
	Atomicity is equal to	A	ns : Molecular Mass / Atomic Mass

			Α	ddit	ional – Ma	atch the following
1.	1.	Mono atomic molecule	((a)	0 ₂ , N ₂	
	2.	Di atomic molecule		(b)		
	3.	Tri atomic molecule		(c)	P ₄	
	4.	Tetra atomic molecule	((d)	0 ₃	
	Ans	-				1
	1	Mono atomic molecule	b	He,	, Ne	
	2	Di atomic molecule	a	02,	N ₂	
	3	Tri atomic molecule	d	03		
	4	Tetra atomic molecule	С	P ₄		
2.	1.	GMM of Water	((a)	36.5 g	
	2.	GMM of CO ₂		(b)	-	
	3.	GMM of Ammonia	((c)	44 g	
	4.	GMM of HC/	((d)	17 g	
	Ans	-				1
	1	GMM of Water	b	18	-	
	2	GMM of CO ₂	С	44	g	
	3	GMM of Ammonia	d	17	g	
	4	GMM of HCl	а	36.	5 g	
3.	1.	Atom	(a)	chlorine	
	2.	De-broglie	((b)	argon ar	nd calcium
	3.	Isobars	((c)	Tri atom	ic
	4.	Isotopes		(d)		mic
	5.	Hydrogen		(e)		10
	6. 7.	Ozone Phosphorus		(f) (g)		1023
		Avogadro number	-	(h)		le
	9.	-	-	(i)		
	10.	Di atomic		j)	cl –35, c	l –37
	Ans	:				
	1	Atom	h	ind	ivisible	
	2	De-broglie	g	wa	ve	
	3	Isobars	b	arg	on and ca	lcium
	4	Isotopes	j	cl –	-35, cl –37	,
	5	Hydrogen	i	hor	no diatom	ic
	6	Ozone	с	tri a	atomic	
	7	Phosphorus	d	pol	y atomic	
	8	Avogadro number	f	<u> </u>	23 × 10 ₂₃	
	9	Mono atomic	e	i —	ium	
	10	Di atomic	а	chl	orine	
4.	1.	0.5 mole of SO ₂			(a)	Heisenberg
	2.	Uncertinity principle				3.0115×10^{-23}
	3	Atomic mass				11 2 lit

rg 10⁻²³ 11.2 lit

3. Atomic mass 4.

Ans :

Atomic mass(c)11.2 litVolume of 16 g of oxygen at STP(d)atomic mass unit

1	0.5 mole of SO ₂	b	3.0115 × 10 ⁻²³
2	Uncertinity principle	а	Heisenberg
3	Atomic mass	d	atomic mass unit
4	Volume of 16 g of oxygen at STP	С	11.2 lit

Additional – Spot the error

- The molecule that consist of atoms of different elements is called homo atomic molecule. 1. **Ans:** The molecule that consist of atoms of different elements is called hetero atomic molecule.
- Oxygen gas does not exist in two allotropic forms they are Oxygen and ozone. 2. **Ans:** Oxygen gas exist in two allotropic forms they are oxygen and ozone.
- 3. Ozone contains three oxygen atoms and hence it is called homo di atomic molecule. **Ans:** Ozone contains three oxygen atoms and hence it is called homo tri atomic molecule.
- Hydrogen chloride is a homo diatomic molecule. 4. **Ans:** Hydrogen chloride is a hetero diatomic molecule.
- Oxygen is a second most abundant element in the earth crust. 5. **Ans:** Oxygen is a first most abundant element in the earth crust.

Additional – Assertion and Reason

- 1. **Assertion :** A molecule is a combination of two or more atoms held together by chemical forces of attraction. Reason : These are formed by chemical bonds.
 - a. A is right R is wrong c. R explains A

- b. A is wrong R is right
- d. R does not explain A

2. Assertion : Homoatomic molecules are made up of atoms of the same elements. Hcl consist of hydrogen and chlorine. Reason :

- a. A is right R is wrong
- c. R explains A

c. R explains A

Reason :

- b. A is wrong R is right
- d. R does not explain A

Ans : (a) A is right R is wrong

- **3. Assertion :** Ammonia is a molecule. Reason : Ammonia is a hetero atomic molecule.
 - a. A is right R is wrong

- b. A is wrong R is right
- d. R does not explain A

Ans: (b) R explains A

Ans: (c) R explains A

4. Assertion : one mole of any gas occupies 22.4 litres or 22400 ml at STP. one mole matter contains Avogadro number of particles. Reason :

a. A is right R is wrong

- b. A is wrong R is right
- c. R explains A d. R does not explain A

Ans: (d) R does not explain A

5. Assertion : The volume of the gas is directly proportional to the number of molecules of the gas.

- Equal volume of all gases contain equal number of molecules.
- a. A is right R is Wrong c. R explains A
- b. A is wrong R is right
- d. R does not explain A

Ans: (c) R explains A

Additional – True or False (If False give the Correct Statement

- The sum of the number of protons and neutrons of an atom is called its atomic number.
 Ans : False: The sum of the number of protons and neutrons of an atom is called its mass number.
- 2. The molecule that consist of atoms of different elements is called hetero atomic molecule. Ans : True.
- **3.** If a molecule contains more than three atoms then it is called triatomic molecule. **Ans :** False: If a molecule contains more than three atoms then it is called poly atomic molecule.
- 4. One mole of oxygen contains 6.023×10^{23} molecules of oxygen and its gram molecular mass is 32 g.

Ans : True.

5. The percentage composition of a compound represents the mass of each element present in 100 g of the compound.

Ans : True.

- One mole of any gas contains 22400cm³ at STP.
 Ans : False : One mole of any gas contains 22400 ml at STP.
- 7. Avogadro law does not explains Gay Lussac's law. Ans : False. Avogadro law explains Gay Lussac's law.
- Gay lussac law helps to determine gram molar volume of all gases.
 Ans : False: Avogadro law helps to determine gram molar volume of all gases.
- 9. Relative molecular mass is equal to 4 times of vapour density.Ans : False: Relative molecular mass is equal to 2 times of vapour density.
- Gram molecular mass of calcium phosphate is 208 g.
 Ans : False: Gram molecular mass of Calcium Phosphate is 308 g.

Additional – Short answer questions

1. Define Mass number.

The sum of the number of protons and neutrons of an atom is called its mass number.

2. Define RAM.

3.

Relative atomic mass of an element is the ratio between the average mass of its isotopes to 1/12th part of the mass of a Carbon–12 atom. It is denoted as A. It is otherwise called as Standard Atomic Weight.

Ar = $\frac{\text{Average mass of the Isotopes of the element}}{1}$

 $\frac{1}{12}$ th of the mass of one Carbon atom

Define average atomic mas of an element.

The average atomic mass of an element in the weighed average of the masses of its naturally occuring isotopes.

Average atomic mass = (Mass of 1^{st} Isotope × % abundance of 1^{st} Isotope) +

(Mass of 2^{nd} Isotope × % abundance of 2^{nd} Isotope)

4. Calculate the abundance of C–12 and C–13 are 98.90% and 1.10% respectively.

Average atomic mass of Carbon	$= 12 \times \left(\frac{98.9}{100}\right) + 13 \times \left(\frac{1.1}{100}\right)$
	$= 12 \times 0.989 + 13 \times 0.011$
	= 11.868 + 0.143
	= 12.011 amu.

5. Define molecule.

A molecule is a combination of 2 (or) more atoms held together by strong chemical forces of attraction. i.e., chemical bonds.

6. Differentiate Homo and Hetero atomic molecule.

S.No.	Homo Atomic	Hetero Atomic
1.	The molecule is made of similar kind of atoms,	The molecule that consist of atoms of different
	then it is called Homo atomic molecule.	elements is called Hetero atomic molecule.
2.	eg: H ₂ , Cl ₂ , N ₂	eg: NH ₃ , HCl

Define homotriatomic molecule. Give an example. Ozone contains three oxygen atoms and hence it is called homo triatomic molecule. Eg.: O₃.

Define polyatomic molecule. Give an example. If a molecule contains more than three atoms, then it is called polyatomic molecule. Eg.: P₄, S₈.

9. Draw the structure of HC/ and H_2O .

HCl (Hydrogen Chloride)

Water (H₂C

10. Define Relative Molecular Mass.

The Relative Molecular Mass of a molecule is the ratio between the mass of one molecule of the substance to 1/12th mass of an atom of Carbon–12.

11. Write the difference between atoms and molecules.

S.No.	Atom	Molecule
1.	An atom is the smallest particle of an element.	A molecule is the smallest particle of an element or compound.
2.	Atom does not exist in free state except in a noble gas.	Molecule exists in free a state.
3.	Except some of noble gas, other atoms are highly reactive.	Molecules are less reactive.
4.	Atom does not have a chemical bond.	Atoms in a molecule are held by chemical bonds.

12. Define Mole.

The mole is the amount of substance that contains as many elementary entities as there are atoms in exactly 12g of the Carbon–12 Isotope.

13. Define Avogadro number.

The actual number of atoms in 12g of Carbon–12 is determined experimentally. This is called Avogadro number and it is denoted as NA. It's value is 6.023×10^{23} .

14. How to calculate the number of moles of a substance?

- > Number of moles of molecules.
- > Number of moles of atoms.
- > Number of moles of a gas.
- Number of moles of Ions.

15. Define Mole.

One mole of an element contains 6.023×10^{23} atoms and it is equal to its gram atomic mass. Eg.: One mole of oxygen contains 6.023×10^{23} atoms of oxygen and its Gram atomic mass is 16g.

16. Define Mole of molecules.

One mole of matter contains 6.023×10^{23} molecules and its equal to its gram molecular mass. Eg.: One mole of oxygen contains 6.023×10^{23} molecules of oxygen and its gram molecular mass is 32g.

17. Calculate the number of moles by different modes.

Number of moles = Mass / Atomic mass.

- = Mass / Molecular mass.
 - = Number of atoms / 6.023×10^{23} .
 - = Number of molecules / 6.023×10^{23} .

18. Define Percent composition.

The percentage composition of the compound represents the mass of each element present is 100g of the compound.

19. State Avogadro's law.

Equal volumes of all gases under similar conditions of temperature and pressure contain equal number of molecules.

20. Define vapour density.

Vapour density is the ratio of the mass of a certain volume of gas or vapour to the mass of an equal volume of hydrogen measured under the same conditions of temperature and pressure.

Additional – Long answer questions

1. Explain Avogardo hypothesis.

The volume of any given gas must be propostional to the number of molecules in it. If 'V' is the volume, 'n' is the number of molecules of a gas, then Avogadro law is represented mathematically as follows.

 $V \alpha n$

 $V = Constant \times n.$

Thus one litre (1 dm3) of hydrogen contains the same number of moecules as in one litre of oxygen. i.e., the volume of the gas is directly propositonal to the number of molecules of the gas.

Explanation : Let us consider the reaction between hydrogen and chlorine to form hydrogen chloride gas.

 $H_2 + CI_2 \rightarrow 2HCI_{(q)}$

(g) (g) 2 volumes.

According to Avogadro's law, 1 volume of any gas is occupied by 'n' number of molecules.

'n' molecules + 'n' molecules \rightarrow 2n molecules

if 'n' = 1 then,

1 molecule + 1 molecule \rightarrow 2 molecules.

 $^{1\!\!/_2}$ molecule + $^{1\!\!/_2}$ molecule \rightarrow 1 molecule.

1 molecule of hydrogen chloride gas is made up of $\frac{1}{2}$ molecule of chlorine. Hence the molecules can be subdivided. This law obeys the Dalton's Atomic Theory.

2. Write the applications of Avogadro's law.

- > It explains Gay lussac's law.
- It helps in the determination of atomicity of gases.
- > Molecular formula of gases can be derived from Avogadro's law.
- > It determines the relation between molecular mass and vapour density.
- ➢ It helps to determine gram molar volume of all gases. (22.4 lit at STP)

SOLVED PROBLEMS

1. Boron naturally occurs as a mixture of boron-10 (5 protons + 5 neutrons) and boron-11 (5 protons + 6 neutrons) isotopes. The percentage abundance of B-10 is 20 and that of B-11 is 80. Then, the atomic mass of boron is calculated as follows :

Solution : Atomic mass of Boron = $\left(10 \times \frac{20}{100}\right) + \left(11 \times \frac{80}{100}\right)$ = $(10 \times 0.20) + (11 \times 0.80)$ = 2 + 8.8= 10.8 amu. Relative molecular mass of sulphuric acid (H₂SO₄) is calculated as follows: Sulphuric acid conatins 2 atoms of hydrogen, 1 atom of sulphur and 4 atoms of oxygen.

Solution : Therefore, Relative molecular mass of sulphuric acid

= $(2 \times \text{mass of hydrogen}) + (1 \times \text{mass of sulphur}) + (4 \times \text{mass of oxygen})$

$$= (2 \times 1) + (1 \times 32) + (4 \times 16)$$

= 98.

i.e., one molecule of H2SO4 is 98 times as heavy as $\frac{1}{12^{\text{th}}}$ of the mass of a carbon – 12.

3. Relative molecular mass of water (H₂O) is calculated as follows: A water molecule is made of 2 atoms of hydrogen and one atom of oxygen.

Solution : So, the relative molecular mass of water

=
$$(2 \times \text{mass of hydrogen}) + (1 \times \text{mass of oxygen})$$

= $(2 \times 1) + (1 \times 16)$
= 18.

i.e., one molecule of H2O is 18 times as heavy as $\frac{1}{12^{\text{th}}}$ of the mass of carbon – 12.

4. Find the mass percentage composition of methane (CH₄). Solution : Molar mass of CH4 = 12 + 4 = 16 g.

Mass % carbon $= \frac{12}{16} \times 100$ = 75%. Mass % of hydrogen $= \frac{4}{16} \times 100$ = 25%.

5. Calculation of molar mass. Calculate the gram molar mass of the following.

i) H₂O.

Solution :	
Atomic masses of $H = 1, O$	= 16.
Gram molar mass of H ₂ O	$= (1 \times 2) + (16 \times 1)$
	= 2 + 16

Gram molar mass of H_2O = 18 g.

ii) CO₂.

6.

Solution : Atomic masses of C = 12, O = 16. Gram molar mass of CO₂ = $(12 \times 1) + (16 \times 2)$ = 12 + 32

Gram molar mass of CO_2 = 44 g.

iii) $Ca_3(PO_4)_2$.

Solution : Atomic masses of Ca = 40, P = 30, O = 16. Gram molar mass of Ca₃(PO₄)₂ = $(40 \times 3) + [30 + (16 \times 4)] \times 2$ = $120 + (94 \times 2)$ = 120 + 188Gram molar mass of Ca₃(PO₄)₂ = 308 g.

Calculation based on number of moles from mass and volume.

i) Calculate the number of moles in 46 g of sodium? Solution :

Mass of the element Number of moles = $\frac{1}{\text{Atomic mass of the element}}$ 46 $=\frac{1}{23}$ = 2 moles of sodium. ii) 5.6 litre of oxygen at S.T.P Solution : Number of moles = $\frac{\text{Given volume of O}_2 \text{ at S.T.P}}{\text{Molar volume at S.T.P}}$ Number of moles of oxygen = $\frac{5.6}{22.4}$ = 0.25 mole of oxygen. iii) Calculate the number of moles of a sample that contains 12.046×10^{23} atoms of iron? Solution : Number of atoms of iron Number of moles = Avogadro's number $=\frac{12.046\times10^{23}}{10^{23}}$ 6.023×10²³ = 2 moles of iron. Calculation of mass from mole. Calculate the mass of the following 7. 0.3 mole of aluminium (Atomic mass of Al = 27) i) Solution : Mass of Al Number of moles = $\frac{1}{\text{Atomic mass of Al}}$ Mass = No. of moles \times atomic mass So, mass of Al = 0.3×27 = 8.1 g. ii) Calculate the number of moles in 46 g of sodium? Solution : Molecular mass of $SO_2 = 32 + (16 \times 2)$ = 32 + 32 = 64. Number of moles of $SO_2 = \frac{\text{Given volume of } SO_2 \text{ at S.T.P}}{\text{Molar volume of } SO_2 \text{ at S.T.P}}$ Number of moles of SO₂ = $\frac{2.24}{22.4}$ = 0.1 mole. Number of moles = $\frac{Mass}{Molecular mass}$ Mass = No. of moles \times molecular mass Mass = 0.1×64 Mass of $SO_2 = 6.4$ g. iii) 1.51×10^{23} molecules of water Solution : Molecular mass of $H_2O = 18$ Number of moles = Number of molecules of water Avogadro's number = $1.51 \times 10^{23} / 6.023 \times 10^{23}$ = 1/4

= 0.25 mole. Mass Number of moles = $\frac{1}{Molecular mass}$ 0.25 = mass / 18Mass = 0.25×18 Mass = $4.5 \, \text{g}$. iv) 5×10^{23} molecules of glucose? Solution : Molecular mass of glucose = 180 Avogadro's number = $(180 \times 5 \times 10^{23}) / 6.023 \times 10^{23}$. = 149.43 a. Calculation based on number of atoms/molecules. i) Calculate the number of molecules in 11.2 litre of CO₂ at S.T.P Solution : Number of moles of $CO_2 = \frac{\text{Volume at S.T.P}}{\text{Molar volume}}$ = 11.2 / 22.4= 0.5 mole. Number of molecules of CO₂ = number of moles CO₂ × Avogadro's number. = $0.5 \times 6.023 \times 10^{23}$. = 3.011×10^{23} molecules of CO₂. ii) Calculate the number of atoms present in 1 gram of gold (Atomic mass of Au = 198) Solution : Number of atoms of Au = $\frac{\text{Mass of Au} \times \text{Avogadro's number}}{\text{Atomic mass of Au}}$ Number of atoms of Au = $\frac{1}{198} \times 6.023 \times 10^{23}$ Number of atoms of Au = 3.042×10^{23} g. iii) Calculate the number of molecules in 54 gm of H₂O? Solution : Number of molecules = $\frac{(\text{Avogadro number} \times \text{Given mass})}{(\text{Avogadro number} \times \text{Given mass})}$ Gram molecular mass No. of molecules of water = $6.023 \times 10^{23} \times 54 / 18$. = 18.069×10^{23} molecules. iv) Calculate the number of atoms of oxygen and carbon in 5 moles of CO₂. Solution : > 1 mole of CO_2 contains 2 moles of oxygen. 5 moles of CO_{2} contains 10 moles of oxygen.

Number of atoms of oxygen
 Number of atoms of oxygen
 Number of moles of oxygen × Avogadro's number
 = 10 × 6.023 × 10²³
 = 6.023 × 10²⁴ atoms of oxygen.
 > 1 mole of CO₂ contains 1 mole of carbon.

- 1 mole of CO₂ contains 1 mole of carbon.
 5 moles of CO₂ contains 5 moles of carbon. No. of atoms of carbon = No. of moles of carbon × Avogadro's number. = 5 × 6.023 × 10²³. = 3.011 × 10²⁴ atoms of carbon.
- 9. Calculation based on molar volume. Calculate the volume occupied by:
 - i) 2.5 mole of CO₂ at S.T.P.

8.

Solution :

Number of moles of CO	Given volume at S.T.P
Number of moles of CO ₂	Molar volume at S.T.P
2.5 mole of CO_{2}	= $\frac{\text{Volume of CO}_2 \text{ at S.T.P}}{\text{Volume of CO}_2 \text{ at S.T.P}}$
	22.4
Volume of CO ₂ at S.T.P	= 22.4 × 2.5
-	= 56 litres.

ii) 3.011×10^{23} of ammonia gas molecules. Solution :

Number of moles	=	Number of molecules Avogadro's number
Volume occupied by NH ₃	= = =	3.011×10^{23} / 6.023×10^{23} . 2 moles. number of moles × molar volume 2 × 22.4 44.8 litres at S.T.P.

iii) 14 g nitrogen gas. Solution :

Number of moles =	14 / 28.
=	0.5 mole
Volume occupied by N_2 at S.T.P =	no. of moles \times molar volume
=	0.5 × 22.4
=	11.2 litres.

10. Calculation based on % composition. Calculate % of S in $\rm H_2SO_4.$ Solution :

Molar mass of
$$H_2SO_4 = (1 \times 2) + (32 \times 1) + (16 \times 4)$$

= 2 + 32 + 64
= 98 g
% of S in $H_2SO_4 = \frac{Mass \text{ of sulphur}}{Molar \text{ mass of } H_2SO_4} \times 100$
% of S in $H_2SO_4 = \frac{32}{98} \times 100$
= 32.65%.

UNIT TEST - 7

Time : 1.15 Hrs.				Marks: 50		
<i>I.</i> 0	I. Choose the best answer $(5 \times 1 = 5)$					
1.	Which of the follow a) Glucose	wing is a triatomic mole b) Helium	cule? c) Carbondioxide	d) hydrogen		
2.	The volume occup a) 22.4 lit	ied by 4.4 g of CO₂ at ST b) 2.24 lit	P c) 0.24 lit	d) 0.1 lit		
3.	Mass of 1 mole of a) 28amu	Nitrogen atom is b) 14amu	 c) 28g	d) 14g		

4.	The gram molecular mass of oxygen molecule is						
	a) 16g	b) 18g	c)	32g	d) 17g		
5.	The volume occupied by 1 mole of a diatomic gas at STP is						
	a) 11.2 lit	b) 22.4 lit	c)	44.8 lit	d) 5.6lit		
<i>II.</i> 1	Fill in the blanks					(5 × 1 = 5)	
6.	The first scientific theory of the atom was proposed by						
7.	The sum of the number of protons and neutrons of an atom is called its						
8.	The number of atoms present in the molecule is called						
9.	was proposed the Avogadro number						
10.	One mole of substance co	ntains					
<i>III.</i>	State whether the statem	ents are true or fa	alse. Correct	the false stat	ement	(4 × 1 = 4)	
11.	1. The sum of the number of protons and neutrons of an atom is called its atomic number						
12.	. The molecule that consist of atoms of different elements is called hetero atomic molecule						
13.	. If a molecule contains more than three atoms then it is called triatomic molecule						
14.	. One mole of oxygen contains 6.023 \times 10 ²³ molecules of oxygen and its gram molecular mass is 32 g						
IV.	Match the following					(4 × 1 = 4)	
15.	0.5 mole of So2	(a) hei	senberg				

- 16. Uncertinity principle (b) 3.0115×10^{-23}
- 17. Atomic mass (c) 11.2 lit
- 18. Volume of 16g of oxygen at STP (d) Atomic mass unit

V. Assertion and Reasoning

Direction: In each of the following questions, a statement of Assertion is given and a corresponding statement of Reason is given just below it. Of the statements given below, mark the correct answer as

 $(3 \times 1 = 3)$

- a. If both A and R are true and R is the correct explanation of A.
- b. If both A and R are true but R is not the correct explanation of A.
- c. If A is true but R is false.
- d. If both A and R are false.
- 19. Assertion: A molecule is a combination of two or more atoms held together by chemical forces of attraction.Reason: These are formed by chemical bonds.
- 20. Assertion: Homoatomic molecules are made up of atoms of the same elements.
 - **Reason:** Hcl consist of hydrogen and chlorine.
- 21. Assertion: Ammonia is a molecule.
 - **Reason:** Ammonia is a hetero atomic molecule.

22. 23.	<i>Write the answer for the following questions in word or sentence</i> Define atomicity. Define Average atomic mass. Define atom.	(3 × 1 = 3)
25. 26.	<i>Find the odd one out</i> ₁₇ Cl ³⁵ ₁₇ Cl ³⁷ , ₁₈ Ar ⁴⁰ ₂₀ Ca ⁴⁰ , ₁ H ¹ ₁ H ² ₁ H ³ . Fluorine, Hydrogen, Sulphur, Carbondioxide Ammonia, Methane, Sulphuric acid, Phosphorus	(3 × 1 = 3)
28. 29.	I. Correct the mistakes The molecule that consist of atoms of different elements is called homo atomic molecule. Ozone contains three oxygen atoms and hence it is called homo di atomic molecule. Oxygen is a second most abundant element in the earth crust.	(3 × 1 = 3)
 31. 32. 33. 34. 35. 36. 	 Write the short answer for ANY 5 of the following questions. Define Relative atomic mass. Write the different types of isotopes of oxygen and its percentage abundance. Define Atomicity. What is the molar volume of a gas. Give any 2 examples of Homo and Hetero atomic molecules. Find the percentage of nitrogen in ammonia. Calculate the % of each element in calcium carbonate (Atomic mass C–12, O–16, Ca–40). 	(5 × 2 = 10)
38. 39 40.	Write long answer for the following questions Calculate the number of water molecules present in one drop of water which weighs 0.18g. [OR] Give the salient features of Modern Atomic theory. Derive the relationship between VD and RMM. [OR] Write the Applications of Avogadro's law.	(2 × 5 = 10)

ଔଷ୍ଟରେ