- 8. (d) $(NH_4)_2 SO_4$ split into ions, NH_4^+ and SO_4^{2-} . Let O.N. of N in NH_4^+ be x then, $1 \times (x) + 4 \times (+1) = 1$ $\therefore x = -3$ - 9. **(b)** Na₂S₄O₆ Let O.N. of S be x then $2 \times (+1) + 4 \times (x) + 6 \times (-2) = 0$ $\therefore x = 2.5$. - 10. (c) In metal carbonyls metal always has O.N. zero. - 11. (a) $O = \overset{+2}{C} = \overset{0}{C} = \overset{+2}{C} = O$ In C_3O_2 , two C atoms linked with oxygen atoms are present in +2 oxidation state and central carbon has zero oxidation state. So, the average oxidation state of C is +4/3. - 12. (d) In disproportionation reaction, one element of a compound will simultaneously get reduced and oxidised. In ClO₄, oxidation number of Cl is + 7 and it can not increase further. So, ClO₄ will not get oxidised and so will not undergo disporportionation reaction. - 13. (d) In Na₂O, SnCl₂ and Na₂O₂ central atom is either in lowest or highest oxidation state, so it can function either as an oxidising or a reducing agent but not both. However, the oxidation state of N in NaNO₂ is +3 which lies between its highest (+5) and lowest (-3) values. - 14. (a) More is E_{RP}° , more is the tendency to get itself reduced or more is oxidising power. - **15.** (a) Fluorine has highest E° value and more reactive than MnO₂. - **16.** (a) Zinc rod dipped in blue copper sulphate solution is oxidised to Zn²⁺ and Cu²⁺ are reduced to Cu and get deposited on zinc rod. - 17. (b) Oxygen has oxidation number 1 in H₂O₂ and +2 in OF₂. Fluorine has oxidation number 1 in all its compounds. Hydrogen shows + 1 in most of its compounds while 1 in binary metallic hydrides. Sulphur shows 2 in all sulphides. - 18. (b) Oxidation number of a compound must be 0. Using the values for A, B and C in the four options, we find that $A_3(BC_4)_2$ is the answer. Check: (+2)3 + [(+5)+4(-2)]2 = 6 + (5-8)2 = 0 - **19.** (c) CaOCl₂ or Ca(OCl)Cl is the mixed salt of Ca(OH)₂ with HCl and HOCl. - 20. (a) In acidic medium MnO_4^- changes to Mn^{2+} , hence O.N. changes from +7 to +2. - 21. (d) O.N. of carbon in CH₃CHO is -1; in other cases it is zero. - 22. (c) $K_2Cr_2O_7 + 3SO_2 + 4H_2SO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + 3SO_3 + 4H_2O$ O.N.of chromium changes from +6 to +3. - **23. (b)** O.N. of iodine in I_3^- is -1/3. ## **Chapter-8: Redox Reactions** - 1. (a) O.N. of Mn in MnO_4^- is +7 and in Mn^{2+} it is +2. The difference is of 5 electrons. - 2. (a) In a redox reaction, one molecule is oxidised and other molecule is reduced i.e. oxidation number of reactants are changed. $$\begin{array}{ccc} 0 & 0 \\ H_2 + Br_2 & \longrightarrow 2 & HBr \end{array}$$ Here, H₂ is oxidised and Br₂ is reduced, thus it is oxidation-reduction reaction. - (b) In the given reaction oxidation state of Mg is changing from 0 to +2 while in nitrogen it is changing from 0 to -3. So, oxidation of Mg and reduction of nitrogen takes place. - 4. (a) In this reaction oxidation occurs. - 5. (a) O.N. of P in H_3PO_3 (phosphorous acid) $3 \times (+1) + x + 3 \times (-2) = 0$ or x = +3In orthophosphoric acid (H_3PO_4) O.N. of P is +5, in hypophosphorous acid (H_3PO_2) it is + 1 while in metaphosphoric acid (HPO_3), it is +5, - **6. (b)** Sum of oxidation state of all atoms in neutral compound is zero. Let the oxidation state of iron in the complex ion [Fe(H₂O)₅(NO)]²⁺:SO₄²⁻ be x; then $$x + 5 \times 0 + 0 = +2$$. $\therefore x = +2$ 7. (a) (i) Oxidation state of an element in its free state is zero. (ii) Sum of oxidation states of all atoms in compound is O.N. of S in $$S_8 = 0$$; O.N. of S in $S_2F_2 = +1$; O.N. of S in $H_2S = -2$ - 24. **(b)** YBa₂Cu₃O₇ $3+2\times(+2)+3x+(-2)\times7=0$ 3+4+3x-14=0 $3x=7 \Rightarrow x=\frac{7}{3}$. - 25. (c) It has four O atoms as peroxide with oxidation number -1 and one O atom with oxidation number -2. Hence, x + 4(-1) + 1 (-2) = 0 or x = +6 -1 +5 26. (d) 3Br₂ + 6CO₃² + 3H₂O ------> 5Br+BrO₃² + 6HCO₃² - 26. (d) $3Br_2 + 6CO_3^{2-} + 3H_2O \longrightarrow 5Br + BrO_3^{-} + 6HCO_3^{-}$ Bromine is getting oxidised as well as reduced in this reaction. - 27. (a) $2MnO_4^- + 5H_2O_2 + 6H^+ \rightarrow 2Mn^{2+} + 5O_2 + 8H_2O$. - **28. (d)** $8\text{KMnO}_4 + 3\text{NH}_3 \longrightarrow 8\text{MnO}_2 + 3\text{KNO}_3 + 5\text{KOH} + 2\text{H}_2\text{C}$ - 29. **(b)**Reduction $2Fe^{3+} + Sn^{2+} \rightarrow 2Fe^{2+} + Sn^{4+}$ Oxidation - 30. (c) The balanced reaction is $H_2SO_4 + 8HI \rightarrow H_2S + 4I_2 + 4H_2O$ Hence the value of x, y, z are 8, 4, 4 respectively. - 31. (b) The compound which undergo oxidation itself and reduces others is known as reducing agent. In this reaction O.N. of Ni changes from 0 to + 2 and hence Ni acts as a reducing agent. - 32. (a) (i) $Mn^{n+} + ne^- \longrightarrow M$, for this reaction, high negative value of E° indicates lower reduction potential, that means M will be a good reducing agent. Stronger reducing agent \Rightarrow Easy to oxidise $\downarrow\downarrow$ Lower reduction potential \Leftarrow higher oxidation potential - (ii) Element F C1 Br I Reduction potential +2.87 +1.36 +1.06 +0.54 (E° volt) - As reduction potential decreases from fluorine to iodine, oxidising nature also decreases from fluorine to iodine. - (iii) The size of halide ions increases from F⁻to I⁻. The bigger ion can loose electron easily. Hence, the reducing nature increases from HF to HI. - 33. (a) More negative or lower is the reduction potential, more is the reducing property. Thus the reducing power of the corresponding metal will follow the reverse order, i.e. Y > Z > X. - 34. (c) Since X displaces Ni from NiSO₄ solution, it means X has higher oxidation potential or lower reduction potential than Ni²⁺. Since X cannot displace Mn from MnSO₄ solution, it means it has higher reduction potential than Mn²⁺. Lower the reduction potential, stronger is the reducing agent hence reducing power is Mn > X > Ni. - 35. (d) All the statements are correct. - **36.** (c) Zinc can reduce Ag⁺ and Cu²⁺ due to lowest reduction potential. - 37. (c) The redox couple with maximum reduction potential will be best oxidising agent and with minimum reduction potential will be best reducing agent. - 38. (d) Zinc gives H₂ gas with dil H₂SO₄ and HCl but not with HNO₃ because in HNO₃, NO₃⁻ ion is reduced and give NH₄NO₃, N₂O, NO and NO₂ (based upon the concentration of HNO₃) - $4Zn+10HNO_3 \longrightarrow 4Zn(NO_3)_2+NH_4NO_3+3H_2O$ - 39. **(b)** $2KMnO_4 + H_2O + KI \rightarrow 2MnO_2 + 2KOH + KIO_3$ One mole of KI reduce 2 moles of KMnO₄. - **40.** (c) Let oxidation state of oxygen in $OF_2 = x$ $\therefore x + (-1 \times 2) = 0$ $\therefore x = +2$ - 42. (c) $2 \text{ HI} + \text{H}_2 \text{SO}_4 \longrightarrow \text{I}_2 + \text{SO}_2 + 2 \text{H}_2 \text{O}$ in this reaction oxidation number of S is decreasing from + 6 to +4 hence undergoing reduction and for HI oxidation number of I is increasing from -1 to 0 hence undergoing oxidation, therefore $\text{H}_2 \text{SO}_4$ is acting as oxidising agent. - **43.** (c) $N_2 H_4 \xrightarrow{-4 + 4} loss of 10e^- Y;$ Since, O.N. of 'H' remains same. So, in new compound Y, (all nitrogen retained) N will observe loss of $10e^-$. Hence, O.N. of N changes from -2 to +3. - **44. (b)** BaO₂ + H₂SO₄ \rightarrow BaSO₄ + H₂O₂ Oxygen is the most electronegative element in the reaction and has the oxidation states of -1 (in H₂O₂) and -2 (in BaSO₄). In H₂O₂, peroxo ion is present. - 45. (d) Since a metal with lower electrode potential is a stronger reducing agent, Mg can displace all the given metals, Al can displace all metals except Mg. Zn can displace all metals except Mg and Al. Fe can displace only Cu. The order in which they can displace each other from their salt solutions is Mg, Al, Zn, Fe, Cu. - 46. **(b)** $KMnO_4 + FeC_2O_4 \longrightarrow Fe^{3+} + 2CO_2 + Mn^{2+}$ So half reaction, $Mn O_4^- \longrightarrow Mn^{2+}$ (decrease in O.N. = 5) Fe $C_2O_4 \longrightarrow Fe^{3+} + 2CO_2$ (increase in O.N. = 1) Now equating the change in O.N. and then by adding both half reactions we get $5 \text{FeC}_2 \text{O}_4 + \text{MnO}_4^- \longrightarrow 5 \text{Fe}^{3+} + 10 \text{CO}_2 + \text{Mn}^{2+}$ On balancing equation, $$3MnO_4^- + 5FeC_2O_4 + 24H^+ \longrightarrow 5Fe^{3+} + 3Mn^{2+} + 10CO_2 + 12H_2O$$ \therefore 3 moles of KMnO₄ = 5 moles of FeC₂O₄ - $1 \text{ mole } FeC_2O_4 = \frac{3}{5} \text{ moles of } KMnO_4$ **47. (d)** Fe^{2+} is converting into Fe^{3+} and sulphur is changing from -1 oxidation state to +4 oxidation state. There are two S⁻ and one Fe²⁺ in FeS₂. Thus total no. of electrons lost in the given reaction are 11. - $\begin{array}{ccc} 2+ & 6+ \\ MnO + NaOH + KNO_3 & \longrightarrow & K_2MnO_4 + H_2O \end{array}$ 48. (c) - **49. (b)** +7 HClO₄ HClO₃ \rightarrow $^{-3}_{NH_3}$ NH_{4}^{+} +4 NO₂ +4 HSO₃ H_2^{-1} - 50. (a) $\text{Na}_2[\underline{\text{Fe}}(\text{CN})_5\text{NO}]: +2 + x + 5(-1) + 0 = 0$ $\Rightarrow x = +3$ $\text{K}_2\underline{\text{Ta}}\text{F}_7: +2 + x + (-7) = 0 \Rightarrow x = +5$ $Mg_2P_2O_7$: +4 + 2x + (-14) = 0 \Rightarrow x = +5 $Na_2S_4O_6$: +2 + 4x + (-12) =0 or 4x = 10 \Rightarrow x = +2.5 $\underline{N}_3H: 3x+1=0 \implies x=-\frac{1}{3}$