DPP – 01 CLASS – 12th TOPIC – REVISION-01

- **Q.1** In a series LR-circuit, the inductive reactance is equal to the resistance R of the circuit. An emf $E=E_0\cos(\omega t)$ is applied to the circuit. The power consumed in the circuit is
 - (a) E_0^2/R
 - (b) $E_0^2/2R$
 - (c) $E_0^2/4R$
 - (d) $E_0^2/8R$
- **Q.2** One 60 V,100 W bulb is to be connected to 100 V,50 Hzac- source. The potential drop across the

inductor is (f=50 Hz)

- (a) 80 V
- (b) 40 V
- (c) 10 V
- (d) 20 V
- **Q.3** An AC voltage source of variable angular frequency and fixed amplitude V connected in series with a capacitance C and an electric bulb of resistance R (inductance zero). When is increased
 - (a) The bulb glows dimmer
 - (b) The bulb glows brighter
 - (c) Net impedance of circuit is unchanged
 - (d) Total impedance of the circuit increases
- **Q.4** An alternating e. m. f. of angular frequency ω is applied across an inductance. The

instantaneous power developed across it has an angular frequency

(a) ω/4

(b) ω/2

(c) ω

(d) 2ω

Q.5 The variation of the instantaneous current I(t) and the instantaneous emf E (t) in a circuit is as shown in the following fig. Which of the following statements is correct

- (a) The voltage lags behind the current by $\pi/2$
- (b) The voltage leads the current by $\pi/2$
- (c) The voltage and the current are in phase
- (d) The voltage leads the current by π
- **Q.6** The figure shows variation of R,X_L and X_c with frequency f in a series L,C,R circuit. Then for what frequency point, the circuit is inductive.

* X = X

- Q.7 When AC source is connected across seris R-C combination, the ac- current may lead ac-voltage by
 - (a) 0°
 - (b) 180°
 - (c) 30°
 - (d) 90°
- **Q.8** In a purely resistive a .c. circuit, the current
 - (a) is in phase with the e.m. f.
 - (b) leads the e.m.f. by a difference of $\pi_{radians}$ phase
 - (c) leads the e .m .f. by a phase difference of $\pi/2$ radians
 - (d) lags behind the e.m.f. by phase difference of $\pi/4$ radians

- A capacitor of capacitance C has reactance X. If capacitance and frequency become double, then Q.9 the capacitive reactance will be
 - 2X (a)
 - (b) 4X
 - (c) X/2
 - (d) X/4
- Q.10 Reactance of a capacitor of capacitance C for an alternating current of frequency $400/\pi$ Hz is 25 Ω . The value of C is
 - (a) 25µF
 - (b) 50µF
 - (c) 75µF
 - (d) 100µF
- Q.11 The core of a transformer is laminated, so as to
 - make it light weight (a)
 - (b) make it robust and strong
 - increase the secondary voltage (c)
 - (d) reduce energy loss due to eddy current
- The ratio of no. of turns of primary coil to secondary coil in a transformer is 2:3. If a cell of 6 V Q.12 is connected across the primary coil, then voltage across the secondary coil will be
 - 3 V (a)
 - (b) 6 V
 - (c) 9 V
 - (d) 12 V
- Q.13 In a transformer, the no. of turns of primary and secondary coil are 500 and 400 respectively. If 220 V is supplied to the primary coil, then ratio of currents in primary and secondary coils is
 - (a) 4:5

(b) 5:4

5:9 (c)

(d) 9:5

Q.14 220 V,50 Hz, AC is applied to a resistor. The instantaneous value of voltage is

- (a) $220\sqrt{2} \sin 100\pi t$
- (b) 220 sin100πt
- (c) $220\sqrt{2} \sin 50\pi t$
- (d) 220 sin50πt
- **Q.15** An inductance and a resistance are connected in series with an AC potential. In this circuit
 - (a) the current and the potential difference across the resistance lead the PD across the inductance by phase angle $\pi/2$
 - (b) the current and the potential difference across the resistance lag behind PD across the inductance by an angle $\pi/2$
 - (c) the current and the potential difference across the resistance lag behind the PD across the inductance by an angle π
 - (d) the PD across the resistance lags behind the PD across the inductance by an angle $\pi/2$ but the current in the resistance leads the PD across inductance by $\pi/2$
- **Q.16** An AC voltage is applied to a resistance R and an inductor L in series. If R and the inductive reactance are both equal to 3Ω , the phase difference (in rad) between the applied voltage and the current in the circuit is
 - (a) π/4
 - (b) π/2
 - (c) zero
 - (d) π/6
- **Q.17** In a circuit containing R and L, as the frequency of the impressed AC increases, the impedance of the circuit
 - (a) decreases
 - (b) increases
 - (c) remains unchanged
 - (d) first increases and then decreases
- **Q.18** When an AC voltage is applied to an L-C-R circuit, then
 - (a) I and V are out of phase with each other in R
 - (b) I and V are in phase in L with in C, they are out of phase
 - (c) | and V are out of phase in both, C and L
 - (d) I and V are out of phase in L and in phase in C

- Q.19 In a L-C-R series circuit, the potential difference between the terminals of the inductance is 60 V, between the terminals of the capacitor is 30 V and that across the resistance is 40 V. Then, supply voltage will be equal to the
 - (a) 50 V
 - (b) 70 V
 - (c) 130 V
 - (d) 10 V
- Q.20 An L-C-R series circuit, connected to a source E, is at resonance. Then,
 - (a) the voltage across R is zero
 - (b) the voltage across R equals applied voltage
 - (c) the voltage across C is zero
 - (d) the voltage across C equals applied voltage
- **Q.21** A sinusoidal voltage of peak value 300 V and an angular frequency ω =400 rads⁻¹ is applied to series L-C-R circuit, in which R=3 Ω ,L=20mH and C=625 μ F The peak current in the circuit is
 - (a) 30√2 A
 - (b) 60 A
 - (c) 100 A
 - (d) $60\sqrt{2} A$

SOLUTION

ALTERNATING CURRENT

(PHYSICS)

DPP – 01 CLASS – 12th TOPIC – REVISION-01

Sol.1 (C)

Sol.2 (A)

Sol.3 (B)

Sol.4 (D)

Sol.5 (B)

Sol.6 (C)

Sol.7	(C)
Sol.8	(A)
Sol.9	(D)
Sol.10	(D)
Sol.11	(D)
Sol.12	(C)
Sol.13	(A)
Sol.14	(A)
Sol.15	(B)
Sol.16	(A)

(
(B)
I D I
(-)

Sol.18 (C)

Sol.19 (A)

Sol.20 (B)

Sol.21 (B)