ACTIVITY 5

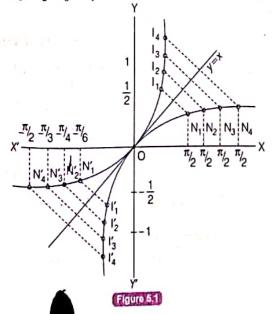
To draw the graph of $\sin^{-1} x$, using the graph of $\sin x$ and demonstrate the concept of mirror reflection (about the line y = x).

Material Required

Cardboard, white chart paper, scale, coloured pens, gum, pencil, eraser, que, some nails and some thin wires.

Method of Construction

- Take a cardboard of suitable dimensions, say, 40 cm×40 cm
- 2. On the cardboard, fix a white chart paper of size 30 cm×30 cm (say) using gum.
- 3. On the paper, draw two lines, perpendicular to each other and name them X'OX and YOY' as rectangular axes [see given Fig.].
- Graduate the axes approximately as shown in figure by taking unit on X - axis = 125 times the unit of Y-axis.
- 5. Mark the points (approximately) $\left(\frac{\pi}{6}, \sin\frac{\pi}{6}\right), \left(\frac{\pi}{4}, \sin\frac{\pi}{4}\right), \dots, \left(\frac{\pi}{2}, \sin\frac{\pi}{2}\right)$ in the coordinate plane.


Also, fix nail at each point and name them N_1, N_2, N_3, N_4 .

Repeat the above process on the other side of the X

 axis, marking the points

$$\left(\frac{-\pi}{6}, \sin\frac{-\pi}{6}\right), \left(\frac{-\pi}{4}, \sin\frac{-\pi}{4}\right), \dots, \left(\frac{-\pi}{2}, \sin\frac{-\pi}{2}\right)$$

approximately and fix nails on these points as N_1, N_2, N_3, N_4 . At O, also fix a nail.

- 7. With the help of wire join the nail on both sides of X-axis to get the graph of $\sin x$ from $\frac{-\pi}{2}$ to $\frac{\pi}{2}$.
- 8. Draw the graph of the line y = x by plotting the points (1, 1), (2, 2), (3, 3), etc. At these points fix a wire.
- 9. From the nails N_1, N_2, N_3, N_4 , draw perpendicular on the line y = x and produce these lines such that length of perpendicular on both sides of the line y = x are equal. Name them I_1, I_2, I_3, I_3 and fix nails at these points
- Similarly, repeat the above activity on the other side of X - axis and fix nails at I₁, I₂, I₃, I₄.
- 11. Join the nails on both sides of the line y = x by a tight wire. The curve so obtain shows the graph of $y = \sin^{-1} x$.

Demonstration

Put a mirror on the line y = x. The image of the graph of $\sin x$ in the mirror will represent the graph of $\sin^{-1} x$ showing that $\sin^{-1} x$ is mirror reflection of $\sin x$ and vice versa.

Observation

The image of point N_1 in the mirror (the line y = x) is

The image of point N_2 in the mirror (the line y = x)

The image of point N_3 in the mirror (the line y = x)

The image of point N_4 in the mirror (the line y = x)

The image of point N_1 in the mirror (the line y = x)

The image of point N_2 in the mirror (the line y = x) is

The image of point N_3 in the mirror (the line y = x) is

The image of point N'_4 in the mirror (the line y = x) is

The image of the graph of $\sin x$ in y = x is the graph of ..., and the image of the graph of $\sin^{-1} x$ in y = x is the graph of

Application

In the same way we can draw the graph of other inverse trigonometric functions i.e. $\cos^{-1} x$, $\tan^{-1} x$ etc.

VIVA-VOCE

- 1 What is the domain of $\sin^{-1} x$?
- Ans Domain of $\sin^{-1} x$ is $\left[\frac{-\pi}{2}, \frac{\pi}{2} \right]$
- 2 What is the range of $\sin^{-1} x$?
- Ans Range of $\sin^{-1} x$ is [-1, 1].
 - 3 What is the relation between the graphs of a function and its inverse.
- Ans The graphs of a function and its inverse are mirror images of each other in the line y = x.
- 4 Evaluate: $\sin^{-1}\left(\frac{\sqrt{3}}{2}\right)$

Ans Let
$$\theta = \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$

$$\Rightarrow$$
 $\sin\theta = -\frac{\sqrt{3}}{2}$

$$\Rightarrow \qquad \sin\theta = \sin\left(\frac{-\pi}{2}\right)$$

$$\Rightarrow$$
 $\theta = \frac{-\pi}{3}$

5 Write the difference between maximum and minimum value of $\sin^{-1} x$ for $x \in [-1, 1]$

- Ans The minimum and maximum values of $\sin^{-1} x$ are $\frac{-\pi}{2}$ and $\frac{\pi}{2}$ respectively.
 - $\therefore \text{ Required difference} = \frac{\pi}{2} \left(\frac{-\pi}{2}\right) = \pi$
 - 6 If $\sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \frac{3\pi}{2}$, then write the value of x + y + z
- Ans We know that, the maximum value of $\sin^{-1} x$ for $x \in [-1, 1]$ is $\frac{\pi}{2}$.

$$\sin^{-1} x \le \frac{\pi}{2}, \sin^{-1} y \le \frac{\pi}{2}, \sin^{-1} z \le \frac{\pi}{2} \text{ for all }$$

$$\therefore x, y, z \in [-1, 1]$$

$$\therefore \sin^{-1} x + \sin^{-1} y + \sin^{-1} z \le \frac{3\pi}{2}$$

$$\therefore \sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \frac{3\pi}{2}$$

$$\Rightarrow \sin^{-1} x = \sin^{-1} y = \sin^{-1} z = \frac{\pi}{2}$$

$$\Rightarrow x + y + z = 1 + 1 + 1 = 3$$

- 7 Find the domain of $f(x) = \sin^{-1} x + \sin x$.
- Ans The domain of $\sin^{-1} x$ is [-1, 1] and that of $\sin x$ is R. Therefore, domain of $f(x) = \sin^{-1} x + \sin x$ is $[-1, 1] \cap R = [-1, 1]$