C H E M I S T R Y

MOLE CONCEPT

WHY THE CONCEPT OF MOLE WAS INVENTED?

Why do we study the Mole Concept?

• To convert the theoretical particle information going on at the molecular level into physically observable information.

For example, in the formation of ammonia from N_2 and H_2

$$N_2 + 3H_2 \rightarrow 2NH_3$$

We cannot take 1 molecule of N_2 and 3 molecules of H_2 to proceed with this reaction in the laboratory because their masses are not physically observable.

• So, the study of the mole concept helps us to connect the microworld to the physically observable macroworld.

For example, physical quantities like weight, volume, density, pressure are not measurable at particle level but can be measured after the study of the mole concept.

What is a Mole?

Mole is an unit to measure a relatively large number of entities such that 1 mole of an item contains 6.022×10^{23} entities.

Avogadro's number

Avogadro's number is another number used to represent quantities. Its value is same as the number of entities of an item present in 1 mole of that item, i.e., 6.022×10^{23} . This number is represented by N_A .

1 kilo of chocolates = 10³ chocolates

 N_{A} chocolates = 6.022 × 10²³ chocolates

Conversion: Mole to particle

Find the number of CO₂ molecules in 2 moles of a pure sample of CO₂ molecules.

Solution

Given,

Number of moles of CO_2 molecules = 2 mol Number of particles = Number of moles $\times N_A = 2 \times 6.022 \times 10^{23} = 1.204 \times 10^{24}$

Number of moles of He atom = $\frac{8}{3}$ mol Number of particles = Number of moles × $N_A = \frac{8}{3}$ × 6.022 × 10²³ = 1.606 × 10²⁴

Conversion: Mole to particle

Find the number of H_2SO_4 molecules in 10⁻¹³ moles of a pure H_2SO_4 sample.

Solution

Given,

Number of moles of $H_2SO_4 = 10^{-13} mol$ Number of particles = Number of moles × $N_A = 10^{-13} \times 6.022 \times 10^{23} = 6.022 \times 10^{10}$

Conversion: Mole to particle

Find the number of $Na_2SO_4.5H_2O$ formula units in 5 kilomoles of a pure $Na_2SO_4.5H_2O$ sample.

Solution

Step 1: Convert kilomoles to moles. 1 kilomole = $10^3 mol$ Number of moles of Na₂SO₄.5H₂O = $5 \times 1000 = 5 \times 10^3 mol$ Step 2: Find the number of particles from the given amount of moles.

Number of particles = Number of moles
$$\times N_A$$

= 5 \times 10³ \times 6.022 \times 10²³ = 3.011 \times 10²⁷

Conversion: Mole to particle

Find the number of moles of CO_2 molecules in a sample containing 3.011 × 10²³ CO_2 molecules.

Solution

Given,

Number of molecules of $CO_2 = 3.011 \times 10^{23}$

Number of moles $CO_2 = \frac{\text{Number of particles}}{N_A} = \frac{3.011 \times 10^{23}}{6.022 \times 10^{23}} = 0.5 \text{ mol}$

C H E M I S T R Y MOLE CONCEPT

PLAYING WITH THE BASICS

- We know that a car has 4 tyres. Let us assume that 1 formula unit of H₂SO₄ is the car and each oxygen atom is a tyre.
- We can say that each car will have 4 tyres or that 2 cars will have 8 tyres. By a similar analogy, we can say that each H_2SO_4 unit has 4 O atoms. Hence, n units of H_2SO_4 will have 4n O atoms.

1 car	4 tyres
22 cars	88 tyres
2 dozen cars	96 tyres

Similarly,

1 molecule of H_2SO_4	4 oxygen atoms
5 molecules of H_2SO_4	20 oxygen atoms
2 moles of H_2SO_4	8 N _A oxygen atoms

20 tyres	5 cars
2 dozen tyres	6 cars

Similarly,

20 oxygen atoms	5 molecules of H_2SO_4
4 N _A oxygen atoms	1 <i>mol</i> of H ₂ SO ₄

Calculating the number of particular entities from the given number of molecules or formula units of a chemical species.

Step 1:

Calculate the number of the desired entities in 1 molecule or 1 formula unit of the chemical species.

Step 2:

Multiply the number of desired entities present in 1 molecule or 1 formula unit of the chemical species by the total number of the chemical species.

Conversion: Particle within a particle

- a. Find the number of O atoms in $5 H_2 SO_4$ molecules.
- b. Find the number of O atoms in $5 \text{ Na}_2\text{SO}_4.5\text{H}_2\text{O}$ formula units.

Solution

- a. Number of O atoms in 1 molecule of $H_2SO_4 = 4$ Number of O atoms in 5 molecules of $H_2SO_4 = 5 \times 4 = 20$
- b. Number of O atoms in 1 formula unit of $Na_2SO_4.5H_2O = 4 + 5 \times 1 = 9$ Number of O atoms in 5 formula units of $Na_2SO_4.5H_2O = 9 \times 5 = 45$

Conversion: Particle within a particle

- a. Find the number of O atoms in $5 \times 10^5 \text{ CO}_2$ molecules.
- b. Find the number of O atoms in $5 \times 10^{13} \text{ Mg}(\text{NO}_3)_2$ formula units.

Solution

- a. Number of O atoms in 1 molecule of $CO_2 = 2$ Number of O atoms in 5 × 10⁵ molecule of $CO_2 = 2 \times 5 \times 10^5 = 10^6$
- b. Number of O atoms in 1 formula unit of $Mg(NO_3)_2 = 3 \times 2 = 6$ Number of O atoms in 5 × 10¹³ formula units of $Mg(NO_3)_2 = 6 \times 5 \times 10^{13} = 3 \times 10^{14}$

Case 2:

Calculating the number of molecules or formula units of a chemical species from the given number of entities.

Step 1:

Step 2:

Calculate the number of the desired entities in 1 molecule or 1 formula unit of the chemical species. Divide the total number of entities by the number of entities present in 1 molecule or 1 formula unit of the chemical species.

°:? ©

Conversion: Particle within a particle

If we have a pure CO_2 sample and it contains a total of 10¹⁰ O atoms, find the number of molecules of CO_2 present in the sample.

Solution

Step 1:

Finding the number of O atoms present in CO₂ molecules.

From the chemical formula, 1 formula unit of CO_2 contains 2 O atoms Hence, two atoms of oxygen correspond to one molecule of CO_2

Step 2:

Finding the number of CO₂ molecules.

Given number of O atoms = 10^{10} Hence, from step 1, Number of CO₂ molecules that contain 10^{10} O atoms = $\frac{10^{10}}{2}$ = 5 × 10^{9}

Conversion: Particle within a particle

If we have a pure CO_2 sample and it contains a total of 10¹⁰ O atoms, find the number of molecules of CO_2 present in the sample.

Solution

Step 1: Finding the number of CO₂ molecules. Number of O atoms in 1 molecule of $CO_2 = 2$ Number of CO₂ molecules from 10¹⁰ O O atoms = $\frac{10^{10}}{2} = 5 \times 10^9$

Step 2:

Finding the number of moles of CO₂. 1 mol of CO₂ molecules consists of 6.022 × 10²³ molecules. Moles of CO₂ in sample $= \frac{5 \times 10^9}{6.022 \times 10^{23}} = 8.303 \times 10^{-15} mol$

Conversion: Particle within a particle

Find the number of O atoms in 6.023 x 10^{23} Na₂SO₄.5H₂O formula units.

Solution

Number of O atoms in 1 formula unit of $Na_2SO_4.5H_2O = 4 + (5 \times 1) = 9$ Number of O atoms in 6.022 × 10²³ formula units of $Na_2SO_4.5H_2O = 9 \times 6.022 \times 10^{23} = 5.420 \times 10^{24}$

Conversion: Particle within a particle

Find the number of O atoms in 3 moles of CO₂ molecules.

Solution

Number of O atoms in 1 molecule of $CO_2 = 2$ Number of molecules in 1 mole of $CO_2 = 6.022 \times 10^{23}$ Number of O atoms in 3 moles of $CO_2 = 2 \times 3 \times 6.022 \times 10^{23} = 3.613 \times 10^{24}$

Conversion: Particle within a particle

Find the number of O atoms in 0.0003 moles of $Na_2SO_4.5H_2O$ formula units.

Solution

Number of O atoms in 1 molecule of $Na_2SO_4.5H_2O = 9$ Number of formula units in 1 mole of $Na_2SO_4.5H_2O = 6.022 \times 10^{23}$ Number of O atoms in 0.0003 moles of $CO_2 = 9 \times 0.0003 \times 6.022 \times 10^{23} = 1.626 \times 10^{21}$

Solution

9 atoms of O are present in 1 formula unit of the compound 9 moles of O atoms are present in 1 mole of the formula unit

1.8 × 10⁻³ moles O atoms will be present in $1 \times 1.8 \times 10^{-3}$ = 2 × 10⁻⁴ mol formula units

Conversion: Particle within a particle

Find the number of electrons in $6.023 \times 10^{19} H_2O$ molecules.

Solution

1 molecule of H_2O contains (2 × 1 + 8) e^2 = 10 electrons 6.023 × 10¹⁹ molecules will contain 10 × 6.023 × 10¹⁹ = 6.023 × 10²⁰ electrons

If we have a pure CO_2 sample and it contains a total of 440 electrons, find the number of molecules of CO_2 present in the sample.

Solution

1 molecule of the compound contains $(6 + (2 \times 8)) = 22$ electrons

22 electrons are present in 1 molecule of the compound. 440 electrons will be present in $\frac{1}{22} \times 440 = 20$ molecules.

Conversion: Particle within a particle

If we have a pure CO_2 sample and it contains a total of 2.2 × 10¹⁰ electrons, find the number of molecules of CO_2 present in the sample.

Solution

22 electrons are present in 1 molecule of the compound

 2.2×10^{10} electrons will be present in $\frac{1}{22} \times 2.2 \times 10^{10} = 10^9$ molecules

Conversion: Particle within a particle

If we have a pure Na_2SO_4 . $5H_2O$ sample and it contains a total of 2.4 × 10¹⁰ electrons, find the number of formula units of $Na_2SO_4.5H_2O$ present in the sample.

Solution

1 formula unit of compound contains $(2 \times 11) + (1 \times 16) + (4 \times 8) + (5 \times 10) = 120$ electrons 120 electrons are present in 1 formula unit of the compound.

 2.4×10^{10} electrons will be present in $\frac{1}{120} \times 2.4 \times 10^{10}$ molecules = 2×10^{8} molecules

Conversion: Particle within a particle

Find the number of electrons in 5 moles of H_2SO_4 molecules.

Solution

1 molecule of H_2SO_4 has (2 + 16 + 4(8)) = 50 electrons. So, 1 mole of H_2SO_4 will have 50 N_A electrons. Similarly, using the unitary method, the number of electrons in 5 moles of H_2SO_4 = 250 N_A = 250 × 6.022 × 10²³ = 1.505 × 10²⁶ electrons.

Similarly, using the unitary method, the number of electrons in $\frac{5}{8}$ moles of H₂SO₄ = $\frac{5}{8} \times 50 \times 6.022 \times 10^{23}$ = 1.881 × 10²⁵ electrons.

Conversion: Particle within a particle

Find the number of electrons in $\frac{5}{8}$ moles of SO₄²⁻ ions.

Solution

1 ion of SO₄²⁻ has (16 + 4(8) + 2) = 50 electrons So 1 mole of SO₄²⁻ will have 50N_A electrons. Similarly, using the unitary method, the number of electrons in $\frac{5}{8}$ moles of SO₄²⁻ = $\frac{5}{8} \times 50 \times 6.022 \times 10^{23}$ = 1.881 × 10²⁵ electrons.

Conversion: Particle within a particle

If we have a pure $Mg(NO_3)_2$ sample and it contains a total of 7.4 × 10³⁰ electrons, find the number of moles of $Mg(NO_3)_2$ present in the sample.

Solution

Step 1:

Finding the total number of molecules of $Mg(NO_3)_2$

1 molecule of Mg(NO₃)₂ has (12 + (31) \times 2) = 74 electrons

Number of molecules of $Mg(NO_3)_2$ is = <u>Total number of electrons</u> Number of electons in one molecule

 $=\frac{7.4 \times 10^{30}}{74} = 10^{29}$ molecules

Step 2:

<u>ှို ?</u> ကို

Conversion: Particles to mole

Number of molecules of Mg(NO₃)₂ = $\frac{10^{29}}{6.022 \times 10^{23}}$ = 1.661 × 10⁵ mol

Conversion: Particle within a particle

If we have a pure $Mg(NO_3)_2$ sample and it contains a total of 37 moles of electrons, find the number of moles of $Mg(NO_3)_2$ present in the sample.

Solution

1 molecule of Mg(NO₃)₂ has (12 + (31) × 2) = 74 electrons 37 moles of Mg(NO₃)₂ will contain = $37 \times 74 \times 6.022 \times 10^{23} = 1.649 \times 10^{27}$ electrons

CHEMISTRY

MOLE CONCEPT

CONNECTING THE MACRO AND MICRO WORLDS

- the sample. 100 electrons would be present in the same sample.
- Using these relations, we can find the number of subatomic particles, molecules, or atoms in a given sample of compound.

Conversion: Number of atoms to number of electrons

If we have a pure Mg(NO₃)₂ sample and it contains a total of 30 O atoms, find the total number of electrons present in the sample.

Solution

Step 1:

Find the number of electrons in one Mg(NO₃)₂ unit.

Total number of electrons in Mg(NO₃)₂

$$= 12 + (7 + 3 \times 8) \times 2 = 74$$

Step 2:

Find the number of Mg(NO₃)₂ units.

Given, total number of O atoms = 30 Number of O atoms for each $Mg(NO_3)_2$ unit = 6

So, the number of $Mg(NO_3)_2$ units

 $= \frac{\text{Total O atoms}}{6} = \frac{30}{6} = 5$

Step 3:

Multiply the number of electrons in one unit with the number of units to get the total number of electrons.

Total number of electrons = $74 \times 5 = 370$

Conversion: Number of atoms to number of electrons

If we have a pure Mg(NO₃)₂ sample and it contains a total of 3.011 × 10²⁴ O atoms, find the total number of electrons present in the sample.

Solution

Step 1:

From the previous question, we already know that, Total number of electrons in Mg(NO₃)₂

 $= 12 + (7 + 3 \times 8) \times 2 = 74$ number of O atoms for each $Mg(NO_2)_2$ unit = 6

Step 2:

Find the number of $Mg(NO_3)_2$ units. Given, total number of O atoms = 3.011×10^{24}

So, number of $Mg(NO_3)_2$ units

$$= \frac{\text{Total O atoms}}{6}$$
$$= \frac{3.011 \times 10^{24}}{6}$$

Step 3:

Multiply the number of electrons in one unit with the number of units to get the total number of electrons.

Total number of electrons = $74 \times 3.011 \times \frac{10^{24}}{6} = 3.7 \times 10^{25}$

Conversions Using Moles

Mole is nothing but a huge (6.023×10^{23}) number. Why this number, we will see further in the chapter. When amounts of particles are given in moles, the number of particles is nothing but the number of moles multiplied by N_A.

Conversion: Moles of electrons to number of atoms

If we have a **pure Mg(NO₃)**₂ **sample** and it contains **a total of 3.7 moles of electrons**, find the total number of O atoms present in the sample.

Solution

Step 1:

Find the number of Mg(NO₃)₂ units.

Given, total number of electrons = 3.7 N_{A} Number of electrons in one formula unit of Mg(NO₃)₂ = 74

So, number of Mg(NO₃)₂ units

$$= 3.7 \times \frac{N_A}{74}$$

Step 2:

Multiply the number of $Mg(NO_3)_2$ units with O atoms in each $Mg(NO_3)_2$ unit.

Number of O atoms for each $Mg(NO_3)_2$ unit = 6

Total number of O atoms

$$= (3.7 \times \frac{N_A}{74}) \times 6 = 0.3 N_A$$

Conversion: Moles of atoms to moles of electrons

If we have a pure $Mg(NO_3)_2$ sample and it contains a total of 3.6 moles of O atoms, find the total number of electrons present in the sample.

Solution

Step 1:

Find the number of particles . Total number of O atoms = 3.6 mol = $3.6 \times N_{A}$

Step 2:

Find the number of $Mg(NO_3)_2$ units. Number of O atoms per $Mg(NO_3)_2$ unit = 6

So, number of $Mg(NO_3)_2$ units

$$= 3.6 \times \frac{N_A}{6}$$

Step 3:

Multiply the number of electrons in one unit with the number of units to get the total number of electrons. Number of electrons per Mg(NO₃)₂ unit = 74 Total number of electrons = 74 × 3.6 × $\frac{N_A}{6}$

The conversion between moles of particles within particles is similar to the conversion between numbers of particles within particles. The only difference is that the conversion between moles has its units as moles only.

Conversion: Moles of atoms to moles of electrons

If we have a **pure Mg(NO₃)**₂ sample and it contains a total of **3.6 moles of O atoms**, Find the total **number of moles of electrons** present in the sample.

Solution

Step 1:

Find the number of moles of Mg(NO₃)₂ units.

Total number of electrons = 3.6 mol

Number of O atoms per one $Mg(NO_3)_2$ unit = 6

Number of moles of Mg(NO₃)₂ units = $\frac{(3.6)}{6}$ mol

Step 2:

Multiply the number of electrons in one unit with the number of moles of units to get the total number of moles of electrons.

Number of electrons per $Mg(NO_3)_2 = 74$

Total number of moles of electrons

= 44.4 mol

Mass (n º)	•	Mass (P ⁺)	•	Mass (e ⁻)
1.68 × 10 ⁻²⁴ g	•	1.67 × 10 ⁻²⁴ g	•	9.1 × 10 ⁻²⁸ g
1	•	0.994	•	1 1837

- Generally, mass of electrons is considered to be negligible since the mass of protons/ neutrons is approximately 1837 times larger than the electrons.
- Mass of protons and neutrons is considered to be equal.

Atomic Mass = mass of neutrons (m_n) + mass of protons (m_p) + mass of electrons (m_e)

$$= (n_n \times m_n) + (n_p \times m_p) + (n_e \times m_e)$$

=
$$(n_n \times m_n) + (n_p \times m_p)$$
 {since $m_n, m_p >>>> m_e$ }

= $(n_n + n_p) \times m_p = (A) \times (1.66 \times 10^{-24} g)$ {since $m_n = m_p$ } and A (mass number) = $n_p + n_n$

Finding atomic mass

What is the mass of one atom of He in grams?

Solution

Number of nucleons in a He atom (A) = 4 Mass of each nucleon = $1.66 \times 10^{-24} g$ Mass of He atoms = $4 \times 1.66 \times 10^{-24} = 6.64 \times 10^{-24} g$

What is the atomic mass of Mg in grams?

Solution

Number of nucleons in a Mg atom = 24

Mass of each nucleon = $1.66 \times 10^{-24} g$

Mass of Mg atoms = $24 \times 1.66 \times 10^{-24} = 40 \times 10^{-24} g$

Units of Atomic Mass

- Atomic Mass = (Mass Number) × (1.66 × 10⁻²⁴) g
 - = (A) × (1 amu)
 - = $(A) \times (1 u)$

- The quantity $1/12 \times$ (mass of an atom of C–12) is known as an atomic mass unit.
- 1 *amu* = 1 Dalton (Da) = 1 *u*
- The actual mass of one atom of C-12 = 1.9924×10^{-26} kg

Finding molar mass of an atom

- Molar mass of an atom is nothing but the mass of 6.022×10^{23} atoms.
- 1 amu × N_A = (1.66 × 10⁻²⁴) g × 6.022 × 10²³ \cong 1 g
- So, the molar mass of an atom in grams is numerically equal to the mass number (A).

Find the molar mass of oxygen.

Solution

Number of nucleons in an O atom = 16

Mass of each nucleon = 1.66 \times 10⁻²⁴ g

Molar mass of O

$$= 16 \times 1.66 \times 10^{-24} \times 6.022 \times 10^{23}$$

Easier approach:

Molar mass in grams is numerically equal to the mass number.

Hence, the molar mass of O atoms = 16 g

Average Atomic Mass

Isotopes

Isotopes are those particles that have the same number of protons but different number of neutrons.

Average atomic mass = $\frac{(\% \text{ abundance})_1 \text{ Mass}_1 + (\% \text{ abundance})_2 \text{ Mass}_2 + ...}{(\% \text{ abundance})_2 \text{ Mass}_2 + ...}$

100

- Example: Carbon-12 → 99% Carbon-13 → 1% Average atomic mass of carbon = (12 × 0.99) + (13 × 0.01) g = 12.01 amu
- Average atomic mass is commonly reported as the atomic mass for an element.

Finding average atomic mass

Thung average atomic mass

What is the **average atomic mass** of chlorine, if it contains two types of atoms having **masses 35** *u* and **37** *u*? The relative abundance of these isotopes in nature is in the ratio **3 : 1**.

Solution

% abundances of Cl³⁵ and Cl³⁷ are 75% and 25%, respectively. Hence, average atomic mass

$$=\frac{(75\times35+25\times37)}{100}=35.5\ u$$

°. •. •.

Finding % abundance from average atomic mass

An element X has three isotopes X^{20} , X^{21} , and X^{22} . The **percentage abundance of** X^{20} is **90%** and **the average atomic mass of the element is 20.11**. The percentage abundance of X^{21} should be _____.

Solution

Given that % abundance of X²⁰ is 90%. Let % abundance of X²¹ be 'a'. So, % abundance of X²² = 100 - 90 - a = 10 - a ∴ Average atomic mass of X

$$\{90 \times 20 + a \times 21 + (10 - a) \times 22\}$$

100

Given, the average atomic mass of X = 20.11 $\Rightarrow \frac{\{90 \times 20 + a \times 21 + (10 - a) \times 22\}}{100} = 20.11$

Hence, % abundance of $X^{21} = a = 9\%$

Molecular Mass

- Molecular mass numerically indicates the mass of a molecule.
- Summation of masses of all the atoms that are contained in a molecule gives the molecular mass.
- **1 N atom** Molecular mass = (1 × 14.00 + 3 × 1.008) = 17.024 u

AMMONIA (NH₃)

Find the molecular mass of CO₂ in atomic mass unit.

Solution

Atomic masses of C and O are 12 *u* and 16 *u*, respectively.

Molecular mass of $CO_2 = 12 + 2 \times 16 = 44 u$

? Finding molecular mass in grams

Find the molecular mass of N_2O in grams.

Solution

Atomic masses of N and O are 14 *u* and 16 *u*, respectively. Molecular mass of N₂O

= $(2 \times 14 + 16)$ u = 44 u = $44 \times 1.66 \times 10^{-24}$ g = 7.30×10^{-23} g

Finding molecular mass in amu

Find the formula mass of $Mg(NO_3)_2$ in *amu*.

Solution

Atomic masses of Mg, N, and O are 24 u, 14 u and 16 u, respectively. Formula mass of Mg(NO₃)₂ = 24 + (14 + 16 × 3) × 2 = 148 u

Molar Mass of Molecules

- Similar to how molecular mass is calculated, molar mass of a compound can be calculated by adding molar masses of all the constituent atoms of the molecules.
- For ionic compounds as well, molar mass of formula units can be calculated as the sum of molar masses of the constituent atoms.
- g-atomic mass : It is the mass of 1 mole of atoms of a type in grams.
- g-molecular mass : It is the mass of 1 mole of molecules of a type in grams.
- g-ionic mass : It is the mass of 1 mole of ions of a type in grams.

Finding molar mass of a molecule

Find the **molar mass** of the molecule **N**₂.

Solution

Molar mass of N atoms = 14 gMolar mass of $N_2 = 2 \times 14 = 28 g$

Finding molar mass of a molecule

Find the **molar mass** of the molecule N₂O₅.

Solution

Molar masses of N and O atoms are 14 g and 16 g, respectively Molar mass of $N_2O_5 = 2 \times 14 + 16 \times 5 = 108 g$

Finding molar mass of a molecule

Calculate the molar mass of hydrated copper sulphate salt (CuSO₄.5H₂O).

Solution

Molar masses of Cu, S, O and H atoms are 63.5, 32, 16, and 1 g, respectively.

Molar mass of CuSO₄.5H₂O

 $= 63.5 + 32 + (4 \times 16) + 5 \times \{(1 \times 2) + 16\}$ = 249.5 g

Finding molar mass of a molecule

Let us consider an atom 'X' having gram atomic weight 'y'. Find out the molar mass of the molecule X_2O_3 in terms of y.

Solution

Molar mass or gram atomic mass of X is 'y' g. Molar mass of O atoms = 16 g Molar mass of X_2O_3 = y \times 2 + 16 \times 3 = (2y + 48) g

Mass-Moles Conversion

'Molar mass' g of the substance -

1 mole of the substance

Therefore,

"W" g of the substance contains _____

Hence,

Moles = Mass Molar Mass

Molar Mass moles of the substance

CHEMISTRY

MOLE CONCEPT

UNDERSTANDING THE LAWS OF YESTERDAY FROM TODAY'S PERSPECTIVE

Step 2:

Find the number of moles using the given mass and molar mass.

Given, 50 g of CaCO₃ Moles = $\frac{Given \ mass}{Molar \ mass}$ So, moles of CaCO₃ = $\frac{50}{100}$ = 0.5 mol

Calculate the number of moles of the anion in 60 g of CO₃².

Solution

Step 1: Calculate the molar mass of CO_3^{2-} . The molar mass of CO_3^{2-} = \sum Molar mass of elements = 12 + (16 × 3) = 60 g/mol Step 2:

Find the number of moles using the given mass and molar mass.

Given, 60 g of CO₃²⁻ Moles = $\frac{Given mass}{Molar mass}$ So, moles of CO₃²⁻ = $\frac{60}{60}$ = 1 mol

• While calculating the molar mass of an ion, we can ignore the charge on the ion since electrons have negligible mass.

Finding moles from the mass of an element

How many moles of He atoms are present in 8 g of He?

Solution

Given mass of He = 8 gMolar mass of He = 4 g/mol $Moles = \frac{Given \ mass}{Molar \ mass}$ So, moles of He = $\frac{8}{4}$ = 2 mol

Finding moles from the mass of a compound

How many moles of MgO are present in 120 g of MgO?

Solution

Calculate the molar mass of MgO. Molar mass of MgO = \sum Molar mass of elements = 24 + 16 = 40 g/mol Step 2: Find the number of moles using the given mass and molar mass.

Given mass of MgO = 120 g $Moles = \frac{Given mass}{Molar mass}$ So, moles of MgO = $\frac{120}{4}$ = 3 mol

$\mathbf{Finding}$ mass from the moles of a c	compound
Calculate the mass of 5 moles of CaCO ₃ .	
Solution Step 1: Calculate the molar mass of CaCO ₃ . Molar mass of CaCO ₃ = \sum Molar mass of elements = 40 + 12 + (16 × 3) = 100 g/mol	Step 2: Find the mass using the moles and the molar mass. Given moles of $CaCO_3 = 5 mol$ $Moles = \frac{Given mass}{Molar mass}$ Mass of $CaCO_3 = 5 \times 100 = 500 g$
َوْرُ ؟ Finding mass from the moles of a c	compound
The weight in grams of H ₂ SO ₄ present in	0.25 mole of H₂SO₄ is:
a. 0.245 b. 2.45	c. 24.5 d. 49.0
Solution	Step 2:
Step 1: Calculate the molar mass of H_2SO_4 . Molar mass of H_2SO_4 = \sum Molar mass of elements = $(2 \times 1) + 32 + (4 \times 16) = 98 \ g/mol$	Find the mass using the moles and the molar mass. Given moles of $H_2SO_4 = 0.25$ $Moles = \frac{Given \ mass}{Molar \ mass}$ Mass of $H_2SO_4 = 0.25 \times 98 = 24.5 \ a$

Finding the number of particles from the mass of an element

How many **He atoms** are present in **4** *g* of **He**?

Solution

Step 1:

Calculate the number of moles of He. Given, mass of He = 4 g Molar mass of He = 4 g/mol $Moles = \frac{Given \ mass}{Molar \ mass}$ Moles of He = $\frac{4}{4} = 1 \ mol$

Step 2: Finding number of atoms using moles.

Given moles of He atoms = 1

Moles = $\frac{Number of particles}{Avogadro number}$ Number of particles (He atoms) = 1 × N_A = N_A

Finding molecules from the mass of a compound

How many CO₂ molecules are present in 88 g of CO₂?

Solution

Step 1: Calculate the molar mass of CO₂.

Molar mass of CO_2 = \sum Molar mass of elements = 12 + (2 × 16) = 44 g/mol

Step 2: Find the number of moles.

Given mass of $CO_2 = 88 g$ $Moles = \frac{Given mass}{Molar mass}$ Moles of $CO_2 = \frac{88}{44} = 2 mol$

Step 3:

Find number of molecules using moles.

 $Moles = \frac{Number of particles}{Avogadro number}$ Number of particles (CO₂ molecules) = 2 × N_A = 2N_A

Finding the mass of the compound from the molecules

Calculate the mass of 3.011×10^{20} molecules of H_2O .

Solution

Step 1: Find the moles from the molecules. Given, 3.011×10^{20} molecules of H₂O $Moles = \frac{Number of particles}{Avogadro number}$ Moles of H₂O = $\frac{3.011 \times 10^{20}}{6.022 \times 10^{23}}$ = 0.5×10^{-3} mol Step 2: Find the mass from the number of moles.

 $Moles = \frac{Given \ mass}{Molar \ mass}$ Molar mass of H₂O is 18 g/mol Mass of H₂O = 0.5 × 10⁻³ × 18 = 9 × 10⁻³ g

Finding atoms from the given mass of a compound

Calculate the total number of H-atoms present in 147 g of H₂SO₄.

Solution

Step 1:	Step 2:
Calculate the molar mass of H_2SO_4 .	Find the moles using the given mass and the
Molar mass of $H_2SO_4 = \sum$ Molar mass of	molar mass.
element	Given, mass of $H_2SO_4 = 147 g$
= (2 × 1) + 32 + (4 × 16) = 98 <i>g/mol</i>	$Moles = \frac{Given \ mass}{Molar \ mass}$ $Moles of H SO_{i} = \frac{147}{147} = 15 \ mol$
	$10000011_{2}00_{4}^{-}-98^{-}1.51101$

Step 3:

Find atoms from moles.

 $Moles = \frac{Number of particles}{Avogadro number}$ Number of particles (H_2SO_4 molecules) = 1.5 × N_A Number of H atoms = $2 \times \text{Number of H}_2\text{SO}_4$ molecule = $2 \times 1.5 \times \text{N}_A = 3\text{N}_A$

Finding the mass of a compound from electrons

If 1.325 x 10²⁵ electrons there are in a CO₂ sample, then what is the mass of CO₂ present?

Solution

So, moles of CO₂ = $\frac{1}{22N_A} \times 1.325 \times 10^{25} = 1 \text{ mol}$ Step 1: Find moles of CO₂ from the number of electrons. Given, Step 2: Total number of electrons = 1.325×10^{25} Find the mass of the compound from moles. Moles = <u>Given mass</u> <u>Molar mass</u> 1 molecule of CO_2 contains 6 + (2 × 8) = 22 electrons

Mass of CO_2 = moles × molar mass = 1 × 44 = 44 g

Finding the number of electrons from the mass of an element of a compound

If the total mass of oxygen present in CuSO₄.5H₂O is 160 g, then calculate the total number of electrons present in the sample.

Solution

Step 1:	Step 2:
Find the mass of oxygen in 1 mole of the	Find the moles of the compound from the
compound.	mass of O atoms.
1 mole of $CuSO_4.5H_2O$ contains 9 mole of	Given, 160 g of oxygen is present in the sample
oxygen atoms.	144 g of O atoms are present in 1 mole of
Moles = <u>Given mass</u> Molar mass	$CuSO_4.5H_2O.$
Mass of O atoms in one mole of compound	So, moles of $CuSO_4.5H_2O_160$
= moles × molar mass	$=\frac{1}{144}=1.11 \text{ mol}$
= 9 × 16 = 144 <i>g</i>	

Step 3:

Find number of electrons from moles of compound.

1 molecule of $CuSO_4.5H_2O$ contains = 29 + 16 + (4 × 8) + (10 × 5) = 127 electrons Electrons in 1.11 mole of $CuSO_4.5H_2O$ sample = 1.11 × 127 mol = 1.11 × 127 N_A = 141.11 N_A

Finding the number of atoms from the mass and the moles of compounds

Which of the following substances contain the **greatest number** of **chlorine atoms?**

a. $5 g \text{Cl}_2$ b. $60 g \text{NaClO}_3$ c. 0.1 mole of KCl d. 0.5 mole of Cl_2

Solution

a)

Given, mass of $Cl_2 = 5 g$ Molar mass of $Cl_2 = 71 g/mol$ Moles of $Cl_2 = \frac{5}{71} = 0.07$ Moles of $Cl = 2 \times Moles$ of Cl_2 $= 2 \times 0.07 = 0.14 mol$

c)

BOARDS

Given, 0.1 mole of KCI Moles of CI = Moles of KCI Moles of CI = 0.1 *mol* b) Given, mass of NaClO₃ = 60 g Molar mass of NaClO₃ = 23 + 35.5 + (16 × 3) = 106.5 g Moles of NaClO₃ = $\frac{60}{106.5}$ = 0.563 mol Moles of Cl = Moles of NaClO₃ = 0.563 mol d) Given, 0.5 mole of Cl₂ Moles of Cl = 2 × Moles of Cl₂ Moles of Cl = 2 × 0.5 = 1 mol

So, option 'd' is correct.

MAIN

ADVANCED

Relative atomic mass

It is the ratio of the average mass of the atom to 1/12th of the mass of a carbon-12 atom. Since it is a ratio, it is a dimensionless quantity.

Total number of particles

Finding the average molecular mass from the mass of the components

If a gas mixture contains 560 g of N₂ gas and 320 g of oxygen gas, find the average molecular mass of the mixture.

Solution

Step 1: Calculate moles of N₂ and O₂ from their given mass. Given, Mass of N₂ = 560 g, Mass of O₂ = 320 g *Moles* = $\frac{Given mass}{Molar mass}$ Moles of N₂ = $\frac{560}{28}$ = 20 mol Moles of O₂ = $\frac{320}{32}$ = 10 mol

Step 2: Calculate average molecular mass (AMM) from mass and moles of components.

 $AMM = \frac{Total \ mass}{Total \ moles}$

Total mass = mass of N₂ + mass of O₂ Total moles = moles of N₂ + moles of O₂ AMM = $\frac{560 + 320}{20 + 10}$ = 29.33 *amu*

Finding the average molecular mass from the mass composition of components

If the **mass composition** of air is given as **76.7** % of **nitrogen gas and 23.3** % of **oxygen gas,** find the **average molecular mass of the mixture.**

Solution

Step 1: Calculate the moles of N_2 and O_2 from their mass composition.

Given, mass composition of air = 76.7 % nitrogen gas, 23.3 % oxygen gas

Assume total mass of gas = 100 g Mass of N₂ = 76.7 g Mass of O₂ = 23.3 g

Moles of N₂ = $\frac{76.7}{28}$ = 2.74 mol Moles of O₂ = $\frac{23.3}{32}$ = 0.73 mol

Step 2:

Calculate the average molecular mass (AMM) from the mass and the moles of the components.

Total mass = mass of N_2 + mass of O_2 Total moles = moles of N_2 + moles of O_2

 $AMM = \frac{Total mass}{Total moles} = \frac{76.7 + 23.3}{2.74 + 0.73}$ = 28.83 gmu

Finding the average molecular mass from the molar composition of the components

If the molar composition of air is given as **79% of nitrogen gas and 21% of oxygen gas,** find the **average molecular mass of the mixture.**

Solution

Step 1:

Find moles of N_2 and O_2 assuming that total moles of mixture is 100.

Given molar composition of air is 79% nitrogen gas and 21% oxygen gas Moles of $N_2 = 79$, Moles of $O_2 = 21$

Step 2: Calculate mass of N ₂ and O	Step 3: 2. Calculate average molecular mass (AMM) from mass and moles of components.
Mass of N ₂ = 79 × 28 = 2212 Mass of O ₂ = 21 × 32 = 672 g	$g Total mass = mass of N_2 + mass of O_2 Total moles = moles of N_2 + moles of O_2 AMM = \frac{Total mass}{Total moles} = \frac{2212 + 672}{79 + 21} = 28.84 amu$
BOARDS MAIN	Lows of Chamical Combinations

- Matter consists of tiny particles known as atoms that are indivisible.
- All the atoms of a given element have **identical properties** including **identical mass**.
- Atoms of different elements differ in mass and they combine in a **fixed** ratio to form compounds.
- Chemical reactions involve rearrangement of atoms.
- According to the theory, an atom is indivisible but they can be **divided** into electrons, neutrons, and protons.
- Atoms of the same element can have **different masses** and atoms of different elements can have same mass as well, as in the case of **isotopes** and **isobars**.
- A complex reaction **does not** react with a simple whole number **ratio**.

Law of Conservation of Mass

It states that **matter can neither be created nor destroyed** in ordinary chemical and physical changes. In a chemical reaction, the **total mass of the reactants** is always equal to the **total mass of the products** formed.

- The number of H and O atoms are the same on either side of the reaction.
- The number of molecules is not conserved. On the reactant side, there are three molecules and on the product side there are two molecules.

Exception

Nuclear reactions are an exception to the law of conservation of mass.

• In nuclear reactions, some of the mass is converted into energy and hence the mass is not conserved.

Law of Definite Proportions

A given compound always contains **exactly the same proportion** of elements by weight **irrespective** of the **source** or **method of preparation**.

The ratio of mass of H to the oxygen in water is constant. This means irrespective of the source it is obtained, the mass % of H in water is 11.11% and the mass % of oxygen is 88.89%.

Law of Multiple Proportions

If two elements can combine to form more than one compound, for a fixed mass of any one element in both the compounds, the ratio of masses of the other element in the two compounds comes out to be in small whole numbers.

0

Example

In the above example,

Ratio of mass of H : O in water is 2 : 16

Ratio of mass of H : O in hydrogen peroxide is 2 : 32 = 1 : 16

Ratio of water and hydrogen peroxide for a fixed mass of oxygen is 2:1

When two elements H and O combine to form more than one compound, water and hydrogen peroxide, the masses of hydrogen that combine with the fixed mass of oxygen will also be in a whole number ratio.

C H E M I S T R Y MOLE CONCEPT

MORE INTO LAWS

Carbon combines with oxygen and forms carbon dioxide and it combines with hydrogen to form methane. Hydrogen and oxygen combine to form water.

Mass ratio of C: H = 12: 4 = 3: 1; Mass ratio of C: O = 12: 32 = 3: 8; Mass ratio of H: O = 2: 16 = 1: 8 So here, C combines with H in the ratio of 3: 1 and C combines with O in the ratio of 3: 8. H and O

$$3H_{2(g)} + N_{2(g)} \longrightarrow 2NH_{3(g)}$$

Here, 3 volumes of hydrogen combine with 1 volume of nitrogen to give 2 volumes of ammonia under the same conditions of temperature and pressure.

Molar volume at NTP (Normal Temperature and Pressure)

At NTP condition: Temperature = **20°C or 293** *K*; Pressure = **1** *atm*; Molar volume at NTP = **24** *L*

SATP (Standard Ambient Temperature and Pressure)

At SATP condition: Temperature = 25°C or 298 K; Pressure = 1 atm; Molar volume at SATP = 24.8 L

- 1. Molar volume is the volume occupied by one mole of the gas.
- 2. Molar volume at STP is 22.7 L(1 bar) or 22.4 L (1 atm)
- 3. Molar volume at NTP is 24 *L*.
- 4. Molar volume at SATP is 24.8 L.

Calculate the **vapour density** of 20 g of **methane gas.**

Solution

Vapour density = $\frac{molar mass}{2}$ Molar mass of methane (CH₄) = 12 + (1 × 4) = 16 g Hence, vapour density of methane = $\frac{16}{2}$ = 8

(L) Vapo

Vapour density does not depend upon the given mass.

Finding the vapour density of methane.

Calculate the vapour density of 30 g of methane gas.

Solution

As we know Vapour density = $\frac{molar mass}{2}$ Molar mass of methane (CH₄) = 12 + (1 × 4) = 16 g

Hence, vapour density of methane =
$$\frac{16}{2}$$
 = 8

ို?

Vapour density of a gas.

The **relative density** of **gas A** with respect to another **gas B** is **2**. If the **vapour density** of **gas B** is **20**, the **vapour density of gas A** is:

Solution

Step 1:

Find the molar mass of gas B (M_B) Given,

Vapour density of gas B = 20

 $\frac{M_B}{2} = 20$ $\therefore M_B = 40 g$

Step 3:

Find the vapour density of gas A

Vapour density = $\frac{\text{molar mass}}{2}$ \therefore Vapour density of gas A = $\frac{80}{2}$ = 40

Step 2:

Find the molar mass of gas A (M_A) Relative density of gas A with respect to gas B = $\frac{\text{Density of gas A at same T and P}}{\text{Density of gas B at same T and P}}$ Relative density of gas A = $\frac{\text{Mass of gas A in 1 } m/\text{ at same T and P}}{\text{Mass of gas B in 1 } m/\text{ at same T and P}}$ $\therefore 2 = \frac{\text{N particles x (mass of one particle of gas A)}}{\text{N particles x (mass of one particle of gas B)}} = \frac{\text{M}_{A} amu}{\text{M}_{B} amu} = \frac{\text{M}_{A}}{40}$ $\therefore M_{A} = 80 g$

Vapour Density

The density of ammonia is 0.77 g/L. Calculate its vapour density at STP (1 atm, 273 K).

Solution

Step 1: Find the molar mass Given density of ammonia = 0.77 g/L density = $\frac{Molar mass}{Molar volume at STP}$ 0.77 g/L = $\frac{Molar mass}{22.4 L}$ Molar mass = $0.77 \times 22.4 \ g = 17.248 \ g$ **Step 2: Find the vapour density** *Vapour density* = $\frac{molar \ mass}{2} = \frac{17.248}{2} = 8.624$

Finding Vapour Density from Molar mass.

N₂ has a molecular mass of **28** amu. What will be its vapour density?

Solution

Given, Molecular mass = 28 *amu*

$$\therefore Vapour \ density = \frac{molar \ mass}{2} = \frac{28}{2} = 14$$

Finding vapour density of the mixture.

Solution

Step 1: Find the mole of all component Given Mass of $CO_2 = 44 g$ Mass of ethane = 30 g So, *Mole of CO_2 = \frac{\text{Given mass}}{\text{Molar mass}} = \frac{44}{44} = 1 <i>Mole of ethane* = $\frac{\text{Given mass}}{\text{Molar mass}} = \frac{30}{30} = 1$ Step 2: Find Average Molar Mass Total mass = (44 + 30) g = 74 gTotal moles = $n_{CO_2} + n_{C_2H_6} = 1 + 1 = 2 mol$ Average Molar mass = $\frac{Total mass}{Total moles} = \frac{74}{2} = 37 g$

Step 3:

Find Vapour density $\therefore Vapour density = \frac{molar mass}{2} = \frac{37}{2} = 18.5$

Finding the ratio of molar mass from the ratio of vapour density.

Vapour density of two gases is in the ratio of 1:3. What will be the ratio of their molar masses?

Solution

Let the two gases be A and B.

Given : $\frac{Vapour \text{ density of gas A}}{Vapour \text{ density of gas B}} = \frac{1}{3}$ We know, Vapour density = $\frac{molar \text{ mass}}{2}$ So, $\frac{(molar \text{ mass of gas A}) \times 2}{(molar \text{ mass of gas B}) \times 2} = \frac{1}{3}$ $\therefore \frac{molar \text{ mass of gas A}}{molar \text{ mass of gas B}} = \frac{1}{3}$ Hence, the ratio of the molar masses of gas A and gas B is 1:3.

Finding the number of molecules from vapour density

Gas A has vapour density of 8.55. Find the number of molecules in 0.5 moles of the gas.

Solution

Given:

Number of moles of gas molecules = 0.5 mol Number of moles = $\frac{\text{Number of Particles (given)}}{N_A} \Rightarrow 0.5 = \frac{\text{Number of molecules}}{N_A}$ Hence, Number of molecules = 0.5 N_A (Vapour density of the gas was not required)

Vapour density from mass

A gas cylinder holds **85** *g* of gas X. The same cylinder, when filled with hydrogen, holds **8.5** *g* of **H**₂ at the same temperature. Find its vapour density.

Solution

Let the volume of the cylinder be 'V' *mL* Given: Mass of gas X in 'V' *mL* = 85 *g* Mass of gas H₂ in 'V' *mL* = 8.5 *g* (at the same temperature) $\therefore \text{ Vapour density} = \frac{\text{mass of gas X in V mL at T and P}}{\text{mass of H}_2 \text{ gas in V mL at same T and P}} = \frac{85}{8.5} = 10$

Finding the vapour density of the mixture.

A gaseous mixture of H_2 and CO_2 gas contains 66% by mass of CO_2 . What is the Vapour **Density** of the mixture?

Solution

Step 1: Find the mol of all component Let the mass of the mixture = 100 g Given: Mass of CO₂ in the mixture = 66% Mass of H₂ = (100 - 66) g = 34 g Mol of CO₂ = $\frac{\text{Given mass}}{\text{Molar mass}} = \frac{66}{44} = 1.5 \text{ mol}$ Mol of H₂ = $\frac{\text{Given mass}}{\text{Molar mass}} = \frac{34}{2} = 17 \text{ mol}$

Step 2: Find Average Molar Mass Total mass = 100 g Total moles = $n_{CO_2} + n_{H_2} = 1.5 + 17 = 18.5 \text{ mol}$ Average Molar mass = $\frac{Total \text{ mass}}{Total \text{ moles}} = \frac{100}{18.5} = 5.41 \text{ g}$

Step 3:

Find Vapour density $\therefore Vapour density = \frac{molar mass}{2} = \frac{5.41}{2} = 2.7$

CHEMISTRY

MOLE CONCEPT

INTERCONVERSION FINALE AND PERCENTAGES

Molar volume is only defined for gases and not for liquids or solids.

Mole - volume interconversion

At **STP, 11.2** *L* of CO₂ gas contains:

Solution

Using the interconversion of mole-volume relationship, The number of moles,

 $n = \frac{Volume of gas (at STP)}{22.4 L}$ $n = \frac{11.2}{22.4} mol$ n = 0.5 mol

Mole - volume interconversion

What volume would **0.735 moles** of O₂ gas occupy at **1** atm and **0° C**?

Solution

In the question, 1 *atm* and 273 *K* signifies STP condition. So, **using the interconversion of mole-volume relationship**, we have, $V(STP) = n \times 22.4 L$ So, $V = 22.4 \times 0.735 = 16.46 L$

Mole - volume interconversion

What volume is occupied by 5 moles of a gas at STP?

Solution

We can find the volume of gas at STP using the interconversion of mole-volume relationship. V (STP, L) = $n \times 22.4$,

So,

V = 22.4 × 5 = 112 *L*

Mole - volume interconversion

The number of moles of H_2 in **0.24** *L* of Hydrogen gas at **NTP** is:

Solution

Volume of gas occupied at NTP = 24 LUsing the interconversion of mole-volume relationship, The number of moles,

 $n = \frac{Volume of gas (at NTP)}{24}$ $n = \frac{0.24}{24} mol$

n = 0.01 *mol*

How many moles are there in 29.4 L of gaseous ethane at NTP?

Solution

Molar volume at NTP = 24 *L* Using the **interconversion of mole-volume relationship**, The number of moles,

$$n = \frac{Volume of gas (at NTP)}{24}$$
$$n = \frac{29.4}{24} mol$$

Mass - volume interconversion

What is the mass in grams of 5.6 L of ethene gas at STP?

Solution

Step 1: Finding the number of moles of ethene gas

Using the interconversion of mole-volume relationship,

The number of moles,

$$n = \frac{Volume of gas (at STP)}{2}$$

n

 $n = \frac{1}{4} mol = 0.25 mol$

Step 2: Using the interconversion of mole-volume relationship,

n = <u>Given mass</u> <u>Molar mass</u>

$$0.25 = \frac{m}{28}$$

m = 0.25 × 28 = 7 g

Mass - mole - volume interconversion and molecular formula determination

16 g of an ideal gas **SO**_x occupies **5.6** L at **STP**. The value of x is:

Solution

Step 1: Finding the number of moles of SO_x gas Using the interconversion of mole-volume relationship, We have, the number of moles, $n = \frac{Volume \ of \ gas \ (STP, L)}{22.4}$ $n = \frac{5.6}{22.4} \ mol$ $n = \frac{5.6}{22.4} \ mol$ $n = \frac{1}{4} \ mol = 0.25 \ mol$ Step 2: Finding the value of x 0.25 mol of gas contains 16 g of an ideal gas, SO_x Then, 1 mol of gas will contain 64 g of SO_x Thus, 64 g is the molar mass of SO_x Molar mass = 32 + 16(x) = 64 x = 2

Molecular weight determination form molar volume at STP

The **ratio of the weight** of one litre of a gas to the weight of one litre oxygen gas both measured at **STP** is **2.22**. The molecular weight of the gas would be:

Solution

Given : $\frac{\text{mass of 1 litre of the gas at STP}}{\text{mass of 1 litre of oxygen at STP}} = 2.22$ Mass of 1 litre of the gas at STP = 2.22 × mass of 1 litre of the oxygen at STP
Then,
Mass of 22.4 litres of the gas at STP = 2.22 × mass of 22.4 litres of the oxygen at STP $\frac{\text{(molar mass of gas X)}}{\text{molar mass of Q}_2(32 \text{ g/mol})} = 2.22$

 $1 kg = 1000 g = 10^6 mg$ (milligrams) $1 L = 1000 mL = 1000 cm^3 = 10^{-3} m^3$

💭 Particles - volume interconversions

Calculate the **number of atoms/molecules** present in the following at **STP** conditions. (a) 22.4 L of CO₂ (b) 0.224 L of He (c) 44.8 L of CH₄ (d) 112 L of He

Solution

(a) 22.4 L of CO_2 1 mol of CO_2 occupies 22.4 L at STP 1 mol of CO_2 contains N₄ number of molecules

(b) 0.224 *L* of He

n =

Using the interconversion of mole-volume relationship, The number of moles, *Volume of gas (STP, L)*

n =
$$\frac{0.224}{22.4}$$
 = 0.01 mol

Number of atoms = $0.01 \times N_A$ = $0.01 \times 6.023 \times 10^{23}$ = 6.023×10^{21}

(c) 44.8 *L* of CH₄

Using the interconversion of mole-volume relationship, The number of moles,

$$n = \frac{Volume \ of \ gas \ (at \ STP, \ L)}{22.4}$$

$$n = \frac{44.8}{22.4} = 2 mol$$

Number of molecules = $2 \times N_{A} = 2 \times 6.023 \times 10^{23} = 1.2046 \times 10^{24}$

(d) 112 L of He

Using the interconversion of mole-volume relationship, The number of moles,

$$n = \frac{Volume of gas (STP, L)}{22.4}$$
$$n = \frac{112}{22.4} = 5 mol$$

$$\frac{1-22.4}{22.4}$$

Number of atoms = $5 \times N_A = 5 \times 6.023 \times 10^{23} = 3.0115 \times 10^{24}$

Particles - volume interconversion

4.4 *g* of CO₂ and **2.24** *L* of H₂ at **STP** are mixed in a container. The **total number of molecules** present in the container will be:

Solution

Step 1: Finding the number of moles of CO ₂ Using the interconversion of mole-mass relationship, We have, the number of moles, $n = \frac{Given mass}{Molar mass}$ $= \frac{4.4}{Molar mass} = 0.1 mol$	Step 2: Finding the number of moles of H ₂ Using the interconversion of mole-volume relationship, $n = \frac{Volume \ of \ gas \ (STP, L)}{22.4}$ $n = \frac{2.24}{-0.1 \ mol}$
$=\frac{1}{44}$ = 0.1 mol	$n = \frac{2.24}{22.4} = 0.1 mol$

Step 3: Total number of molecules

Total moles of gas (CO₂ + H₂) = 0.2 mol The total number of atoms = $0.2 \times N_A = 12.046 \times 10^{22}$

Particles - volume interconversion

A sample of propane gas has a volume of **2.8** *L* at **STP**. Find the **number of particles** in the sample.

Solution

Step 1: Finding the number of moles Using the interconversion of mole-mass relationship, We have, the number of moles, $n = \frac{Volume of gas (STP, L)}{22.4}$ $n = \frac{2.8}{22.4} = 0.125 mol$

Step 2: Finding the number of molecules

Number of atoms = $0.125 \times N_A$ = $0.125 \times 6.023 \times 10^{23}$ = 7.528×10^{22}

Particles - volume interconversion

From **160** g of a **SO**₂ (g) sample, **1.2046** × **10**²⁴ molecules of **SO**₂ are removed. Find out the volume of left over **SO**₂ (g) at **STP**.

Solution

Step 1: Finding the number of moles of SO ₂ Using the interconversion of mole-mass relationship, We have, the number of moles,	Step 2: Finding moles of SO ₂ removed Now, the number of moles of SO ₂ removed
$n = \frac{Given mass}{Molar mass}$ $= \frac{160}{64} = 2.5 mol$	$= \frac{1.2046 \times 10^{24}}{N_A}$ $= \frac{12.046}{6.023} \times 10^0 = 2 \text{ mol}$
Step 3: Number of moles remaining The number moles remaining = 2.5 - 2 = 0.5	Step 4: Volume of SO ₂ left = moles × 22.4 = $0.5 \times 22.4 = 11.2 L$

Particles - volume interconversion

Calculate the number of electrons in 44.8 L of H₂SO₄(g) at STP.

Solution

Step 1: Find the moles of H_2SO_4 Given: Volume = 44.8 *L* $Moles = \frac{Volume of gas at STP}{Molar volume at STP}$ $Moles = \frac{44.8}{22.4}$ Moles of $H_2SO_4 = 2 \text{ mol}$ Step 2: Find the number of electrons of H_2SO_4 1 mole of H_2SO_4 contains = (2 × 1) + 16 + (4 × 8) = 50 mole of electrons 1 mole (N_A molecules of H_2SO_4) contains 50 N_A electrons. 2 mole (N_A molecules of H_2SO_4) contains 2 × 50 N_A electrons. = 100 N_A

Particles - volume interconversion

A pure sample of CO_2 contains a total of 2.2×10^{10} electrons. Find the volume occupied by CO_2 at STP.

Solution

Step 1: Find the moles of CO₂

Given: number of electrons = 2.2×10^{10} $6 + (2 \times 8) = 22$ mole of electrons are present in 1 mole of CO₂ or 22 N_A of electrons are present in 1 mole of CO₂ 2.2×10^{10} electrons are present in

$$= \frac{2.2 \times 10^{10}}{22 N_{A}}$$
$$= \frac{10^{9}}{N_{A}} \text{ moles of CO}_{2}$$

Step 2: Find the volume of CO₂

Volume of 1 mole of $CO_2 = 22.4 L$ Volume of $\frac{10^9}{N_A}$ mole of CO_2 = $\frac{10^9}{N_A} \times 22.4 L$ = 3.719 × 10⁻¹⁴ L

 Calculate the mass percentage of sulphur in H2SO4.

 (a) 49.5 %
 (b) 50.1 %

 (c) 45.6 %
 (d) 32.6 %

Solution

Molar mass of $H_2SO_4 = 98 \text{ g/mol}$ Molar mass of S = 32 g/mol Mass % of element = $\frac{\text{mass of the element in 1 mole of compound}}{\text{Molar mass of compound}} \times 100$ Mass % of S = $\frac{32}{98} \times 100$ = 32.65%

Molar mass determination from percentage composition

A compound contains 8% sulphur by mass. The least molecular mass is:

(a) 100 g/mol (b) 400 g/mol

(c) 155 g/mol

(d) 256 g/mol

Solution

Step 1: Relating mass percentage to themolar mass of the compoundGiven:Mass % of S = 8Molar mass of S = 32 g/molLet the molar mass of the compound bex g/mol.Mass % of element =mass of the element in 1 mole of compound

Step 2 : Molar mass of the compound Minimum molecular mass is possible when 1 atom of S is present in the compound. Mass % of S = 8 = $\frac{32}{100} \times 100$ %

 $x = 400 \ g/mol$ So option 'b' is correct

------ × 100 %

Molar mass of compound

Molar Mass vs Molecular Mass

Molar mass is the mass of 1 mole of substance. It gives the measure of number of molecules/atoms/compounds present in a mole of substance. Its SI unit is *g/mol*.

Molecular mass is the mass of 1 molecule. Its unit is **amu**. Generally, both the masses have the same values and only units are different.

BOARDS	MAIN

Empirical and Molecular Formula

 Molecular formula tells us the exact number of atoms of each element in a molecule. It is obtained by using the molar mass of each element.

Eg: 6, 12 & 6 atoms of C, H & O are present in a molecule of **Glucose** $(C_6H_{12}O_6)$.

 Empirical formula represents the simplest whole number ratio of various atoms present in a compound. It is determined by the mass percent of various elements present in the compound.

Eg: In Glucose, the ratio of number of atoms of C, H & O is respectively, $6:12:6 \implies 1:2:1$

Its empirical formula is CH₂O

Molecular formula and Empirical formula are related as,

Molecular Formula = n × Empirical Formula

$$\Rightarrow \mathbf{n} = \frac{Molecular Formula}{Empirical Formula} = \frac{molecular formula mass}{empirical formula mass}$$

Where, 'n' is the factor by which empirical and molecular formulas differ.

Step by step: Getting to Empirical formula if the mass % of the constituent elements is given,

Molecular formula determination from percentage composition

A compound on analysis gave the following results: **C** = **39.99** %, **H** = **6.71** % and **O** = **53.28** %. Determine the **molecular formula** of the compound if the **molar mass** is 180 *g/mol*.

Solution

Step 1: Find the moles of each element	Step 2 : Molar mass of the compound
Given:	For making the elements in a simple
mass % of C = 39.99 %, H = 6.71 % and O = 53.28 %.	whole number ratio, we divide by the
Assuming mass of compound to be 100 g	element having the least moles (by
Moles = <u>Given mass</u>	carbon)
Molar mass	Simple ratio of C = $\frac{3.33}{3.33} = 1$
Molar mass of C = 12 g/mol , H = 1 g/mol and O = 16 g/mol .	Simple ratio of H = $\frac{6.71}{3.33}$ = 2
Mass of C = 39.99 g, moles of C = $\frac{39.99}{12}$ = 3.33	Simple ratio of O = <u>3.33</u> = 1 3.33

Mass of H = 6.71, moles of H = $\frac{6.71}{1}$ = 6.71 Mass of O = 53.28 g, moles of O = $\frac{53.28}{16}$ = 3.33

Empirical formula becomes = CH_2O

Step 3: Find the molecular mass

Empirical formula mass = $12 + (1 \times 2) + 16 = 30$ Given: molar mass = 180 g/mol. $n = \frac{Molecular formula mass}{empirical formula mass} = \frac{180}{30} = 6$ Molecular formula (MF) = $n \times \text{Empirical formula (EF)}$ $= 6 \times (CH_2O) = C_6H_{12}O_6$

Mass ratio determination from atom ratio

Calculate the weight ratio of Ca and Br in a compound with Ca and Br in 1:2 atom ratio.

Solution

Given: Atom Ratio of Ca : Br is 1 : 2. Molar mass of Ca = 40 *g/mol*. Molar mass of Br = 80 *g/mol*.

Moles = <u>Given mass</u> Molar mass Mass = moles × molar mass Mass ratio of Ca : Br is (1 × 40) : (2 × 80) 40 : 160 = 1 : 4

ို့(?)

Molecular formula determination from percentage composition

Calculate the **molecular formula** of a compound which contains **20 % Ca** and **80 % Br** (by wt.), if the **molecular weight** of the compound is **200**. (Atomic weight **Ca = 40**, **Br = 80**)

(a) Ca _{1/2} Br	(b) CaBr ₂	(c) Ca ₃ Br	(d) Ca ₂ Br

Solution

Step 1: Find the moles of each element Given: mass % of Ca = 20 %, Br = 80 % Assuming mass of compound to be 100 gMoles = <u>Given mass</u>

Molar mass

Molar mass of Ca = 40 g/mol, Molar mass of Br = 80 g/mol. Mass of Ca = 20 g, moles of Ca = $\frac{20}{40}$ = 0.5 mol

Mass of Br = 80 g, moles of Br = $\frac{80}{80}$ = 1 mol

Step 2 : Find the empirical formula For making the elements in a simple whole number ratio, we divide by the element having least moles (by calcium).

Simple ratio of Ca = $\frac{0.5}{0.5}$ = 1

Simple ratio of Br = $\frac{1}{0.5}$ = 2

Empirical formula becomes = CaBr₂

Step 3: Find the molecular formula Empirical formula mass = $40 + (80 \times 2) = 200$ amu Given: Molecular mass = 200 amu

Using the formula,

molecular formula mass = n × empirical formula mass

 $200 = 200 \times n$ n = 1 Molecular formula = CaBr₂

Atom ratio determination from mass ratio

Calculate the atom ratio of Ca and Br in a compound with Ca and Br in 1:4 weight ratio.

Solution

Step 1: Converting weight ratio into percentage

Given:

Weight ratio of Ca : Br = 1 : 4.

Here, 1: 4 ratio can be understood as 20 % of Ca and 80 % of Br.

Step 2: Find the moles of each element Assuming mass of compound to be 100 g $Moles = \frac{Given \ mass}{Molar \ mass}$ Molar mass of Ca = 40 g/mol, Molar mass of Br = 80 g/mol. Mass of Ca = 20 g, moles of Ca = $\frac{20}{40} = 0.5 \ mol$ Mass of Br = 80 g, moles of Br = $\frac{80}{80} = 1 \ mol$	Step 3 : Find the empirical formula For making the elements in a simple whole number ratio, we divide by the element having least moles (by calcium). Simple ratio of Ca = $\frac{0.5}{0.5} = 1$ Simple ratio of Br = $\frac{1}{0.5} = 2$ Hence, the atom ratio of Ca and Br in the given compound is 1:2
80 Hence atoms ratio will be 1 : 2	

Molecular formula determination from mass ratio

In an organic compound of molar mass 108 g mol⁻¹, C, H and N atoms are present in 9:1:3.5 ratio by weight. The molecular formula can be:

(a) $C_6 H_8 N_2$ (b) $C_7 H_{10} N$ (c) $C_5 H_6 N_3$ (d) $C_4 H_{10} N_3$

Solution

Solution

Step 1: Convert the given ratio into simple whole numbers ratio

Given: The mass ratio of C: H: N

= 9 : 1 : 3.5 = 36 : 4 : 14

Step 2: Find the mole ratio and empirical formula

 $Moles = \frac{Given mass}{Molar mass}$

Dividing individual masses by respective molar masses. Molar Ratio of C: H: N = 36/12: 4/1: 14/14 = 3: 4: 1

hence the empirical formula becomes C_2H_1N .

Step 3: Find molecular formula

For calculating Molecular Formula we need to use the formula,

Molecular formula mass = n x Empirical formula mass

 $n = \frac{Molecular mass}{Molecular mass}$ **Empirical Mass** Given: Molecular mass = 108 g/mol $n = \frac{108}{(12^*3 + 1^*4 + 14^*1)} = \frac{108}{54} = 2$ Hence, the molecular Formula is $C_{e}H_{s}N_{2}$ (by multiplying 'n' by EF)

Empirical formula determination

Find the empirical formula of vanadium oxide if 2.73 g of the oxide contains 1.53 g of the metal. (V = 51, O = 16)

Solution	
Step 1: Find the mass of O	Mass of metal oxide
Given:	= Mass of Metal + Mass of Oxygen,
Mass of metal oxide = $2.73 g$	2.73 = 1.53 + x
Mass of $\overline{=}$:al oxide = 1.53 g	x = 1.2 g of Oxygen

Step 2: Find the molecular formula

Let the empirical formula be V_2O_x

Moles = <u>Given mass</u> Molar mass So, we can say that (Mass of V / Mass of O)

 $= \frac{1.53}{1.2} = \frac{(2 \times \text{Molar mass of Vanadium})}{(x \times \text{Molar mass of Oxygen})}$

Hence 'x' comes out to be approximately 5. So formula becomes V_2O_5 .

Molecular formula determination from the mass composition and vapour density A gaseous compound of nitrogen and hydrogen contains 12.5 % (by mass) of hydrogen. The density of the compound relative to hydrogen is 16. The molecular formula of the compound is: (a) NH₂ (b) N_3H (c) NH₃ (d) N_2H_4 Solution Step 1: Find the molar mass of the compound Step 2: Find mass ratio of elements Given: Percentage of Hydrogen = 12.5%. Vapour density = 16. Percentage of Nitrogen = (100 - 12.5)%We know that Vapour Density = Molecular Mass = 87.5%. Weight ratio of N : H = 87.5 : 12.5 = 7 : 1 Hence Molar Mass of compound comes out to be 32 g. Step 3: Find the empirical formula Step 4: Find the molecular formula Moles = <u>Given mass</u> Molar mass Molecular formula (MF) = n × Empirical formula (EF) Molar ratio is N : H = (7/14) : (1/1) = 1 : 2. n = 32/16 = 2Hence, the molecular Formula Hence, the empirical formula becomes NH₂. becomes N₂H₄

Empirical formula determination from mass percentage

The **simplest formula** of a compound containing **50** % by mass of element **X** (at. wt. 10) and **50** % by mass of element **Y** (atomic weight 20) is:

(a) XY_2 (b) X_2Y (c) X_2Y_2 (d) XY_3

Solution

Step 1: Finding the number of moles in 1 g of the sample Given: 50% by mass of both X and Y Molar mass of X = 10 g/mol.

Molar mass of Y = 20 g/mol.Assuming that we have 1 g of compound. So we have 0.5 g of X and 0.5 g of Y. Now find the number of moles.

X = 0.5 / 10 = 0.05 and Y = 0.5 / 20 = 0.025.

Step 2 Find the simple whole number ratio

So, X : Y = 0.05 : 0.025 = 2 : 1X = 2 and Y = 1. Hence, the formula is X₂Y

Water of hydration determination

1.763 *g* of hydrated BaCl₂ was heated to dryness. The anhydrous salt that remained was **1.505** *g*. What is the formula of the hydrate?

Solution

Step 1: Find the mass of water Step 2: Find the molecular formula Given: Molar mass of BaCl₂ = 137 + 71 = 208 g/mol Mass of hydrated BaCl₂ (BaCl₂ ×H₂O) = 1.763 g Molar mass of $H_2O = 18 g/mol$ Moles = Given mass Mass of anhydrous salt (BaCl₂) = 1.505 gMolar mass hence, mass of water = 1.763 - 1.505 = 0.258 gMass of $BaCl_2 = 1.505$ On heating following reaction occurs: Mass of H₂O 0.258 $BaCl_2 \times H_2O \longrightarrow BaCl_2 + xH_2O$ $\frac{1 \times \text{molar mass of BaCl}_2}{\text{x} \times \text{molar mass of H}_2\text{O}} = \frac{1 \times (137+71)}{18x}$ We need to find 'x'. x = 2 Molecular formula of hydrate is BaCl₂.2H₂O

C H E M I S T R Y

MOLE CONCEPT

BEGINNING WITH STOICHIOMETRY

Interconversions: Mole, particle, mass, and volume
 Molar volume at STP

What you will learn

- Stoichiometric coefficients and ratios
- Introduction to stoichiometry
 - Stoichiometry using moles, particles, mass, and volume interconversions
- Stoichiometry of sequential reactions
- Stoichiometry of parallel reaction

BOARDS

Balanced Chemical Equation

Definition:

A chemical equation in which the number of atoms of each and every element on both the product and the reactant sides is the same is a balanced chemical equation. Some of the examples are as follows:

$$N_2 + 3H_2 \rightarrow 2NH_3$$
 $CO_2 + C \rightarrow 2CO$ $CaCO_3 \rightarrow CaO + CO_2$

Generalised Balanced Reaction Form

aA + bB → cC + dD

 $N_2 + 3H_2 \rightarrow 2NH_3$

A reference to explain the general relations between the reacting **species (A, B, C, D)**. Applicable to all reactions. In this reaction, we can say that **we have no D**.

Stoichiometric Coefficients and Ratios

Stoichiometric coefficients

- Numbers before the reactants and the products in a balanced chemical reaction. For the reaction N₂ + 3H₂ → 2NH₃
 - **1, 3,** and **2** are the respective stoichiometric coefficients of N_2 , H_2 , and NH_3 .
- Stoichiometric coefficients are the mole ratio in which the reactants are consumed and the products get formed.

For the reaction: $2H_2 + O_2 \rightarrow 2H_2O$ It means that when H_2 and O_2 combine to form H_2O , it happens in a **1**: $\frac{1}{2}$: **1** ratio that can also be written as **2**: **1**: **2**.

Stoichiometric ratios

For the reaction: $N_2 + 3H_2 \rightarrow 2NH_3$,

 $\frac{n_{N_2 \text{ consumed}}}{1} = \frac{n_{H_2 \text{ consumed}}}{3} = \frac{n_{NH_3 \text{ produced}}}{2}$

onsumed

$$n_{H_2 \text{ consumed}} = 3 \times n_{N_2 \text{ consumed}}$$
$$\frac{1}{3} = \frac{n_{N_2 \text{ consumed}}}{n_{H_2 \text{ consumed}}}$$

$$\frac{1}{2} = \frac{n_{N_2 \text{ consumed}}}{n_{N_2 \text{ consumed}}}$$

 $\frac{2 \times n_{H_2 \text{ consumed}}}{2} = 3 \times n_{NH_3 \text{ produced}}$ $\frac{3}{2} = \frac{n_{H_2 \text{ consumed}}}{n_{NH_3 \text{ produced}}}$

For the reaction: $N_2 + 3H_2 \rightarrow 2NH_3$, 1+3 \simeq 2: Stoichiometric coefficients of

reactants and products are NOT necessarily additive.

Numbers, not amount or molecules: '1, 3, 2' for the mentioned reaction

are NOT the N_{molecules} or n_{moles}. Instead, they are the ratios of their number of moles (consumed for reactants and produced for products).

Stoichiometry

Calculations based on the **quantitative** relationship **(mole/mass/volume/number of molecules)** between the **reactants** and the **products** are referred to as **stoichiometry**.

Mass \rightleftharpoons moles \rightleftharpoons number of molecules

Or

Calculation of the consumed and the produced quantities of substances involved in the reaction.

Meaning of stoichiometry

It is about finding the amount of reactants consumed and products produced.

What we know about this reaction: $N_2 + 3H_2 \rightarrow 2NH_3$,

Alternate explanation

It gives the relation between the amount of substances that react together in a particular reaction and the amount of the products formed.

 $n_{NH_3 \text{ produced}} = 2 \times n_{N_2 \text{ consumed}}$ $3 \times n_{NH_3 \text{ produced}} = 2 \times n_{H_2 \text{ consumed}}$ $n_{H_2 \text{ consumed}} = 3 \times n_{N_2 \text{ consumed}}$ $\frac{n_{N_2 \text{ consumed}}}{1} = \frac{n_{H_2 \text{ consumed}}}{3}$ $\frac{n_{\rm NH_3 \, produced}}{2} = \frac{n_{\rm N_2 \, consumed}}{1}$ $\frac{n_{\rm NH_3 \, produced}}{2} = \frac{n_{\rm H_2 \, consumed}}{3}$ $n_{_{NH_3}\,\text{produced}}$ $n_{N_2 \text{ consumed}}$ $\mathsf{n}_{\mathsf{H}_2 \text{ consumed}}$ = 3 2 1 Similarly, for a general reaction: $aA + bB \rightarrow cC + dD$, $\frac{n_{A \text{ consumed}}}{a} = \frac{n_{B \text{ consumed}}}{b} = \frac{n_{C \text{ produced}}}{C} = \frac{n_{D \text{ produced}}}{d}$ When the initial moles of the Stoichiometric ratios represent reactants are in stoichiometric

 Stoichiometric ratios represent the ratios of n_{consumed} or n_{produced} of the respective species and **NOT** of n_{initial} or n_{final}.
 When the initial moles of the reactants are in stoichiometric ratio, they will be completely consumed, provided that the reaction goes to completion.

N₂ + 3H₂ → 2NH₃,

$$\frac{\text{If } n_{N_2 \text{ initial}}}{n_{H_2 \text{ initial}}} = \frac{1}{3}$$

Initial amounts of both N_2 and H_2 will be completely consumed.

So,

 $n_{N_2 \text{ initial}} = n_{N_2 \text{ consumed}}$

 $n_{H_2 \text{ initial}} = n_{H_2 \text{ consumed}}$

Which means,

$$\frac{n_{N_2 \text{ initial}}}{1} = \frac{n_{H_2 \text{ initial}}}{3} = \frac{n_{NH_3 \text{ produced}}}{2}$$

 $aA + bB \rightarrow cC + dD$,

$$\frac{f}{n_{A \text{ initial}}} = \frac{a}{b}$$

Initial amounts of both A and B will be completely consumed.

$$n_{A \text{ initial}} = n_{A \text{ consumed}}$$

$$n_{B \text{ initial}} = n_{B \text{ consumed}}$$

$$\frac{n_{A \text{ initial}}}{a} = \frac{n_{B \text{ initial}}}{b} = \frac{n_{C \text{ produced}}}{c} = \frac{n_{D \text{ produced}}}{d}$$

Relating $\mathbf{n}_{_{\text{product}}}$ formed with $\mathbf{n}_{_{\text{reactants}}}$ consumed

When 7 moles of N_2 react with the required amount of H_2 , what is the number of moles of NH_3 produced?

Solution Step 1: Balance the chemical equation. $N_2 + 3H_2 \rightarrow 2NH_3$	Step 2: Find the moles of N_2 consumed. N_2 is getting consumed completely. Therefore, Moles of N_2 consumed = initial n_{N_2} = 7 mol
Step 3: Find moles of NH ₃ produced.	
$\frac{\text{Moles of N}_2 \text{ consumed}}{\text{moles of NH}_3 \text{ prod}} = \frac{\text{Moles of NH}_3 \text{ prod}}{\text{moles of NH}_3 \text{ prod}}$	oduced
Stoic.Co-eff. Stoic.Co-ef	f.
i.e., $\frac{7}{1} = \frac{\text{Moles of NH}_3 \text{ produced}}{2}$ So, moles of NH ₃ produced = 14 <i>mol.</i>	
Interconversion	ions + Stoichiometry

When the amount of reaction participants are known in terms of the mass or the volume, we should convert them into moles.

Or vice-versa, when the amounts are required to be found in terms of the mass or the volume.

၀ှို ? ကိ

Finding the moles of the reactant consumed

To produce 3 moles of NH_3 , how many moles of N_2 should be consumed?

Solution

Step 1:	Step 2:	
Balanced chemical equation.	Find moles of N ₂ consur	ned.
$N_2 + 3H_2 \rightarrow 2NH_3$	Moles of N ₂ consumed	Moles of NH ₃ produced
	Stoic.Co-eff.	Stoic.Co-eff.
	Moles of N_2 consumed	Moles of NH ₃ produced
	1	2
	\therefore Moles of N ₂ consum	$ed = \frac{3}{2} \times 1$
		= 1.5 <i>mol</i>

Finding the number of moles of the reactant consumed

On the reaction of 2 moles of N_2 with 6 moles of H_2 , what is the mass of NH_3 produced?

Solution	
Step 1:	Step 2:
Balance the chemical equation.	Find the moles of N_2 and H_2 consumed.
$N_2 + 3H_2 \rightarrow 2NH_3$	As the initial moles are in stoichiometric ratio,
	Moles of N ₂ consumed = initial n _{N2} = 2 mol
	Moles of H ₂ consumed = initial n _{H₂} = 6 mol

Step 3:

Find the moles of $\mathbf{NH}_{_3}$ produced.

Moles	of N ₂ c	onsumed _	$\underline{\text{Moles of H}_{_2} \text{ consumed}}$	_	Moles of NH ₃ produced
	Stoic.Co	p-eff.	Stoic.Co-eff.	_	Stoic.Co-eff.
i.e., 2	6	Moles of N	H _a produced		

$$\frac{1}{1} = \frac{3}{3} = \frac{3}{2}$$

So, moles of NH_3 produced = 4 mol

Step 4:

Find mass of NH_3 produced.

Mass of NH_3 produced = $n \times (Molar Mass)$

= 4 × 17 = 68 *g*

Finding the volume of product produced

 $\mathsf{KCIO}_3(\mathsf{s}) \twoheadrightarrow \mathsf{KCI}(\mathsf{s}) + \mathsf{O}_2(\mathsf{g})$

On the complete decomposition of 245 g of KClO₃, the volume of O₂ gas produced at STP is as follows:

(Atomic mass of K = 39 and CI = 35.5)

Solution	Step 2:
	Find the moles of KCIO ₃ Consumed
Step 1:	Given weight
Balance the chemical equation	Moles of KCIO ₃ consumed = <u>Molar mass</u>
$2\text{KCIO}_3(s) \Rightarrow 2\text{KCI}(s) + 3\text{O}_2(g)$	Moles = $\frac{245 g}{122.5 g/mol}$ = 2 mol

Step 3: Find the moles of O_2 produced.

 $\frac{\text{Moles of KCIO}_{3} \text{ consumed}}{\text{Stoic. Coeff.}} = \frac{\text{Moles of O}_{2} \text{ produced}}{\text{Stoic. Coeff.}}$ i.e., $\frac{\text{Moles of KCIO}_{3} \text{ Consumed}}{2} = \frac{\text{Moles of O}_{2} \text{ produced}}{3}$ $\therefore \text{ Moles of O}_{2} \text{ produced} = \frac{2}{2} \times 3 = 3 \text{ mol}$

Step 4:

Find the volume of O_2 produced at STP.

Volume of O_2 produced = n × 22.4 L = 3 × 22.4 L = 67.2 L

Finding the mass of the product produced

 $\text{KClO}_3(s) \rightarrow \text{KCl}(s) + \text{O}_2(g)$

In this reaction, if 32 moles of O_2 had been produced, then the mass of KCI formed is as follows:

Solution

Step 1: Balance the chemical Equation. $2KCIO_3(s) \rightarrow 2KCI(s) + 3O_2(g)$

Step 2:

Find the moles of KCI produced. Moles of KCI produced Stoic.Coeff. $= \frac{\text{Moles of O}_2 \text{ produced}}{\text{Stoic. Coeff.}}$

i.e., Moles of KCI formed

$$= \frac{\text{Moles of O}_2 \text{ produced}}{3}$$

$$\therefore \text{ Moles of KCI produced} = \frac{32}{3} \times 2 = 21.333 \text{ mol}$$

Step 3: Find the mass of KCI produced. Mass of KCI Produced = $n \times$ (Molar mass) Mass = 21.333 \times 74.5 = 1589.3 g

Finding the mass of product formed using stoichiometry

If H_2 , reacting with N_2 to give 85 g of NH_3 , would rather have reacted with sufficient or excess amounts of O_2 to form H_2O , find the mass of H_2O produced.

Solution

Step 1: Step 2: **Balance the Chemical Equations** Find Moles of NH₃ produced $3H_2 + N_2 \rightarrow 2NH_3$ Moles of NH_3 produced = $\frac{\text{Given weight}}{\text{Molar mass}}$ 2H₂+O₂ → 2H₂O $=\frac{85 g}{17 g/mol}=5 mol$ Step 3: Step 4: Find the Moles of H₂ consumed Find the Moles of H₂O produced $\frac{\text{Moles of H}_2 \text{ consumed}}{\text{Chain Cooff}} = \frac{\text{Moles of H}_2\text{O produced}}{\text{Stain Cooff}}$ Moles of H₂ consumed Stoic. Coeff. Stoic. Coeff. Stoic. Coeff. Moles of H₂ consumed Moles of NH₂ produced i.e., ——— Stoic. Coeff $= \frac{\text{Moles of H}_2\text{O produced}}{2}$ i.e., $\frac{\text{Moles of H}_2 \text{ consumed}}{3}$ 3 i.e., moles of H_2O produced = moles of H_2 $= \frac{\text{Moles of NH}_{3} \text{ produced}}{2}$ consumed = 7.5Moles of H₂ consumed = $3 \times \frac{5}{2} = 7.5$ mol Hence, weight of H_2O produced = 7.5 × 18 = 135 g.

MAIN

Combination of Reactions - Sequential Reactions

ADVANCED

Sequential reactions consist of linked reactions in which the product of the first reaction becomes the substrate/reactant of the second reaction. For example,

 $A + 2B \rightarrow 3C + 4D$ $5C + 6E \rightarrow 7F + 8G$

Alternative explanation 1

Sequential reactions consist of linked reactions in which the product of the first reaction becomes the substrate/reactant of the second reaction.

Alternative explanation 2

The amount of C available for the reaction with E in the second reaction must be produced from the first reaction.

Finding the number of moles in sequential reactions

2A + 3B → 4C + 5D

3C + 4E → 5G + 6F

Starting with 7 moles of A and excess of B and E, find the moles of G formed.

Solution

Step 1: Find the moles of C produced.

Step 2: Find the moles of G produced.

Moles of C produced _ Moles of A consumed	Moles of G produced _ Moles of C consumed
Stoic.Coeff. Stoic.Coeff.	Stoic.Coeff. Stoic.Coeff.
i.e., Moles of C produced	i.e., Moles of G produced 5
$= \frac{\text{Moles of A consumed}}{2}$	$= \frac{\text{Moles of C consumed}}{3}$
Moles of C produced = $4 \times \frac{7}{2} = 14 \ mol$	Moles of D produced = $5 \times \frac{14}{3} = 23.3 \ mol$

Shortcut

Moles of G produced	Stoic.Coeff. G	(i)
Moles of C consumed	Stoic.Coeff. C	3
Moles of C produced	Stoic.Coeff. C	4 (ii
Moles of A consumed	Stoic.Coeff. A	2

Multiply equation (i) and (ii)

 $\frac{\text{Moles of G produced}}{\text{Moles of C consumed}} \times \frac{\text{Moles of C produced}}{\text{Moles of A consumed}} = \frac{\text{Stoic.Coeff. G}}{\text{Stoic.Coeff. C}} \times \frac{\text{Stoic.Coeff. C}}{\text{Stoic.Coeff. A}}$ $\frac{\text{Moles of G produced}}{\text{Moles of G produced}} = 7 \times \frac{5}{3} \times \frac{4}{2} = 23.3 \text{ mol}$

Finding the number of moles in sequential reactions

 $2A + 3B \rightarrow 4C + 5D$ $7C + 8E \rightarrow 9F + 10G$ $5F + 6H \rightarrow 7I + 8J$

Starting with 3 moles of A and excess of B, E and H. find the moles of I formed.

Solution

్లి ? డ్రా

Step 3:

Find the moles of I produced.

 $\frac{\text{Moles of I produced}}{\text{Stoic.Co-eff.}} = \frac{\text{Moles of F consumed}}{\text{Stoic.Co-eff.}}$ i.e., $\frac{\text{Moles of I produced}}{7} = \frac{\text{Moles of F consumed}}{5}$

Moles of I produced = $7 \times \frac{7.71}{5} = 10.8 \ mol$

Shortcut

Moles of I produced	Moles of F produced	Moles of C produced
Moles of F consumed	Moles of C consumed	Moles of A consumed
Stoic.Co-eff. I	Stoic.Co-eff. F	Stoic.Co-eff. C
Stoic.Co-eff. F	Stoic.Co-eff. C	Stoic.Co-eff. A
$\Rightarrow \frac{\text{Moles of I produce}}{\text{Moles of A consum}}$	$\frac{d}{ded} = \frac{7}{5} + \frac{9}{7} \times \frac{4}{2}$	
Hence, moles of I produ	$ced = 3 \times \frac{7}{5} \times \frac{9}{7} \times \frac{4}{2} =$	= 10.8

Finding the number of moles in sequential reactions

2A + 3B → 4C + 5D 6E + 7C → 8F + 9D

10F + 11G → 12H + 13D

Starting with 5 moles of A and excess of B, E, and G, find the moles of D formed.

Solution

Find the moles of D produced in the reaction (ii). $6E + 7C \Rightarrow 8F + 9D$ (ii) $\frac{Moles of D produced in reaction (ii)}{Moles of C consumed in reaction (ii)}$ $\times \frac{Moles of C produced in reaction (i)}{Moles of A consumed in reaction (i)}$ $= \frac{Stoic.Coeff. of D in reaction (ii)}{Stoic.Coeff. of C in reaction (ii)}$

 $\times \frac{\text{Stoic.Coeff. of C in reaction (i)}}{\text{Stoic.Coeff. of A in reaction (i)}}$

$$= \frac{9}{7} \times \frac{4}{2}$$

Moles of D produced = $5 \times \frac{9}{7} \times \frac{4}{2}$
= 12.85 mol

Step 3:

Find the moles of D produced in the reaction (iii).

10F + 11G → 12H + 13D (iii)

	Moles of D produced in reaction (iii) ×	Moles of F produced in reaction (ii)
	Moles of F consumed in reaction (iii)	Moles of C consumed in reaction (ii)
×	Moles of C produced in reaction (i)	Stoic.Coeff. of D in reaction (iii)
	Moles of A consumed in reaction (i)	Stoic.Coeff. of F in reaction (iii)
×	$\frac{\text{Stoic.Coeff. of F in reaction (ii)}}{\text{Stoid}} \times \frac{\text{Stoid}}{\text{Stoid}}$	c.Coeff. of C in reaction (i)
	Stoic.Coeff. of C in reaction (ii) Stoid	c.Coeff. of A in reaction (i)

 $\frac{\text{Moles of C produced in reaction (iii)}}{\text{Moles of A consumed in reaction (i)}} = \frac{13}{10} \times \frac{8}{7} \times \frac{4}{2}$

Moles of D produced = $5 \times \frac{13}{10} \times \frac{8}{7} \times \frac{4}{2} = 14.86 \ mol$

Total Moles of D produced = 12.5 + 12.85 + 14.86 = 40.21 mol.

The reaction set in which a substance reacts or decomposes in more than one way are known as parallel reactions.

In parallel reactions, the ratio of $n_{reactants consumed}$ of the common element in each of the reactions is not equal to the ratio of its stoichiometric coefficients in the respective reactions.

KCIO₃ decomposes by the following two parallel reactions:

- (i) $2\text{KCIO}_3 \Rightarrow 2\text{KCI} + 3\text{O}_2$
- (ii) 4KClO₃ → 3KClO₄ + KCl

If **3 moles of O_2** and **1 mol of KCIO**₄ is produced along with other products, determine **initial moles of KCIO**₂.

Solution

Step 1:

Find the moles of KCIO₃ consumed in the reaction.

 $2\text{KCIO}_3 \rightarrow 2\text{KCI} + 3\text{O}_2$

 $\frac{\text{Moles of O}_2 \text{ produced}}{\text{Stoic.Coeff.}} = \frac{\text{Moles of KCIO}_3 \text{ consumed}}{\text{Stoic.Coeff.}}$

i.e., $\frac{\text{Moles of O}_2 \text{ produced}}{3} = \frac{\text{Moles of KCIO}_3 \text{ consumed}}{2}$

Moles of KCIO₃ consumed = $2 \times \frac{3}{3} = 2$ mol

Step 2:

Find the moles of KCIO₃ consumed in the reaction. 4KCIO₃ → 3KCIO₄ + KCI

 $\frac{\text{Moles of KCIO}_{4} \text{ produced}}{\text{Stoic.Coeff.}} = \frac{\text{Moles of KCIO}_{3} \text{ consumed}}{\text{Stoic.Coeff.}}$ i.e., $\frac{\text{Moles of KCIO}_{4} \text{ produced}}{3} = \frac{\text{Moles of KCIO}_{3} \text{ consumed}}{4}$ Moles of KCIO₃ consumed = 4 × $\frac{1}{3}$ = 1.3 mol Total moles of KCIO₃ consumed = 2 + 1.3 mol = 3.3 mol

MOLE CONCEPT

MORE INTO STOICHIOMETRY

Step 3: Find moles of KClO₃ consumed

	Moles of KCIO ₃ consumed	Moles of O ₂ produced
	Stoichiometric coefficient	Stoichiometric coefficient
io	Moles of KCIO ₃ consumed	Moles of O ₂ produced
i.e.	2	3

So, Moles of KClO₃ consumed = 0.0666 mol

Step 4:	Step 5:
Find mass of $\mathrm{KClO}_{_3}$ consumed	Find percentage purity of KClO ₃
Mass of KCIO ₃ consumed	Percentage purity =
= Moles × Molar mass	Actual amount of desired species in the sample
= 0.0666 × 122.5	Total amount of the sample
= 8.16 g	$=\frac{8.16}{10} \times 100$
	= 81.6%

Finding mass of product formed using percentage purity

Calculate the **weight of lime (CaO)** obtained by heating **200** *kg* of **95% pure limestone** (CaCO₃).

Solution

Step 1: Balanced chemical equation $CaCO_3 \rightarrow CaO + CO_2$

Step 2:

Finding actual mass of CaCO₃

 $= 95/100 \times 200 \ kg = 190 \ kg$

Step 3:

Find mass of CaO produced

Using stoichiometry, we can say 100 g of CaCO₃ gives 56 g of CaO.

So, by unitary method 190 kg CaCO₃ gives

 $\frac{56}{100} \times 190 \times 10^{3}$ = 106.4 × 10³ g = 106.4 kg of CaO

Percentage yield in a single-step reaction

Percentage yield is the ratio of actual yield to the theoretical yield, where actual yield is the yield obtained by doing an experiment.

Formula for percentage yield is as follows:

Percentage yield = <u>Actual yield (or Experimental yield)</u> <u>Theoretical yield</u> × 100

Finding percentage yield of reaction

If **11.5** g of Na reacts with **9.0** g of H₂O, **0.40** g of H₂ is formed. What is the **percentage yield** of the reaction?

Solution	Step 2: Find theoretical mass of H ₂ produced
Step 1: Balanced chemical equation Na + H ₂ O → NaOH + $\frac{1}{2}$ H ₂	Using stoichiometry, we can say 23 g of Na reacts with 18 g of H ₂ O to give 1 g of H ₂ .
2	So by unitary method 11.5 g of Na reacts with 9 g of H ₂ O to give $\frac{1}{23} \times 11.5 = 0.5 g$ of H ₂ .

Step 3:

Find percentage yield

Percentage yield = $\frac{\text{Actual yield}}{\text{Theoretical yield}} \times 100 = \frac{0.4}{0.5} \times 100 = 80\%$

 $CaCO_3 \rightarrow CaO + CO_2$

Percentage purity determination from stoichiometry

20 *g* sample of **magnesium carbonate** decomposes on heating to give **carbon dioxide** and **8.0** *g* **magnesium oxide**. What will be the **percentage purity of magnesium carbonate** in the sample?

(Molar mass of Mg = 24 g/mol)

Solution

Step 1: Balanced chemical equation $MgCO_3 \rightarrow MgO + CO_2$ Step 2: Find moles of MgO produced Moles of MgO = $\frac{\text{Given weight}}{\text{molar mass}}$ = $\frac{8}{40}$ = 0.2 mol

Step 5:

Find percentage purity of MgCO₃ Percentage purity = $\frac{16.8}{20} \times 100 = 84\%$

Step 4:

Find mass of $MgCO_3$ consumed

Mass of MgCO₃ consumed

= Moles \times Molar mass = 0.2 \times 84 = 16.8 g

Product yield determination from percentage yield

The **percent yield** for the following reaction carried out in $\boxed{=}$ on tetrachloride (CCI) solution is 70%. $\mathbf{Br}_2 + \mathbf{Cl}_2 \rightarrow \mathbf{2BrCl}$ How many moles of BrCl would be formed from the reaction of 0.05 mol Br₂ and 0.05 mol Cl₂?

Solution

Step 1: **Balanced chemical equation**

 $Br_2 + Cl_2 \rightarrow 2BrCl$

Step 2:

Find theoretical yield of BrCl

Moles of Br_2 consumed	Moles of Cl ₂ consumed	Moles of BrCl produced		
Stoich. Coeff	Stoic.Co-eff.	Stoic.Co-eff.		
0.05 mol	0.05 mol	Moles of BrCl produced		
1	1	2		
Noles of BrCl produced theoretically = 0.1 <i>mol</i>				

Step 3:

Find actual yield of BrCl

Moles of BrCl produced = $0.1 \times \frac{70}{100} = 0.07 \text{ mol}$

Percentage yield determination in single-step reaction

$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

32 *g* of methane on combustion in an open atmosphere produces **72** *g* of CO_2 . Calculate the **percentage yield** of the reaction.

Solution Step 2: Step 1: **Balanced chemical equation** Find moles of CH₄ consumed $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O_2$ Moles of $CH_4 = \frac{\text{Given weight}}{\text{Molar mass}}$ $=\frac{32}{16}$ = 2 *mol* Step 4: Step 3: **Theoretical yield of CO**₂ Find mass of CO₂ produced $\frac{\text{Moles of CO}_2 \text{ produced}}{1} = \frac{2}{1}$ Mass of CO_2 produced = Moles × Molar mass = 2 × 44 = 88 g Moles of CO_2 produced = 2 Step 5: Find percentage yield of the reaction Percentage yield of CO₂ produced = $100 \times \frac{72}{88}$ = 81.8 %

Percentage yield in reactions that occur in more than one step

Reactions that occur in more than one step are known as multistep reactions. If a reaction is a sequential **multistep** process, then the overall **yield** is the product of the **yields** of each step. So for example, if a **synthesis** has two steps, each of **yield** 50% then the overall **yield** is $50\% \times 50\%$ = 25%.

Actual yield determination in a multistep reaction

 $\begin{array}{ll} 2\mathsf{A}+3\mathsf{B}\rightarrow 4\mathsf{C}+5\mathsf{D} & \text{yield}=70\% \\ 7\mathsf{C}+8\mathsf{E}\rightarrow 9\mathsf{F}+10\mathsf{G} & \text{yield}=50\% \\ 5\mathsf{F}+6\mathsf{H}\rightarrow 7\mathsf{I}+8\mathsf{J} & \text{yield}=64\% \\ \\ \text{Starting with 3 moles of A and excess of B, E, and H. Find the moles of I formed.} \end{array}$

Step 2: Step 1: Find actual yield of C in reaction Find theoretical yield of C in reaction $2A + 3B \rightarrow 4C + 5D$ $2A + 3B \rightarrow 4C + 5D$ Percentage yield = $\frac{Actual yield}{Theoretical yield} \times 100$ $\frac{\text{Moles of C produced}}{\text{Stoic.Co-eff.}} = \frac{\text{Moles of A consumed}}{\text{Stoic.Co-eff.}}$ i.e. $\frac{\text{Moles of C produced}}{4} = \frac{\text{Moles of A consumed}}{2}$ Actual yield of C = $6 \times \frac{70}{100}$ Moles of C produced = $4 \times \frac{3}{2} = 6$ mol = 4.2 molStep 4: Step 3: Find theoretical yield of F in reaction Find actual yield of F in reaction $7C + 8E \rightarrow 9F + 10G$ $7C + 8E \rightarrow 9F + 10G$ $\frac{\text{Moles of F produced}}{\text{Stoic.Co-eff.}} = \frac{\text{Moles of C consumed}}{\text{Stoic.Co-eff.}}$ Percentage yield = $\frac{Actual yield}{Theoretical yield} \times 100$ i.e. $\frac{\text{Moles of F produced}}{9} = \frac{\text{Moles of C consumed}}{7}$ Actual yield of F = $5.4 \times \frac{50}{100}$ Moles of F produced = $9 \times \frac{4.2}{7} = 5.4$ mol = 2.7 mol Step 5: Step 6: Find theoretical yield of I in reaction Find actual yield of I in reaction $5F + 6H \rightarrow 7I + 8J$ $5F + 6H \rightarrow 7I + 8J$ Moles of I produced Moles of F consumed Percentage yield = $\frac{Actual yield}{Theoretical yield} \times 100$ Stoic.Co-eff. Stoic.Co-eff. i.e. $\frac{\text{Moles of I produced}}{7} = \frac{\text{Moles of F consumed}}{5}$ Actual yield of I = $3.78 \times \frac{64}{100}$ Moles of I produced = $7 \times \frac{2.7}{5} = 3.78$ mol = 2.42 mol MAIN ADVANCED Percentage yield in parallel reactions

The **reactions** in which a substance **reacts** or decomposes in more than one way are known as **parallel** or side **reactions**.

Determination of amount of reactant in parallel reaction using percentage yield

 $\mathrm{KCIO}_{_3}$ decomposes by two parallel reactions:

- (i) $2\text{KCIO}_3 \rightarrow 2\text{KCI} + 3\text{O}_2$ yield = 40%
- (ii) $4\text{KCIO}_3 \rightarrow 3\text{KCIO}_4 + \text{KCI}$ yield = 50%

If **3** moles of O_2 and **1** mol of KCIO₄ is produced along with other products, then determine initial moles of KCIO₃.

Solution

Step 1: Find theoretical yield of O_2 in reaction	Step 2: Find moles of KCIO ₃ consumed in reaction
$2\text{KCIO}_3 \rightarrow 2\text{KCI} + 3\text{O}_2$	$2\text{KCIO}_3 \rightarrow 2\text{KCI} + 3\text{O}_2$
Percentage yield = $\frac{Actual yield}{Theoretical yield} \times 100$	$\frac{\text{Moles of O}_2 \text{ produced}}{\text{Stoic.Co-eff.}} = \frac{\text{Moles of KCIO}_3 \text{ consumed}}{\text{Stoic.Co-eff.}}$
Theoretical yield of $O_2 = 3 \times \frac{100}{40}$	i.e. $\frac{\text{Moles of O}_2 \text{ produced}}{3} = \frac{\text{Moles of KCIO}_3 \text{ consumed}}{2}$
= 7.5 mol	Moles of KClO ₃ consumed = $2 \times \frac{7.5}{3} = 5$ mol
Step 3:	Step 4:
Find theoretical yield of KCIO ₄ produced in reaction	Find moles of KCIO ₃ consumed in reaction $4KCIO_3 \rightarrow 3KCIO_4 + KCI$
Find theoretical yield of $KCIO_4$ produced in reaction $4KCIO_3 \rightarrow 3KCIO_4 + KCI$	Find moles of KCIO ₃ consumed in reaction $4KCIO_3 \rightarrow 3KCIO_4 + KCI$ Moles of KCIO ₄ produced Moles of KCIO ₃ consumed
Find theoretical yield of KCIO ₄ produced in reaction $4\text{KCIO}_3 \rightarrow 3\text{KCIO}_4 + \text{KCI}$ $Percentage \ yield = \frac{Actual \ yield}{Theoretical \ yield} \times 100$	Find moles of KCIO ₃ consumed in reaction $4\text{KCIO}_3 \rightarrow 3\text{KCIO}_4 + \text{KCI}$ $\frac{\text{Moles of KCIO}_4 \text{ produced}}{\text{Stoic.Co-eff.}} = \frac{\text{Moles of KCIO}_3 \text{ consumed}}{\text{Stoic.Co-eff.}}$ i.e.
Find theoretical yield of KCIO ₄ produced in reaction $4\text{KCIO}_3 \rightarrow 3\text{KCIO}_4 + \text{KCI}$ $Percentage \ yield = \frac{Actual \ yield}{Theoretical \ yield} \times 100$ Theoretical yield of KCIO ₄ = 1 × $\frac{100}{50}$	Find moles of KCIO ₃ consumed in reaction $4\text{KCIO}_3 \rightarrow 3\text{KCIO}_4 + \text{KCI}$ $\frac{\text{Moles of KCIO}_4 \text{ produced}}{\text{Stoic.Co-eff.}} = \frac{\text{Moles of KCIO}_3 \text{ consumed}}{\text{Stoic.Co-eff.}}$ i.e. $\frac{\text{Moles of KCIO}_4 \text{ produced}}{3} = \frac{\text{Moles of KCIO}_3 \text{ consumed}}{4}$
Find theoretical yield of KCIO ₄ produced in reaction $4\text{KCIO}_{3} \rightarrow 3\text{KCIO}_{4} + \text{KCI}$ $Percentage yield = \frac{Actual yield}{Theoretical yield} \times 100$ Theoretical yield of KCIO ₄ = 1 × $\frac{100}{50}$ = 2 mol	Find moles of KCIO ₃ consumed in reaction $4\text{KCIO}_3 \rightarrow 3\text{KCIO}_4 + \text{KCI}$ $\frac{\text{Moles of KCIO}_4 \text{ produced}}{\text{Stoic.Co-eff.}} = \frac{\text{Moles of KCIO}_3 \text{ consumed}}{\text{Stoic.Co-eff.}}$ i.e. $\frac{\text{Moles of KCIO}_4 \text{ produced}}{3} = \frac{\text{Moles of KCIO}_3 \text{ consumed}}{4}$ $\text{Moles of KCIO}_3 \text{ consumed} = 2 \times \frac{4}{3} = 2.6 \text{ mol}$
Find theoretical yield of KCIO ₄ produced in reaction $4\text{KCIO}_3 \rightarrow 3\text{KCIO}_4 + \text{KCI}$ $Percentage yield = \frac{Actual yield}{Theoretical yield} \times 100$ Theoretical yield of KCIO ₄ = 1 × $\frac{100}{50}$ = 2 mol	Find moles of KCIO ₃ consumed in reaction $4\text{KCIO}_3 \rightarrow 3\text{KCIO}_4 + \text{KCI}$ $\frac{\text{Moles of KCIO}_4 \text{ produced}}{\text{Stoic.Co-eff.}} = \frac{\text{Moles of KCIO}_3 \text{ consumed}}{\text{Stoic.Co-eff.}}$ i.e. $\frac{\text{Moles of KCIO}_4 \text{ produced}}{3} = \frac{\text{Moles of KCIO}_3 \text{ consumed}}{4}$ $\text{Moles of KCIO}_3 \text{ consumed} = 2 \times \frac{4}{3} = 2.6 \text{ mol}$ Total moles of KCIO ₃ consumed is

The **reactant which is consumed first** and **limits the amount of product formed** in the reaction is known as limiting reagent. If a reaction goes to completion, then limiting reagent gets consumed completely.

The **excess reagent** is one which **does not get consumed completely** even after the completion of reaction.

Let's understand with the following example.

 $N_2(g) + 3H_2(g) \rightleftharpoons 2 NH_3(g)$

From stoichiometry,

1 mole of N_2 reacts with 3 moles of H_2 to give 2 moles of NH_3 .

Before the reaction

After the reaction

- Let's consider 5 moles of nitrogen and 9 moles of hydrogen are present initially, 3 moles of hydrogen will react with 1 mole of nitrogen, and hence 9 moles of hydrogen will react with the 3 moles of nitrogen.
- 2 moles of nitrogen will remain unreacted. Here, the amount of ammonia formed is limited by the amount of hydrogen present.
- Hence, hydrogen is the limiting reagent and N_2 is the excess reagent.

How to determine limiting reagent (LR)

Steps:

- 1. Whatever data is given, weight, volume, or number of particles, first find number of moles.
- 2. Divide number of moles of each reagent by their respective coefficient.
- 3. Whichever gives smallest value in step 2 is LR and all other reagents are excess reagents.
- 4. In order to find moles of product and moles of excess reagent consumed, do mole analysis using moles of LR.

Limiting reagent determination

The reaction 2C + $O_2 \rightarrow$ 2CO is carried out by taking **24** *g* of carbon and **96** *g* O_2 . What are the limiting and excess reagent?

Solution

Step 1: Find moles	of C from given mass	Step 2: Find moles of C	\mathbf{D}_2 from given mass
Moles of C	= Given mass Molar mass	Moles of O_2 =	Given mass Molar mass
	$=\frac{24}{12}$	=	<u>96</u> <u>32</u>
	= 2 mol	=	3 mol

Step 3:

Find limiting and excess reagent

For C,

2,		For O ₂ ,			
Moles	2	2	Moles	_	3
Stoic.Co-eff.	2		Stoic.Co-eff.	= .	1
= 1 <i>mol</i>		=	3 mol		

The ratio for carbon is less. Hence, Carbon is limiting reagent and O_2 is excess reagent.

Limiting reagent and product yield determination

For the reaction, $2P + Q \rightarrow R$, **8 mole of P** and **5 mol of Q** will produce **mole of R**.

Step 1:	Step 2:		
Find limiting reagent	Find moles of R produced		
For P, For Q, $ \frac{Moles}{Stoic.Co-eff.} \qquad \frac{Moles}{Stoic.Co-eff.} $ $ = \frac{8}{2} \qquad = \frac{5}{1} $ $ = 4 \qquad = 5 $ The ratio for P is less. Hence, P is limiting reagent.	$\frac{\text{Moles of R produced}}{\text{Stoic.Co-eff.}} = \frac{\text{Moles of P consumed}}{\text{Stoic.Co-eff.}}$ i.e. $\frac{\text{Moles of R produced}}{1} = \frac{8}{2}$ Moles of R produced = 4 mol		

Limiting reagent and product yield determination

4 moles of MgCO₃ is reacted with **6 moles of HCI** solution. Find the volume of **CO**₂ **gas produced at STP**, the reaction is MgCO₃ + 2HCI \rightarrow MgCl₂ + CO₂ + H₂O.

Solution

Step 1:	Step 2:
Finding limiting reagent	Moles of CO ₂ produced
For MaCO - Moles	Moles of CO_2 produced _ Moles of HCl consumed
$\operatorname{Stoic.Co-eff.}$	Stoic.Co-eff. Stoic.Co-eff.
$= \frac{4}{1} = 4$	$\frac{\text{Moles of CO}_2 \text{ produced}}{=} = \frac{6}{1000}$
For HCl = $\frac{6}{2}$ = 3	$1 \qquad 2$ Moles of CO produced = 3 mol
The ratio for HCl is less. Hence, HCl is limiting reagent .	$\frac{1}{2} \operatorname{produced} = \frac{1}{2} \operatorname{mot}$

Step 3:

Finding the volume of CO₂ produced

Volume of 1 mole of gas at STP = 22.7 LVolume of 3 moles of CO₂ at STP = $22.7 \times 3 = 68.1 L$

Limiting reagent and product yield determination

49 g of H₂SO₄ is mixed with 14.8 g of Ca(OH)₂. What is the mass of CaSo₄ formed?

Step 1: Balanced chemical equation	Step 2: Find mole of H ₂ SO ₄	
$H_2SO_4 + Ca(OH)_2 \rightarrow CaSO_4 + 2H_2O$	Moles of $H_2SO_4 = \frac{\text{Given mass}}{\text{Molar mass}} = \frac{49}{98} = 0.5 \text{ mol}$	
Step 3: Find mole of Ca(OH) ₂	Step 4: Find limiting reagent	
Moles of Ca(OH) ₂ = $\frac{\text{Given mass}}{\text{Molar mass}}$	For $H_2SO_4 = \frac{Moles}{Stoic.Co-eff.} = \frac{0.5}{1} = 0.5$	
$=$ $\frac{14.8}{74}$	For Ca(OH) ₂ = $\frac{\text{Moles}}{\text{Stoic.Co-eff.}} = \frac{0.2}{1} = 0.2$	
= 0.2 mol	Here Ca(OH) ₂ is limiting reagent.	

Step 5: Find moles of CaSO ₄	
$\frac{\text{Moles of CaSO}_4 \text{ produced}}{\text{Stoic.Co-eff.}} =$	Moles of Ca(OH) ₂ consumed Stoic.Co-eff.
i.e. $\frac{\text{Moles of CaSO}_4 \text{ produced}}{1} =$	<u>0.2</u> 1
Moles of $CaSO_4$ produced = 0.2	mol
Step 6:	
Find mass of $CaSO_4$ Mass of CaSO ₄ consumed = Mol	les × Molar mass = 0.2 × 136 = 27.

MOLE CONCEPT

LIMITS OF A REACTION

The reaction which occurs in one step is called a single step reaction.

• Limiting reagent can be determined by dividing the initial amount of the reactant (given in moles) by the stoichiometric coefficient of the reactant in a balanced chemical equation.

Example

In a given reaction: $3A + 4B \rightarrow 5C + 6D$ The initial number of moles given are 5 moles of A and 6 moles of B.

So the limiting reagent can be determined as follows:

$$\frac{n_A}{\text{Stoic.Coeff. of A}} = \frac{5}{3} = 1.66 \qquad \frac{n_B}{\text{Stoic.Coeff. of B}} = \frac{6}{4} = 1.5$$

Where n_{A} and n_{B} are the initial number of moles of A and B.

In the above mentioned single step reaction, reactant **B will be the limiting reagent** and A will be the excess reagent because the **ratio calculated is less for B.**

- Limiting reagent depends upon the initial amount of reactants.
- 2. Limiting reagent is not a property, it is just nomenclature.
- Limiting reagent decides amount of excess reagents consumed and the amount of products formed.

Finding the excess reagent left

For the reaction $2P + Q \rightarrow R$, If initially, 8 mol of P and 5 mol of Q are taken, find the amount of excess reagent left. a) 4 mol b) 3 *mol* c) 2 *mol* d) 1*mol* Solution Step 1: Finding limiting reagent and excess reagent Given: Initial moles of P = 8 molInitial moles of Q = 5 mol $\frac{\text{Initial moles of P}}{\text{Stoic.Coeff}} = \frac{n_{\text{Pi}}}{2} = \frac{8}{2} = 4$ $\frac{\text{Initial moles of Q}}{\text{Stoic.Coeff}} = \frac{n_{\text{Qi}}}{1} = \frac{5}{1} = 5$ Ratio of P is less than Q. So, P - Limiting reagent Q - Excess reagent Step 2: Finding amount of excess reagent left Using stoichiometry, $\frac{\text{Initial moles of P}}{2} = \frac{\text{moles of P consumed}}{2} = \frac{\text{moles of R produced}}{1} = \frac{\text{moles of Q consumed}}{1}$ $\frac{\text{Initial moles of P}}{2} = \frac{\text{moles of Q consumed}}{1} \Rightarrow \frac{8}{2} = \frac{\text{moles of Q consumed}}{1} = 4$ Amount of excess reagent left = Initial moles of Q - moles of Q consumed = 5 - 4 = 1 *mol* Therefore, option d is correct.

Finding the volume of product formed and percentage of reactant reacted

27 g Al is heated with **49** mL of H_2SO_4 (sp. gravity = 2) and produces H_2 gas. Calculate the volume of H_2 gas at STP and % of Al reacted with H_2SO_4 .

 $\mathsf{2AI} + \mathsf{3H}_2\mathsf{SO}_4 \longrightarrow \mathsf{Al}_2(\mathsf{SO}_4)_3 + \mathsf{3H}_2$

Step 1: Balanced chemical equation $2AI + 3H_2SO_4 \rightarrow Al_2(SO_4)_3 + 3H_2$

Step 2: Finding initial moles of reactant

We know,

Specific gravity = $\frac{\text{density of the substance (g/mL)}}{\text{density of water (g/mL)}}$

: Density of $H_2SO_4 = 2 \times 1 = 2 g/mL$. Mass = density × volume = 2 × 49 = 98 g Since values are given in grams,

Number of moles = $\frac{\text{Given mass}}{\text{Molar mass}}$ \therefore Number of moles of AI = $\frac{27 \text{ g}}{27 \text{ g/mol}} = 1 \text{ mol}$ Number of moles of H₂SO₄ = $\frac{98 \text{ g}}{98 \text{ g/mol}}$ = 1 mol

Step 3: Finding limiting reagent and excess reagent

For AI: $\frac{\text{Initial moles of AI}}{\text{Stoic.Coeff}} = \frac{\text{Initial moles of AI}}{2} = \frac{1}{2} = 0.5$ For H₂SO₄: $\frac{\text{Initial moles of H}_2SO_4}{\text{Stoic.Coeff}} = \frac{\text{Initial moles of H}_2SO_4}{3} = \frac{1}{3} = 0.33$

 \Rightarrow The ratio for H₂SO₄ is less than Al. H₂SO₄ is limiting reagent and Al is excess reagent

Step 4: Finding volume of H₂ produced and moles of AI consumed

According to stoichiometric law:

 $\frac{\text{moles of H}_2\text{SO}_4 \text{ consumed}}{\text{Stoic.Coeff}} = \frac{\text{moles of H}_2 \text{ produced}}{\text{Stoic.Coeff}}$ $\frac{\text{moles of H}_2\text{SO}_4 \text{ consumed}}{3} = \frac{\text{moles of H}_2 \text{ produced}}{3}$ $\text{Moles of H}_2 \text{ produced} = \frac{1}{3} \times 3 = 1 \text{ mol} = 22.4 \text{ L} \text{ (at STP i.e. T = 0°C, P = 1 atm)}$ $\frac{\text{moles of Al consumed}}{\text{Stoic.Coeff}} = \frac{\text{moles of H}_2\text{SO}_4 \text{ consumed}}{\text{Stoic.Coeff}}$

i.e., moles of Al consumed
$$\frac{1}{2} = \frac{moles of H_2SO_4 consumed}{3}$$

Moles of Al consumed $= \frac{1}{3} \times 2 = \frac{2}{3} = 0.667 \text{ mol}$
Step 5:
Percentage of Al reacted
Percentage of Al reacted $= \frac{0.667}{1} \times 100 = 66.7\%$
Finding amount (in litres) of product formed
How many litres of ammonia gas is produced at STP from 16 g H₂ and 70 g N₂.
a) 112 b) 244 b c) 122 b d) 326 b
Solution
Step 1:
Balanced chemical equation
N₂ + 3H₂ → 2NH₃
Step 2:
Finding initial moles of reactant
Number of moles of N₂ = $\frac{70}{28} \frac{g/mol}{g/mol}$
 $= 2.5 \text{ mol}$
Number of moles of H₂ = $\frac{16}{2} \frac{g/mol}{2}$
 $= 8 \text{ mol}$
Step 3:
Finding limiting reagent and excess reagent
For N₂
 $\frac{112 \text{ limital moles of N2}{Stoic.Coeff}} = \frac{11121 \text{ moles of H2}}{1} \frac{1}{3} \frac{3}{5} \frac{3}{5} = 2.50$
For H₁:
 $\frac{11121 \text{ moles of N2}{Stoic.Coeff}} = \frac{111121 \text{ moles of H2}}{3} = \frac{11121 \text{ moles of N2}}{3} = \frac{2.5}{1} \frac{1}{2} \frac{3}{5} \frac{3$

Finding the amount of excess reagent

Find the amount of the excess reagent left in grams if 16 g H₂ and 70 g N₂ combine to form NH₃.

Solution

Step 1: Balanced chemical equation

 $N_2 + 3H_2 \rightarrow 2NH_3$

Step 2: Finding initial moles of reactant

Number of moles = $\frac{Given mass}{Molar mass}$ Number of moles of N₂ = $\frac{70 g}{28 g/mol}$ = 2.5 mol Number of moles of H₂ = $\frac{16 g}{2 g/mol}$ = 8 mol

Step 3:

Finding limiting reagent and excess reagent For N_2 :

 $\frac{\text{Initial moles of N}_2}{\text{Stoic.Coeff}} = \frac{\text{Initial moles of N}_2}{1}$

$$=\frac{2.5}{1}=2.50$$

For H_2 :

MAIN

 $\frac{\text{Initial moles of H}_2}{\text{Stoic.Coeff}} = \frac{\text{Initial moles of H}_2}{3}$ $= \frac{8}{3} = 2.66$

⇒ The ratio for N_2 is less than H_2 . N_2 is limiting reagent and H_2 is excess reagent

Step 4: Finding the amount of excess reagent (H_2) consumed 3 × number of moles of L.R. = 3 × 2.5 = 7.5 mol

Step 5: Finding the amount of excess reagent left According to stoichiometric law:

$$\frac{\text{Initial moles of N}_2}{\text{Stoic.Coeff}} = \frac{\text{moles of H}_2 \text{ consumed}}{\text{Stoic.Coeff}}$$

 $\frac{\text{Initial moles of N}_2}{1} = \frac{\text{moles of H}_2 \text{ consumed}}{3}$

But initial moles of $H_2 = 8 \text{ mol}$ \Rightarrow Excess reagent (H_2) left = 8 - 7.5 = 0.5 mol

Mass = Moles \times molar mass = 0.5 \times 2 = 1 g

Limiting reagent Multiple step reactions (Sequential)

Sequential reactions consist of linked reactions in which the product of one reaction becomes the reactant of another reaction.

Example of sequential reactions is: 2A + 3B \rightarrow 4C + 5D \rightarrow 5E + 6F

ADVANCED

Finding the amount of product formed in sequential reactions

Reaction 1: 2A + 3B \rightarrow 4C + 5DReaction 2: 3C + 4E \rightarrow 5G + 6FStarting with 7 moles of A, 6 moles of B and 8 moles of E, find the moles of G formed.

Solution

Step 1: Finding limiting reagent in reaction $2A + 3B \rightarrow 4C + 5D$ (i) For A : Initial moles of A _ Initial moles of A _ 7 - 2.5	Step 2: Finding Moles of C produced According to stoichiometric law moles of B consumed _ moles of C consumed	
Stoic.Coeff = $\frac{2}{2}$ = $\frac{-3.5}{2}$ For B : $\frac{\text{Initial moles of B}}{\text{Stoic.Coeff}} = \frac{\text{Initial moles of B}}{3} = \frac{6}{3} = 2$ ⇒ The ratio for B is less than A. Hence B is limiting reagent and A is excess reagent	Stoic.Coeff Stoic.Coeff $\frac{6}{3} = \frac{\text{moles of C produced}}{4}$ so, moles of C formed = $\frac{6}{3} \times 4 = 8 \text{ mol}$	
Step 3: Finding limiting reagent in reaction $3C + 4E \rightarrow 5G + 6F$ Since it is a sequential reaction, the amount of C produced in reaction (i) will be used for formation of products. For C: <u>Moles of C produced in reaction (i)</u> <u>Stoic.Coeff</u> $\Rightarrow \frac{\text{Moles of C produced in reaction (i)}}{3} = \frac{8}{3} = 2.66$ For E: <u>Initial moles of E</u> <u>Stoic.Coeff</u> = <u>Initial moles of E</u> <u>A</u> = $\frac{8}{4} = 2$ \Rightarrow The ratio for E is less than C. Hence E is limiting reagent and C is excess reagent	Step 4: Finding moles of G produced According to stoichiometric law: $\frac{\text{moles of E consumed}}{\text{Stoic.Coeff}} = \frac{\text{moles of G consumed}}{\text{Stoic.Coeff}}$ $\Rightarrow \frac{8}{4} = \frac{\text{moles of G consumed}}{5}$ so, moles of G produced = $\frac{8}{4} \times 5 = 10 \text{ mol}$	

Finding moles of product produced

 $\begin{array}{l} \textbf{2A + 3B \ \longrightarrow \ 4C + 5D \ yield = 70\%} \\ \textbf{3C + 4E \ \longrightarrow \ 5G + 6F} \\ \textbf{Starting with 7 moles of A, 6 moles of B and 8 moles of E, find the moles of G formed.} \end{array}$

Step 1:

Step 3:

Finding Limiting Reagent for 1st reaction Given: initial moles of A = 7 mol Initial moles of B = 6 mol Yield of 1st reaction = 70% For reaction, 2A + 3B \rightarrow 4C + 5D

 $\frac{\text{Initial moles of A}}{\text{Stoic.Coeff of A}} = \frac{n_A}{2} = \frac{7}{2} = 3.5$

 $\frac{\text{Initial moles of B}}{\text{Stoic.Coeff of B}} = \frac{n_{_B}}{3} = \frac{6}{3} = 2.0$

Hence, B is limiting reagent and A is excess reagent.

Finding Limiting Reagent for 2nd reaction

Step 2:

Finding Moles of C formed According to stoichiometry, $\frac{\text{moles of B consumed}}{\text{Stoic.Coeff of B}} = \frac{\text{moles of C produced}}{\text{Stoic.Coeff of C}}$ $\frac{6}{3} = \frac{\text{moles of C produced}}{4}$ so, moles of C formed = $\frac{6}{3} \times 4 = 8 \text{ mol}$ As, Yield of reaction is 70% so, actual moles of C formed $= 8 \times \frac{70}{100} = 5.6 \text{ mol}$ Step 4: Finding Moles of G formed According to stoichiometry, moles of C consumed moles of G produced

 $\frac{\text{Initial moles of C}}{\text{Stoic.Coeff of C}} = \frac{n_c}{3} = \frac{5.6}{3} = 1.87$ $\frac{\text{Initial moles of E}}{\text{Stoic.Coeff of E}} = \frac{n_E}{4} = \frac{8}{4} = 2.0$

Given: initial moles of E = 8 mol

For reaction, $3C + 4E \rightarrow 5G + 6F$

Hence, C is limiting reagent and E is excess reagent.

According to stoichiometry, $\frac{\text{moles of C consumed}}{\text{Stoic.Coeff of C}} = \frac{\text{moles of G produced}}{\text{Stoic.Coeff of G}}$ $\frac{5.6}{3} = \frac{\text{moles of G produced}}{5}$

so, moles of G formed =
$$\frac{5.6}{3} \times 5 = 9.33$$
 mol

Finding number of moles of unreacted reactant

$2A + 3B \rightarrow 4C + 5D$

$3C + 4E \rightarrow 5G + 6F$

Starting with **7 moles of A, 6 moles of B** and **8 moles of E,** find the **moles of A and C left unreacted** once the overall reaction has gone to completion.

(Assume 100% yield for both individual reactions.).

Step 1:

Finding Limiting Reagent for 1st **reaction** Given: initial moles of A = 7 *mol* Initial moles of B = 6 *mol*

For reaction, $2A + 3B \rightarrow 4C + 5D$ Initial moles of A n_A 7

 $\frac{\text{Initial moles of A}}{\text{Stoic.Coeff of A}} = \frac{n_A}{2} = \frac{7}{2} = 3.5$

 $\frac{\text{Initial moles of B}}{\text{Stoic.Coeff of B}} = \frac{n_{\text{B}}}{3} = \frac{6}{3} = 2.0$

Hence, B is limiting reagent and A is in excess

Step 3:

Finding Moles of C formed According to stoichiometry, $\frac{\text{moles of B consumed}}{\text{Stoic.Coeff of B}} = \frac{\text{moles of C formed}}{\text{Stoic.Coeff of C}}$ $\frac{6}{3} = \frac{\text{moles of C formed}}{4}$ so, moles of C formed = $\frac{6}{3} \times 4 = 8 \text{ mol}$

Step 2:

Finding Moles of A left unreacted According to stoichiometry, $\frac{\text{moles of B consumed}}{\text{Stoic.Coeff of B}} = \frac{\text{moles of A consumed}}{\text{Stoic.Coeff of A}}$ $\frac{6}{3} = \frac{\text{moles of A consumed}}{2}$ so, moles of A consumed = $\frac{6}{3} \times 2 = 4 \text{ mol}$ i.e Moles of A left unreacted = 7 - 4 = 3 mol

Step 4:

Finding Limiting Reagent for 2^{nd} reaction Given: initial moles of E = 8 mol For reaction, 3C + 4E \rightarrow 5G + 6F

 $\frac{\text{Initial moles of C}}{\text{Stoic.Coeff of C}} = \frac{n_c}{3} = \frac{8}{3} = 2.6$

 $\frac{\text{Initial moles of E}}{\text{Stoic.Coeff of E}} = \frac{n_{\text{E}}}{4} = \frac{8}{4} = 2.0$

Hence, E is limiting reagent and C is excess reagent.

Step 5: Finding moles of C left unreacted

According to stoichiometry,

 $\frac{\text{moles of E consumed}}{\text{Stoic.Coeff of E}} = \frac{\text{moles of C consumed}}{\text{Stoic.Coeff of C}} \Rightarrow \frac{8}{4} = \frac{\text{moles of C consumed}}{3}$

So, moles of C consumed = $\frac{8}{4} \times 3 = 6$ mol

i.e moles of C left unreacted = 8 - 6 = 2 mol

Finding moles of product produced

 $2A + 3B \rightarrow 4C + 5D$

7C + 8E → 9F + 10G

 $5F + 6H \rightarrow 7I + 8J$

Starting with **3 moles of A, 4.4 moles of B, 2 moles E and 1 mole of H,** find the **moles of I** formed.

Step 1:

Finding Limiting Reagent for 1st reaction Given: initial moles of A = 3 molInitial moles of B = 4.4 molFor reaction, $2A + 3B \rightarrow 4C + 5D$

 $\frac{\text{Initial moles of A}}{\text{Stoic.Coeff of A}} = \frac{n_{A}}{2} = \frac{3}{2} = 1.5$

 $\frac{\text{Initial moles of B}}{\text{Stoic.Coeff of B}} = \frac{n_{\text{B}}}{3} = \frac{4.4}{3} = 1.47$

Hence, B is limiting reagent and A is excess reagent.

Step 3:

Finding Limiting Reagent for 2nd reaction Given: initial moles of E = 2 molFor reaction, 7C + 8E \rightarrow 9F + 10G

 $\frac{\text{lnitial moles of C}}{\text{Stoic.Coeff of C}} = \frac{n_c}{7} = \frac{5.87}{7} = 0.84$

 $\frac{\text{Initial moles of E}}{\text{Stoic.Coeff of E}} = \frac{n_{\text{E}}}{8} = \frac{2}{8} = 0.25$

Hence, E is limiting reagent and C is excess reagent.

Step 5:

Finding Limiting Reagent for 3rd reaction Given: initial moles of H = 1 mol

For reaction, $5F + 6H \rightarrow 7I + 8J$ $\frac{\text{Initial moles of F}}{\text{Stoic.Coeff of F}} = \frac{n_F}{5} = \frac{2.25}{5} = 0.45$

 $\frac{\text{Initial moles of H}}{\text{Stoic.Coeff of H}} = \frac{n_{H}}{6} = \frac{1}{6} = 0.167$

Hence, H is limiting reagent and F is excess reagent.

Step 2:

Finding Moles of C formed According to stoichiometry, moles of B consumed moles of C produced Stoic.Coeff of B = Stoic.Coeff of C $\frac{4.4}{3} = \frac{\text{moles of C consumed}}{4}$ so, moles of C formed = $\frac{4.4}{3} \times 4 = 5.87$

Step 4: Finding Moles of F formed

According to stoichiometry,

moles of E consumed moles of F produced Stoic.Coeff of E Stoic.Coeff of F $\frac{2}{8} = \frac{\text{moles of F formed}}{9}$

so, moles of F formed = $\frac{2}{8} \times 9 = 2.25$ mol

Step 6: Finding moles of I formed According to stoichiometry, moles of H consumed moles of I formed Stoic.Coeff of H = Stoic.Coeff of I $\Rightarrow \frac{1}{6} = \frac{\text{moles of I formed}}{7}$ So, moles of I formed = $\frac{1}{6} \times 7 = 1.167$ mol

Finding moles of product produced

 $2A + 3B \rightarrow 4C + 5D$ 7C + 8E \rightarrow 9F + 10G Yield = 20% 5F + 6H -> 7I + 8J Starting with 3 moles of A, 4.4 moles of B, 2 moles E and 1 mole of H, find the moles of I formed.

Step 1:

Finding Limiting Reagent for 1st reaction Given: initial moles of A = 3 mol Initial moles of B = 4.4 mol For reaction, $2A + 3B \rightarrow 4C + 5D$

 $\frac{\text{Initial moles of A}}{\text{Stoic.Coeff of A}} = \frac{n_A}{2} = \frac{3}{2} = 1.5$

 $\frac{\text{Initial moles of B}}{\text{Stoic.Coeff of B}} = \frac{n_{B}}{3} = \frac{4.4}{3} = 1.47$

Hence, B is limiting reagent and A is excess reagent.

Step 3:

Finding Limiting Reagent for 2^{nd} reaction Given: initial moles of E = 2 mol For reaction, 7C + 8E \rightarrow 9F + 10G

 $\frac{\text{Initial moles of C}}{\text{Stoic.Coeff of C}} = \frac{n_c}{7} = \frac{5.87}{7} = 0.84$

 $\frac{\text{Initial moles of E}}{\text{Stoic.Coeff of E}} = \frac{n_{\text{E}}}{8} = \frac{2}{8} = 0.25$

Hence, E is limiting reagent and C is excess reagent.

Step 5:

Finding Limiting Reagent for 3^{rd} reaction Given: initial moles of H = 1 mol For reaction, 5F + 6H \rightarrow 7I + 8J

 $\frac{\text{Initial moles of F}}{\text{Stoic.Coeff of F}} = \frac{n_F}{5} = \frac{0.45}{5} = 0.09$ $\frac{\text{Initial moles of H}}{\text{Stoic.Coeff of H}} = \frac{n_H}{6} = \frac{1}{6} = 0.167$

Hence, F is limiting reagent and H is excess reagent.

Step 2:

Finding Moles of C formed According to stoichiometry, $\frac{\text{moles of B consumed}}{\text{Stoic.Coeff of B}} = \frac{\text{moles of C produced}}{\text{Stoic.Coeff of C}}$ $\frac{4.4}{3} = \frac{\text{moles of C consumed}}{4}$ so, moles of C formed = $\frac{4.4}{3} \times 4 = 5.87$

Step 4: Finding Moles of F formed According to stoichiometry, $\frac{\text{moles of E consumed}}{\text{Stoic.Coeff of E}} = \frac{\text{moles of F produced}}{\text{Stoic.Coeff of F}}$ $\frac{2}{8} = \frac{\text{moles of F formed}}{9}$ so, moles of F formed = $\frac{2}{8} \times 9 = 2.25 \text{ mol}$ As yield = 20% i.e., moles of F formed = 2.25 × 0.20 = 0.45 mol

Step 6:

Finding moles of I formed

According to stoichiometry,

$$\frac{\text{moles of F consumed}}{\text{Stoic.Coeff of F}} = \frac{\text{moles of I formed}}{\text{Stoic.Coeff of I}}$$
$$\Rightarrow \frac{0.45}{5} = \frac{\text{moles of I formed}}{7}$$
So, moles of I formed = $\frac{0.45}{5} \times 7 = 0.63$ mol

C H E M I S T R Y

MOLE FINALE

Mole fraction is a dimensionless number.

• Mole fraction is independent of temperature.

Finding mole fraction from the given mass.

Calculate mole fraction of each species in a container having 44 g of CO₂, 64 g of O₂, and 28 g of N₂ gas respectively.

Solution

Step 1: Finding moles of CO₂, O₂, and N₂

$$n_{co_{2}}(n_{1}) = \frac{Given \ weight}{Molar \ mass} = \frac{44}{44} = 1 \ mol$$
$$n_{o_{2}}(n_{2}) = \frac{Given \ weight}{Molar \ mass} = \frac{64}{32} = 2 \ mol$$
$$n_{N_{2}}(n_{3}) = \frac{Given \ weight}{Molar \ mass} = \frac{28}{28} = 1 \ mol$$

Step 2:

Dividing the moles of individual species by total number of moles

$$\chi_{CO_2} = \frac{n_1}{n_1 + n_2 + n_3} = \frac{1}{1 + 2 + 1} = 0.25$$

$$\chi_{O_2} = \frac{n_1}{n_1 + n_2 + n_3} = \frac{2}{1 + 2 + 1} = 0.50$$

$$\chi_{N_2} = \frac{n_1}{n_1 + n_2 + n_3} = \frac{1}{1 + 2 + 1} = 0.25$$

Finding mass from the given mole fraction.

What is the **quantity of water (in g)** that should be added to **16 g of methane** to make the **mole fraction of methane as 0.25**?

Solution

Step 1: Find moles of all components Moles of methane $(n_{CH_4}) =$ $\frac{weight of methane}{molar mass of methane} = \frac{16}{16} = 1 mol$ Let moles of water (n_{H_2O}) be n.

Step 3:

Equate obtained χ_{CH_4} to given value to find moles of H_2O $\frac{1}{1+n} = 0.25$ $\therefore n = 3 mol$

Step 2: Find mole fraction

Mole fraction of CH₄

$$\boldsymbol{\chi}_{CH_4} = \frac{n_{CH_4}}{n_{CH_4} + n_{H_2O}} = \frac{1}{1+n}$$

Step 4: Multiply n with molar mass with to get mass of H₂O

Mass of $H_2O = n \times 18 = 3 \times 18 = 54 g$

Concentrations of a Solution (pph)

- It refers to the amount of the solute per 100 parts of a solution.
- it can also be called as parts per hundred (pph).

Different Percentage Concentrations

Weight by Weight Percentage (% w/w)

- It is given as the mass of solute present in per 100 g of solution.
- It is denoted by (% w/w).

$$(\% w/w) = \frac{mass of solute in g}{mass of solution in g} \times 100$$

Example: 10 (% w/w) ethanol solution consists of 10 g of ethanol for every 100 g of the solution.

Weight by Volume Percentage (% w/V)

- It is given as mass of solute present in per 100 mL of solution.
- It is denoted by (% w/V).

$$(\% w/V) = \frac{mass of solute in g}{volume of solution in mL} \times 100$$

Example: 10 (% w/V) Na₂CO₃ consists of 10 g of Na₂CO₃ for every 100 mL of solution.

Volume by Volume Percentage (% V/V)

- It is given as volume of solute present in per 100 mL of solution.
- It is denoted by (% V/V).

$$(\% V/V) = \frac{\text{volume of solute in } mL}{\text{volume of solution in } mL} \times 100$$

Example: 10 (% V/V) ethanol solution consists of 10 mL of ethanol for every 100 mL of the solution.

Strength of a Solution

The term can be defined as the amount of solute mass (in gram) present in one-litre solution.

• The strength is expressed in g/L.

Strength of solution = $\frac{\text{solute mass in g}}{\text{volume of solution in L}} = \frac{\text{solute mass (g)} \times 1000}{\text{volume of solution (mL)}}$

- Unit for the strength of a solution is g/L.
- Strength of a solution depends on temperature.

Strength of a solution

If **10 g of glucose** is dissolved in **100 mL of glucose solution.** Calculate **the strength of the solution.**

Solution

Given mass of glucose in 100 mL of glucose solution = 10 g

Strength of solution = $\frac{\text{solute mass } (g) \times 1000}{\text{volume of solution } (mL)} = \frac{10 \times 1000}{100} = 100$

: Strength of the solution = 100 g/L

MAIN

Parts Per Million (ppm)

ppm is defined as the number of parts of solute particles present in per million parts of the solution.

ppm is defined in terms of (w/w), (w/V) and (V/V) respectively as:

$$ppm (w/w) = \frac{weight of solute (g)}{weight of solution (g)} \times 10^{6}$$
$$ppm (w/V) = \frac{weight of solute (g)}{volume of solution (mL)} \times 10^{6}$$

$$opm (V/V) = \frac{Volume of solute (mL)}{Volume of solution (mL)} \times 10^6$$

This method of measuring concentration is particularly important when solute is present in trace quantities.

Concentration of a solution in ppm

What is the **concentration of a solution, in parts per million,** if **0.02 grams of NaCl** is dissolved in **1 kg of the solution**?

Solution

Given

Amount of NaCl in solution = $2 \times 10^{-2} g$ Amount of water (solution) = $10^3 g$ $ppm(w/w) = \frac{weight of solute (g)}{weight of solution (g)} \times 10^6 = \frac{2 \times 10^{-2}}{10^3} \times 10^6 = 20 ppm$

Parts Per Billion (ppb)

ppb is defined as the number of parts of solute particles present in per billion parts of the solution.

ppb (% w/w) =
$$\frac{\text{weight of solute (g)}}{\text{weight of solution (a)}} \times 10^{9}$$

Finding molality from molarity

If you are given a **2** *M* **NaOH solution** having density **1** *g/mL*, then find the **molality of the solution**.

Solution

Step 1:

Assume volume of solution to be 1000 *mL* and find weight of solution.

Given density of solution = 1 g/mL

So,

weight of 1000 mL of the solution = $1000 \times 1 = 1000 g$

Step 2:

Find the weight of solute and solvent using molarity.

Since the given molarity of solution is 2 *M*, 1000 *mL* of solution should contain 2 moles of NaOH. So, weight of $NaOH = 2 \times 40 = 80 g$

Weight of solvent = 1000 - 80 = 920 g

Step 3:

Find molality of NaOH. Molality of NaOH = $\frac{no.of \ moles}{weight \ of \ solvent} \times 1000 = \frac{2 \times 1000}{920} = 2.174 \ m$

Finding molarity from molality

Find the molarity of 5 m NaOH solution having a density of 1.5 g/mL.

Solution

Step 1:

Assume mass of solvent to be 1000 g and find mass of solution.

For 1000 g of solvent, 5 moles of solute i.e, NaOH is present. weight of solute (NaOH) = 5 × 40 = 200 g So, weight of solution = weight of solvent + weight of solute = 1000 + 200 = 1200 g

Step 2:

Divide weight of solution with its density to get volume.

Volume of solution

 $= \frac{\text{weight of solution}}{\text{density of solution}} = \frac{1200}{1.5} = 800 \text{ mL}$

Step 3: Find molarity of solution Molarity of the solution = $(\frac{no.of moles}{volume}) \times 1000$ = $(\frac{5}{800}) \times 1000$ = 6.25 M

• When molarity is given, assume that the volume of solution is 1000 mL or 1 L.

• When molality is given, assume that the mass of solvent is 1000 g or 1 kg.

Finding mole fraction from molarity

Given a 2 M NaOH solution having density 1 g/mL. Find the mole fraction of solute.

Solution

Step 1:

Assume volume of solution to be 1000 *mL*. Find weight of solution. Weight of solution = volume of solution × density of solution

= 1000 × 1 = 1000 g

Step 2:

Use molarity of solution to find weight of solute and solvent. Since molarity is 2M,

Weight of solute (NaOH) = $2 \times \text{molar mass}$

 $= 2 \times 40 = 80 g$

Weight of solvent = weight of solution - weight of solute

= 1000 - 80 = 920 g

Step 3:

Use mass of solvent with to get moles of solvent and $\chi_{_{NaOH}}$.

Moles of solvent = $\frac{mass of solvent}{molar mass of solvent}$ = $\frac{920}{18}$ = 51.11 mol Hence, mole fraction = $\frac{2}{(2 + 51.11)}$ = 0.0376

Finding mole fraction from molality

Given a 5 *m* NaOH solution having density 1.5 *g/mL*. Find the mole fraction of solute.

5 *m* solution will contain 5 moles of NaOH in 1 *kg* of solvent. Moles of solvent = $\frac{1000}{18}$ = 55.56 *mol Mole fraction of solute* = $\frac{moles of solute}{moles of solute + moles of solvent}$ = $\frac{5}{5+55.56}$ = 0.0826

Relation between (% w/w) and molarity

Density for 2 M CH₃COOH solution is 1.2 g/mL. Calculate (% w/w) for the solution.

Solution

Step 1:

Calculate the amount of solute and solution in 1 L of solution. Number of moles of CH_3COOH in 1 L = 2 mol Mass of CH_3COOH = 2 × Molar mass = 2 × 60 = 120 g Mass of the solution = Density of the solution × Volume of solution = 1.2 g/mL × 1000 mL = 1200 g Step 2: Place the values to get (% w/w) of the solution mass of solute (g)

$$(\% w/w) = \frac{11033 \text{ of solute (g)}}{Mass \text{ of solution (g)}} \times 100$$

= $\frac{120}{1200} \times 100 = 10\%$

Relation between (% w/V) and molarity

Density for 2 M CH₃COOH solution is 1.2 g/mL. Calculate (% w/v) for the solution.

Solution

Step 1: Calculate the amount of solute in 1 *L* of solution. Number of moles of CH_3COOH in 1 *L* = 2 mol Mass of CH_3COOH = 2 × Molar mass = 2 × 60 = 120 *g* Step 2: Place the values to get (% w/v) of the solution

$$(\% w/V) = \frac{mass of solute (g)}{Volume of solution (mL)} \times 100$$

$$=\frac{120}{1000} \times 100 = 12\%$$

Relation between molality, molarity and mole fraction

The molality of HNO₃ solution is 2 *m* (specific gravity = 1.50) then find the following: a) Molarity of the solution b) Mole fraction of the solute

Solution

Step 1: Calculate the density of the solution. Specific gravity = $\frac{Density \text{ of the solution}}{Density \text{ of water at } 4^{\circ} \text{ C}}$ Density of the solution = $1.5 \times 1 \text{ g/mL}$

= 1.5 g/mL

Step 2:

Finding the volume of solution for fixed moles of solute

2 moles of solute present in 1 kg of solution

Volume of solution =
$$\frac{mass of solution}{density of solution}$$

$$= \frac{1000 g}{1.5 g/mL} = 666.67 mL$$

a) Molarity = $\frac{Moles \ of \ solute}{Volume \ of \ solution \ in \ L}$ = $\frac{2}{0.667}$ = 3 M

Step 3:

Finding moles of solvent and mole fraction of solute

Moles of solvent = $\frac{1000}{18}$ = 55.56 mol

b) Mole fraction of solute

$$= \frac{moles \ of \ solute}{moles \ of \ solute + moles \ of \ solvent}$$
$$= \frac{2}{2+55.56} = 0.035$$

Relation between (% w/w) and ppm

A solution has a concentration of **2550 µg of solute per kg of solution (% w/w)**. What is its **concentration in** *ppm*?

Solution

Given

(% w/w) concentration = 2550 $\mu g \ kg^{-1}$ So, the mass of solute is 2.55 × 10⁻³ g for 10³ g of solution, Mass of solute for 10⁶ g or 10³ × 10³ g of solution = 2.55 × 10⁻³ × 10³ = 2.55 g Hence, concentration of solution = 2.55 ppm

Stoichiometry and Concentration Terms

- Stoichiometry gives the relation between moles consumed and/or moles produced.
- So, when amounts of reactants or products are given in terms of concentration, we need to convert these amounts into moles.

Concentration terms and stoichiometry

32.65 *g* of a Zn metal reacts with **350** *mL* of **0.5** *M* HCl. Calculate the weight of $ZnCl_2$ formed. (Take molar mass of Zn = 65.3 and Cl = 35.5 g/mol)

Solution

Step 1:	Step 2:
Find moles of Zn and HCl	Find the limiting reagent
Moles of $7n = \frac{Given weight}{Given weight}$	0.175 0.5
Molar mass	$\frac{1}{2} < \frac{1}{1}$
$=\frac{32.65}{65.30}=0.5\ mol$	∴ HCl is limiting reagent
Moles of HCI	

= Molarity of HCl × Volume of HCl solution

= 0.5 × 0.350 = 0.175 mol

Step	3
------	---

Use stoichiometry to find moles of ZnCl₂

Zn	+ 2HCI —	\rightarrow ZnCl ₂	+ H ₂
0.5 <i>mol</i>	0.175 mol	0	0
0.4125 mol	0	0.0875 mol	0.0875 mol
Mass of $ZnCl_2 = moles$ of $ZnCl_2 \times molar mass$ of $ZnCl_2$			
= 0.0875 × 136.3 = 11.93 <i>g</i>			

Moles of CsOH = $\frac{Given weight}{Molar mass of CsOH}$ $=\frac{37.5}{150}=0.25 mol$ Molarity = $\frac{number of moles of solute}{volume of solution in I}$

Number of moles $HI = 0.8 \times 0.5 = 0.4$ mol

Step 2:

Identify the limiting reagent and perform the stoichiometric calculations.

$$\frac{0.40}{1} > \frac{0.25}{1}$$

: CsOH (base) is the limiting reagent.

Final volume of the solution = Volume of acid + Volume of Base = 1000 mL

Molarity of anion = $\frac{number \ of \ moles \ of \ anion}{volume \ of \ solution} = \frac{0.4}{1} = 0.4 \ M$

The amount of BaSO₄ formed upon mixing 100 mL of 20.8 % BaCl₂ solution with 50 mL of 9.8 % H₂SO₄ solution will be:

Atomic mass (g/mol) (Ba = 137, Cl = 35.5, S = 32, H = 1 and O = 16) a) 17.60 g b) 11.65 a c) 30.60 g d) 33.20 g

Solution

Step 1:

Finding the moles of BaCl₂ and H₂SO₄

$$(\% \text{ w/V}) = \frac{\text{weight of solute in g}}{\text{volume of solution in mL}} \times 100$$

Moles of $BaCl_2 = \frac{20.8}{(137+2\times35.5)} = 0.1 \text{ mol}$ Moles of $H_2SO_4 = \frac{4.9}{98} = 0.05 \text{ mol}$

Weight of $BaCl_2(g) = \frac{20.8 \times 100}{100} = 20.8 g$ Weight of $H_2SO_4(g) = \frac{9.8 \times 50}{100} = 4.9 g$

Step 2:

Write the balanced chemical equation and perform the stoichiometric calculations.

BaCl ₂ +	H_2SO_4 —	\longrightarrow BaSO ₄	+	2 HCl
0.1 <i>mol</i>	0.05 <i>mol</i>			
0.05 <i>mol</i>	0	0.05 <i>mol</i>		0.1 <i>mol</i>
H ₂ SO ₄ is limiting reagent.				

Amount of BaSO₄ formed = Moles of $BaSO_4 \times Molar mass$ of $BaSO_4 = 0.05 \times 233 = 11.65 g$