SEQUENCE & SERIES

An arithmetic progression (A.P.): a, a+d, a+2d,... a+(n-1)d is an A.P.

Let a be the first term and d be the common difference of an A.P., then n^{th} term = t_n = a + (n - 1) d The sum of first n terms of are A.P.

$$S_n = \frac{n}{2} [2a + (n-1) d] = \frac{n}{2} [a + \ell]$$

 r^{th} term of an A.P. when sum of first r terms is given is $t_r = S_r - S_{r-1}$.

Properties of A.P.

- (i) If a, b, c are in A.P. \Rightarrow 2 b = a + c & if a, b, c, d are in A.P. \Rightarrow a + d = b + c.
- (ii) Three numbers in A.P. can be taken as a-d, a, a+d; four numbers in A.P. can be taken as a-3d, a-d, a+d, a+3d; five numbers in A.P. are a-2d, a-d, a+d, a+2d & six terms in A.P. are a-5d, a-3d, a-d, a+d, a+3d, a+5d etc.
- (iii) Sum of the terms of an A.P. equidistant from the beginning & end = sum of first & last term.

Arithmetic Mean (Mean or Average) (A.M.):

If three terms are in A.P. then the middle term is called the A.M. between the other two, so if a, b, c are in A.P., b is A.M. of a & c.

n-Arithmetic Means Between Two Numbers:

If a, b are any two given numbers & a, A_1 , A_2 ,...., A_n , b are in A.P. then A_1 , A_2 ,... A_n are the

n A.M.'s between a & b.
$$A_1 = a + \frac{b-a}{n+1}$$
, $A_2 = a + \frac{2 (b-a)}{n+1}$,....., $A_n = a + \frac{n (b-a)}{n+1}$

 $\sum_{r=1}^{n} A_r = nA \text{ where A is the single A.M. between a \& b.}$

Geometric Progression: a, ar, ar², ar³, ar⁴,..... is a G.P. with a as the first term & r as common ratio.

- (i) n^{th} term = a r^{n-1} (ii) Sum of the first n terms i.e. $S_n = \begin{cases} \frac{a(r^n-1)}{r-1} &, & r \neq 1 \\ na &, & r = 1 \end{cases}$
- (iii) Sum of an infinite G.P. when |r| < 1 is given by $S_{\infty} = \frac{a}{1-r} (|r| < 1)$.

Geometric Means (Mean Proportional) (G.M.):

If a, b, c > 0 are in G.P., b is the G.M. between a & c, then $b^2 = ac$

n–Geometric Means Between positive number a, b: If a, b are two given numbers & a, G_1 , G_2 ,....., G_n , b are in G.P.. Then G_1 , G_2 , G_3 ,...., G_n are n G.M.s between a & b. $G_1 = a(b/a)^{1/n+1}$, $G_2 = a(b/a)^{2/n+1}$,....., $G_n = a(b/a)^{n/n+1}$

Harmonic Mean (H.M.):

If a, b, c are in H.P., b is the H.M. between a & c, then b = $\frac{2ac}{a+c}$.

H.M. H of
$$a_1$$
, a_2 , a_n is given by $\frac{1}{H} = \frac{1}{n} \left[\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} \right]$

Relation between means:

 $G^2 = AH$, $A.M. \ge G.M. \ge H.M.$ and A.M. = G.M. = H.M. if $a_1 = a_2 = a_3 = \dots = a_n$

Important Results

(i)
$$\sum_{r=1}^{n} (a_r \pm b_r) = \sum_{r=1}^{n} a_r \pm \sum_{r=1}^{n} b_r$$
. (ii) $\sum_{r=1}^{n} k a_r = k \sum_{r=1}^{n} a_r$. (iii) $\sum_{r=1}^{n} k = nk$; where k is a constant.

(iv)
$$\sum_{r=1}^{n} r = 1 + 2 + 3 + \dots + n = \frac{n (n+1)}{2}$$
 (v) $\sum_{r=1}^{n} r^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n (n+1) (2n+1)}{6}$

(vi)
$$\sum_{r=1}^{n} r^3 = 1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{n^2 (n+1)^2}{4}$$

(vii)
$$2 \sum_{i < j=1}^{n} a_i a_j = (a_1 + a_2 + \dots + a_n)^2 - (a_1^2 + a_2^2 + \dots + a_n^2)$$