INORGANIC CHEMISTRY ### DPP No. 13 Total Marks: 31 Max. Time: 33 min. #### **Topic: Chemical Bonding** | Single
Multiple | | negative marking) Q.1 t
negative marking) Q.6
gative marking) Q.8 | | (3 marks, 3 mii
(4 marks, 4 mii
(8 marks, 10 m | n.) | M.M., Min.
[15, 15]
[8, 8]
[8, 10] | | |--------------------|--|--|--|--|---|---|--| | 1. | Which of the following is V-shaped : | | | | | | | | | (A) S ₃ ²⁻ | (B) I_3^- (C) N_3^- | | (D) none of the | | se | | | 2. | Which of the following s (A) [CIOF ₂] ⁺ | hould have pyramidal sh
(B) ICl ₃ | ape :
(C) [BrI | CI]- | (D) SO ₃ | | | | 3. | Accroding to VSEPR the (A) 120° | eory in [IO ₂ F ₂] ⁻ ion the F | $\overset{\wedge}{\mathrm{I}}F$ bond (C) 109 | | arly
(D) 180° | | | | 4. | | long the following, the pair in which the two species are not isostructural is ${\rm IO_3^-}$ and ${\rm XeO_3}$ (B) ${\rm A}\ell{\rm H_4^-}$ and ${\rm PH_4^+}$ (C) ${\rm AsF_6^-}$ and ${\rm SF_6}$ (D) ${\rm SiF_4}$ and ${\rm SeF_4}$ | | | | | | | 5. | Consider the structures of the following two molecules : $X: F_2C = C = CF_2$ $Y: F_2B - C \equiv C - BF_2$ In which of these two, it is impossible for all the four F atoms to lie in the same plane : (A) X (B) Y (C) both (D) none | | | | | | | | 6.* | Which is/are true according to VSEPR theory: (A) The order of repulsion between different pair of electrons is ℓp − ℓp > ℓp − bp > bp − bp (ℓp = lone pair electrons, bp = bond pair electrons) (B) Lone pair and double bond occupy equitorial position in trigonal bipyramidal structure. (C) More electronegative atoms occupy axial position in trigonal bipyramidal structure. (D) Bigger atoms occupy axial positions in trigonal bipyramidal structure. | | | | | | | | 7.* | In which of the following (A) N_2O | species, one of bond an | ngle is ex
(C) NO | - | re than 120°.
(D) XeF ₃ + | | | | 8. | Match the isostructural production of produc | oairs: (i) IF ₆ ⁺ (ii) CIF ₄ ⁺ (iii) SnCI ₅ ⁻ (iv) CIF ₃ (v) CIF ₂ ⁻ (vi) XeF ₄ | | | | | | # Answer Key **DPP No. #13** 1. (A) 2. (A) 3. (D). 4. (D) 5. (A) 6.* (ABC) 7.* (ACD) 8. (a-ii) (b-iii) (c- iv) (d-v) (e-vi) (f-i). # **Hints & Solutions** **DPP No. #13** 1. 3. 5. These flourine atoms These flourine atoms will be in xz plane will be in xy plane 8. (a-ii) (b-iii) (c-iv) (d-v) (e-vi) (f-i).