Chapter 17

Modular Arithmetic

REMEMBER

Before beginning this chapter, you should be able to:

- Have basic knowledge of numbers and their types
- Apply operations on numbers

KEY IDEAS

After completing this chapter, you would be able to:

- Find congruency of numbers and set of residues
- Understand modular addition and multiplication to solve problems
- Represent modular arithmetic system by Caley's table
- Study linear congruence and its solutions

INTRODUCTION

Suppose you have set out for a drive from your place. Let your wrist watch show time as 5 O'clock. After 6 hours of driving, the time would be 11 O'clock. We can deduce that the time is 11 O'clock by adding 6 hours to 5 O'clock. Now, if the journey continues, after another 7 hours, the time would be 6 O'clock.

It is not going to be 11 O'clock + 7 = 18 O'clock.

Thus, 18 have to be replaced with 6.

How did we get this 6 from 18?

How is 6 related to 18?

The number 6 is the remainder obtained, when 18 is divided by 12. We say that 18 is congruent to 6 modulo 12.

Similarly, 21 is congruent to 9 modulo 12.

CONGRUENCE

Let a and b be two integers, and m be a positive integer. We say that a is congruent to b modulo m if m is a factor of (a - b).

It is denoted by $a \equiv b \pmod{m}$ or $(a - b) \equiv 0 \pmod{m}$.

Notes

- **1.** If *m* is not a factor of a b, then $a \neq b \pmod{m}$.
- **2.** If *m* is a factor of *a*, then $a \equiv 0 \pmod{m}$. *Example:* 5 is a factor of 15. So, $15 \equiv 0 \pmod{5}$.
- **3.** If *r* is the remainder on dividing a by *m*, then $a \equiv r \pmod{m}$. *Example:* 125 \equiv 5 (mod 6) as 125 leaves a remainder of 5 on being divided by 6.
- **4.** If $a \equiv b \pmod{m}$ and *c* is an integer, then $a + c \equiv b + c \pmod{m}$.
- **5.** If $a \equiv b \pmod{m}$ and *c* is an integer, then $a \cdot c \equiv b \cdot c \pmod{m}$.
- **6.** If $a \equiv b \pmod{m}$ and *c* is a positive integer, then $a^c \equiv b^c \pmod{m}$.
- 7. If p is a prime number, then $x^p \equiv x \pmod{p}$.

Set of Residues

When a positive integer is divided by 2, then the remainder will be either 0 or 1. Hence, 0 and 1 are called residues of 'modulo 2'.

 \therefore {0, 1} is the set of residues 'modulo 2'. It is denoted by Z_2 .

So,

1.
$$Z_4 = \{0, 1, 2, 3\}$$

2. $Z_m = \{0, 1, 2, \dots, (m-1)\}$

Modular Addition

Let *a* and *b* be two integers, and '*m*' be a fixed positive integer. Then, an 'addition modulo *m*' *b* is denoted by $a \bigoplus_m b$ is defined as the remainder when a + b is divided by *m*.

Examples:

- **1.** $5 \oplus_6 4 = 3$
- **2.** $3 \oplus_4 5 = 0$

Notes

- **1.** If $a \oplus_m b = r$, then $a + b \equiv r \pmod{m}$.
- **2.** $a \oplus_m b = b \oplus_m a$.

Modular Multiplication

Let a and b be two integers, and 'm' be a fixed positive integer.

Then, *a* 'multiplication modulo *m*' *b* is denoted by $a \otimes_m b$ is defined as the remainder when $a \cdot b$ is divided by *m*.

Examples:

- **1.** $4 \otimes_5 4 = 1$
- **2.** $8 \otimes_3 4 = 2$

Notes

- **1.** If $a \otimes_m b = r$, then $ab \equiv r \pmod{m}$.
- **2.** $a \otimes_m b = b \otimes_m a$.

Construction of Caley's Table

Consider, $Z_2 = \{0, 1\}$

- **1.** All the possible results under addition modulo 2 are:
 - $0 \oplus_2 0 = 0, 1 \oplus_2 0 = 1,$
 - $1 \oplus_2 0 = 0$ and $1 \oplus_2 1 = 0$

These results can be tabulated as follows:

\oplus_2	0	1
0	0	1
1	1	0

2. All the possible results under multiplication modulo 2 are:

 $0 \otimes_2 0 = 0, 1 \otimes_2 0 = 0,$

 $0 \otimes_2 1 = 0$ and $1 \otimes_2 1 = 1$

These results can be tabulated as follows:

\otimes_2	0	1
0	0	0
1	0	1

Note Caley's table is the representation of modular arithmetic system.

EXAMPLE 17.1

(a) Construct Caley's table for $A = \{1, 2, 3\}$ under addition modulo 5.

SOLUTION

\oplus_5	1	2	3
1	2	3	4
2	3	4	0
3	4	0	1

(b) Construct Caley's table for the set {0, 1, 2, 3, 4} under multiplication modulo 6.

\otimes_6	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	0	2
3	0	3	0	3	0
4	0	4	2	0	4

Linear Congruence

A polynomial congruence of degree 1 is called a *linear congruence*.

A linear congruence is of the form $ax \equiv b \pmod{m}$, where $a \neq 0 \pmod{m}$.

Examples:

- 1. $5x \equiv 8 \pmod{4}$
- **2.** $6x \equiv 3 \pmod{5}$

Solution of Linear Congruence

An integer x_1 is said to be a solution of linear congruence $ax \equiv b \pmod{m}$ if $ax_1 \equiv b \pmod{m}$. That is, $ax_1 - b$ is divisible by m.

1. Consider the linear congruence $5x \equiv 8 \pmod{4}$

Clearly, x = 0 is a solution as 5 (0) - 8 = -8 is divisible by 4.

2. Consider the linear congruence $6x \equiv 3 \pmod{5}$

Clearly, x = 3 is a solution as 6(3) - 3 = 15 is divisible by 5.

TEST YOUR CONCEPTS

Very Short Answer Type Questions

- **1.** $15 \equiv -3 \pmod{9}$ (True/False).
- 2. $5 \equiv 2 \pmod{4}$ (True/False).
- **3.** $4 \otimes_3 9 =$ _____.
- 4. The 19th hour of the day is equivalent to _____ hour.
- **5.** $6 \oplus_4 7 =$ _____.
- 6. In a certain month, the first Sunday falls on the fifth day of the month. In the same month, the fourth Sunday falls on the _____ day.
- 7. In a certain non-leap year, 1st February is Wednesday. Then the last day of the month is also Wednesday. (True/False).

Short Answer Type Questions

- **16.** If *x* belongs to the set of residues modulo 6 and 5 $+ x \equiv 3 \pmod{6}$, then find x.
- 17. If x belongs to the set of residues modulo 4 and $6x - 3 \equiv -1 \pmod{4}$, then find *x*.
- **18.** If $46 \equiv 11 \pmod{a}$, and a is a prime number, then find the greatest possible value of *a*.
- 19. If 1st July 2006 was a Saturday, then what day of the week will be 18th July, 2007?
- 20. If you were born on March 8, 1990 and the day of the week was a Thursday, then on what day of the week did your birthday fall in 1991?

Essay Type Questions

- **26.** Construct Caley's table for the set $B = \{1, 3, 5, 7, ...\}$ 9} under multiplication modulo 10.
- 27. Construct Caley's table for Z_8 under addition modulo 8.
- **28.** Find the remainder when 3^{31} is divided by 31.

- 8. If $63 \equiv 2 \pmod{a}$ and a > 1, then *a* is _____.
- 9. If x belongs to the set of residues modulo 4 and 2 $+ x \equiv 5 \pmod{4}$, then x =_____.
- 10. If $x \equiv \gamma \pmod{m}$, then $6x 5 \equiv 6\gamma 5 \pmod{m}$. (True/False).
- 11. In the set of integers modulo 5, $16 \oplus_5 7 =$ _____.
- **12.** In the set of integers modulo 6, $35 \otimes_6 5 =$ _____.
- **13.** If $a + 2 \equiv 3 \pmod{6}$, then *a* is _____.
- 14. If $6x \equiv 5 \pmod{7}$, then find x.
- **15.** If $x 4 \equiv 8 \pmod{5}$, then x is .
- **21.** Find the remainder when $(26)^{31}$ is divided by 31.
- **22.** Find the remainder when 8^{15} is divided by 5.
- **23.** If $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, then list out all the pairs of distinct numbers from set A which are congruent to each other under modulo 5.
- 24. Construct Caley's table for Z_7 under multiplication modulo 7.
- **25.** Construct Caley's table for the set $A = \{2, 4, 6, 8,$ 10} under addition modulo 12.

- **29.** If $a \otimes_m b = 1$, then b is called there ciprocal of a under modulo m. Find the reciprocal of 8 under modulo 17.
- 30. How many two digit numbers satisfy the equation, $3x \equiv 5 \pmod{7}$?

CONCEPT APPLICATION

Level 1

1.	In the set of integer	s modulo 8, 28 $\otimes_8 2 = $		(a) 4	(b) 3	
	(a) 0	(b) 1		(c) 2	(d) 1	
	(c) 2	(d) 3	9.	Now the time is 1:	30 pm. If I woke up 8 hours	
2.	If $25 \equiv 4 \pmod{p}$, w	here p is a prime number, then		ago, then I woke up	p at:	
	<i>p</i> is:			(a) 4: 30 am	(b) $5:30 \text{ am}$	
	(a) 3	(b) 5		(c) 3:30 am	(d) 6:30 am	
	(c) 7	(d) Either (a) or (c)	10.	If $37 \equiv 18 \pmod{p}$ then find <i>p</i>), where p is a prime number,	
3.	Solve for <i>x</i> , if $5x \equiv$	0 (mod 4).		(a) 3	(b) 7	
	(a) 0	(b) 3		(c) 19	(d) Either (a) or (b)	
	(c) 2	(d) Both (a) and (b)	11.	If $15 \equiv 3 \pmod{x}$.	, then which of the following	
4.	In the set of integers	modulo 12, $38 \oplus_{12} 28 =$		cannot be the value	ue of <i>x</i> ?	
	(a) 6	(b) 5		(a) 3	(b) 4	
	(c) 4	(d) 3		(c) 6	(d) 8	
5.	The largest single-d	igit number that satisfies $14x \equiv$	12. Find the remainder when 5^{18} is divided by 19.			
	4 (mod 3) is:			(a) 1	(b) 4	
	(a) 5	(b) 7		(c) 11	(d) 17	
	(c) 8	(d) 9	13.	The largest two-dig (mod 4) is:	git number that satisfies $5x \equiv 6$	
6.	If 8th August of 2	009 is a Saturday, then 15th		(a) 96	(b) 97	
	August of 2010 falls	on		(c) 98	(d) 99	
	(a) Saturday	(b) Sunday	14.	If you were born o	n April 15, 1993 which was a	
	(c) Wednesday	c) Wednesday (d) Thursday		Tuesday, then on w birthday fall in 1994	hich day of the week did your 4?	
7.	If $23 \equiv 7 \pmod{x}$,	then which of the following $f(x)$		(a) Tuesday	(b) Wednesday	
	cannot be the value of x?			(c) Thursday	(d) Monday	
	(a) 4	(b) 6	15.	Find the remainder	when 11^{12} is divided by 7.	
	(c) 8	(d) 16		(a) 0	(b) 1	
8.	Find the remainder	when 13^{15} is divided by 5.		(c) 3	(d) 5	
Le	vel 2					

6. If $a \equiv b \pmod{m}$ and the remainder obtained when 'a' is divided by m is 2, then find the remainder when 'b' is divided by m.		I the remainder obtained when is 2, then find the remainder by m .	 17. If x ≡ y (mod 2), then which of the following is/ are correct? (A) x is even and y is odd.
	(a) 2	(b) 1	(B) Both x and y are odd.
	(c) 0	(d) Cannot be determined	(C) Both x and y are even.

	(a) Only (C)		25.	Which of the follow	ving is/are correct?	
	(b) Only (A)			(a) $6 \oplus_4 3 \equiv 7 \otimes_9 8$	(mod 5)	
	(c) Both (B) and (C	2)		(b) $10 \oplus_5 4 \equiv 9 \otimes_{11}$	1 9 (mod 11)	
	(d) Both (A) and (E	3)		(c) $14 \oplus_8 8 \equiv 15 \otimes_8 15$	₁₆ 12 (mod 4)	
18.	If January 1, 2010 is of January, 2011 wi	s a Friday, then the fifth Sunday ll fall on		(d) Both (a) and (c)		
	(a) 26th day	(b) 27th day	26.	If x belongs to the s the common solution	set of residues modulo 10, then on of $5 + x \equiv 0 \pmod{3}$ and 6	
	(c) 29th day	(d) 30th day		$+ x \equiv 0 \pmod{5}$ is _	·	
19.	Anand started a work a the work on	ork on Sunday at 9:30 am. He fter 87 hours. Then he finished		(a) 1 (c) 4	(b) 2 (d) 5	
	(a) Wednesday at 1	1:30 pm	27.	By which of the fo	llowing numbers should 3^5 be	
	(b) Thursday at 0:3	0 am		divided to obtain a	remainder 3?	
	(c) Wednesday at 0:	30 am		(a) /	(b) 11	
	(d) Thursday at 11:	30 pm		(c) 5	(d) None of these	
20.	Which of the follow	ving are the common solutions	28.	Find the remainder	when $6^{11} - 6$ is divided by 11.	
	of $3x \equiv 0 \pmod{6}$	and $2x \equiv 0 \pmod{4}$?		(a) 5	(b) 1	
	(A) 0 (B) 2	(C) 4		(3) 0	(d) None of these	
	(a) Both (A) and (B)		29.	29. Find <i>x</i> , if $9x \equiv 2 \pmod{7}$.		
	(b) Both (A) and (C	2)		(a) 1	(b) 2	
	(c) Both (B) and (C	2)		(c) 3	(d) 4	
	(d) All of (A), (B) a	nd (C)	30.	Find the remainder	when 3^{19} is divided by 19.	
21.	If $15x \equiv 2 \pmod{3}$, a possible value of z	then which of the following is x?		(a) 3	(b) 15	
	(a) 3	(b) 315		(c) 16	(d) None of these	
	(c) 0	(d) None of these	31.	In the set of inte	gers modulo 9, $15 \otimes_9 10 =$	
22.	Which of the follow $6x \equiv 0 \pmod{8}$ and	wing is a common solution for $18x \equiv 0 \pmod{10}$?		(a) 3	(b) 6	
	(a) 0	(b) 4		(c) 0	(d) 1	
	(c) 6	(d) Both (a) and (b)	32.	If $7x \equiv 1 \pmod{5}$, the second	hen which of the following is a	
23.	Find the remainder	when 2^{24} is divided by 35.		possible value of x?		
	(a) 2	(b) 31		(a) 10	(b) 11	
	(c) 1	(d) 29		(c) 12	(d) None of these	
24.	24. Which of the following is correct?		33.	In the set of integ	ers modulo 17, 19 \oplus_{17} 15 =	
	(a) $5 \oplus_3 2 \equiv 3 \otimes_3 6$	(mod 4)		(a) ()	(b) 1	
	(b) $4 \oplus_3 2 \equiv 3 \otimes_4 5$	(mod 6)		(c) 2	(d) 3	
	(c) $5 \oplus_5 3 \equiv 6 \otimes_8 9$	(mod 3)	31	In order to enter h	er name in the Cuinness Rock	
	(d) None of these		34.	of world records,	Sangeeta started singing on	

Monday at 10.30 am. If she sings continuously for 36 hours, then she will finish her singing on

- (a) Tuesday at 10.30 am
- (b) Wednesday at 10.30 am
- (c) Tuesday at 10.30 pm
- (d) Wednesday at 10.30 pm

Level 3

- **36.** Find the remainder when 3^{215} is divided by 43.
 - (a) 35 (b) 28
 - (c) 33 (d) 30
- 37. Kishore reached his school on Monday at 8:30 a.m., and then immediately started on a tour to GOA. After $106\frac{1}{2}$ hours, he reached his house. Then, Kishore reached his home on
 - (a) Saturday at 7 pm
 - (b) Friday at 6 pm
 - (c) Saturday at 6 pm
 - (d) Friday at 7 pm
- **38.** If August 1, 2012 is Wednesday, then find the day on which we shall celebrate our Independence Day in the year 2015.
 - (a) Saturday (b) Sunday
 - (c) Friday (d) Thursday
- **39.** Find the remainder when 5^{97} is divided by 97.

(a) 5	(b) 97
-------	--------

- (c) 92 (d) None of these
- 40. If $a \equiv b \pmod{m}$, then which of the following is not always true?
 - (a) $a^2 \equiv b^2 \pmod{m}$
 - (b) $a + m \equiv b + m \pmod{2m}$
 - (c) $am \equiv bm \pmod{m^2}$
 - (d) None of these

41. If $x^3 \equiv x \pmod{3}$, then x can be _____

- (a) 2 (b) 5
- (c) 4 (d) All of these

- **35.** Which of the following is a common solution of $3x \equiv 2 \pmod{5}$ and $4x \equiv 0 \pmod{6}$?
 - (a) 9
 - (b) 4
 - (c) 6
 - (d) None of these
- **42.** A part of Caley's table for \otimes_6 is given below. Find the values of *x*, *y* and *z*.

\otimes_6	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	0	2
3	0	3	0	Ŷ	0
4	0	4	z	0	x

(a)
$$x = 4$$
, $y = 3$, $z = 2$
(b) $x = 2$, $y = 4$, $z = 3$

(c)
$$x = 3, y = 4, z = 2$$

(d)
$$x = 4, y = 2, z = 3$$

43. A part of Caley's table for \oplus_7 is given below. Find the value of *p*, *q*, *x* and *y*.

\oplus_7	1	2	3	4
1	2	3	4	5
2	3	4	5	6
3	4	5	р	x
4	5	Q	Ŷ	1

(a) x = y = 0, p = q = 5
(b) x = y = 1, p = q = 6
(c) x = y = 3, p = q = 4
(d) x = y = 0, p = q = 6

44. The Independence Day of India in 2007 was celebrated on a Wednesday, then Children's day in 2008 was celebrated on a _____.

(a) Friday	(b) Saturday
(c) Sunday	(d) Monday

45.	45. If $13 \equiv 3 \pmod{p}$, then <i>p</i> can be			(a) 1	(b) 3
	(a) 2	(b) 5		(c) 4	(d) 5
	 (c) 10 (d) All of these If the 1st January of a certain year, which was not a leap year, was a Thursday, then what day of the week was the 31st December of that year? 		49.	The January 2, 2009 of January 2010 falls	is a Friday. The fourth Sunday on the
46.				(a) 23rd day	
	(a) Monday	(b) Thursday		(b) 24th day (c) 25th day	
	(c) Sunday	(d) Saturday		(d) 26th day	
47.	47. If $x + 10 \equiv 1 \pmod{8}$, then <i>x</i> can be		50.	Which of the follow	ving is/are correct?
(a) 1		(b) 0	(a) $5 \oplus_2 4 \equiv 17 \otimes_5 3$ (r		3 (mod 7)
	(c) 6	(d) 7		(b) $6 \oplus_4 7 \equiv 19 \otimes_9 4$	3 (mod 3)
48.	If x belongs to the s	set of residues modulo 6 and 3		(c) $9 \oplus_7 3 \equiv 8 \otimes_7 9$	(mod 9)

 $+ x \equiv 2 \pmod{6}$, then x =_____.

(d) None of these

TEST YOUR CONCEPTS

Very Sl	hort Ansv	ver Type	Question	15					
1. True	•				9.3				
2. False	•				10. Tr	rue			
3. 0					11. 3				
4. 7th					12. 1				
5. 1					13. 1				
6. 26th					14. 2				
7. False					15. 2				
8. 61									
Short A	Answer T	ype Ques	tions						
16. $x = 4$	4				21. 31				
17. 1 or	3				22. 2.				
18. 7.					23. [(), 5], [0,	10],[1,6], [2, 7] [3, 8], [4, 9],
19. Wed	nesday.				[5	5, 10]			
20. Frida	ay.								
F	0								
Essay I	ype Que	stions							
28. 2					30. 4				
29. 3									
CONC Level 1	CEPT AI	P PLICA	ΓΙΟΝ						
1. (a) 11. (d)	 (d) (a) 	 (a) (c) 	4. (a) 14. (b)	5. (c) 15. (b)	6. (b)	7. (b)	8. (c)	9. (b)	10. (c)
Level 2									
16. (a)	17. (c)	18. (d)	19. (b)	20. (d)	21. (d)	22. (a)	23. (c)	24. (c)	25. (b)
26. (c)	27. (c)	28. (c)	29. (a)	30. (a)	31. (b)	32. (d)	33. (a)	34. (c)	35. (a)
Level 3									
36. (b)	37. (d)	38. (a)	39. (a)	40. (b)	41. (d)	42. (a)	43. (d)	44. (a)	45. (d)
46. (b)	47. (d)	48. (d)	49. (b)	50. (a)					

CONCEPT APPLICATION

Level 1

- 1. Recall the concept of modular multiplication.
- 2. Check from the options.
- 3. Check from the options.
- 4. Recall the concept of modular addition.
- 5. Check from the options.
- 6. Use the concept, '365 under modulo 7'.
- 7. Check from the options.
- 8. Use the concept of congruence modulo.
- 9. Check from the options.
- 10. Check from the options.
- 11. Check from the options.
- **12.** Start with the step $5^2 \equiv 6 \pmod{19}$ and proceed.
- 13. Check from the options.
- 14. Use the concept '365 under modulo 7'.
- 15. Use the concept of congruence modulo.
- 16. If $a \equiv b \pmod{m}$, then the remainder obtained when *a* is divided by *m* is equal to the remainder obtained when *b* is divided by *m*.
- 17. If a b is divisible by 2, then both a and b are either even numbers or odd numbers.
- 18. January 1, 2010 is a Friday. January 1, 2011 is a Saturday. First Sunday in 2011 is 2nd.
- **19.** 87 hours = 3 days + 15 hours.
- **20.** Verify whether the given options are common solutions are not.
- **21.** 15x is always divisible by 3.
- 22. Verify whether each option is a solution of both the equations or not.
- **23.** Use, if *p* is prime then $a^p \equiv a \pmod{p}$.
- 24. $a \oplus_m b$ means 'the remainder when a + b is divided by *m*' and $a \otimes_m b$ means.

'The remainder when ab is divided by m'.

- **25.** (i) Use the definitions of addition modulo *m* and multiplication modulo *m*.
 - (ii) Substitute the values in the options in the given inequations.
 - (iii) The point which satisfies the given inequations is the required point.

- **26.** $Z_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ and $x \in Z_{10}$
 - $5 + x \equiv 0 \pmod{3} \implies x \equiv 1, 4 \text{ and } 7$
 - $6 + x \equiv 0 \pmod{5} \implies x = 4 \text{ and } 9$
 - \therefore Common solution is x = 4.
- **27.** $3^5 \equiv 3 \pmod{x} \implies 243 \equiv 3 \pmod{x}$
 - \Rightarrow 243 3 is divisible by x
 - \Rightarrow 240 is divisible by x.
 - \therefore From the options, x = 5.
- **28.** We have $a^p \equiv a \pmod{p}$ where *p* is a prime number. 11 is prime number, $6^{11} \equiv 6 \pmod{11}$

That is, $6^{11} - 6$ is divisible by 11. The remainder when $6^{11} - 6$ is divided by 11 is zero.

- **29.** Given, $9x \equiv 2 \pmod{7} \implies 9x 2$ is divisible by 7. From the options, if x = 1, then 9 - 2 is divisible by 7.
- 30. We have a^p ≡ a (mod p), where p is a prime number.
 When 3¹⁹ is divided by 19, the remainder is 3.
- **31.** The remainder when 15×10 , i.e., 150 is divided by 9 is 6.
- **32.** Given, $7x \equiv 1 \pmod{5}$.

7x - 1 is divisible by 5.

 \therefore x = 3 or 8 or 13 or ... satisfies the above relation.

- **33.** The remainder when 19 + 15, i.e., 34 is divided by 17 is 0.
- **34.** Monday, 10.30 am to Tuesday, 10.30 am is 24 hours.

Tuesday, 10.30 am to Tuesday, 10.30 pm = 12 hours.

: She will finish her singing on Tuesday night at 10.30 pm

35. Given $3x \equiv 2 \pmod{5}$

 \Rightarrow 3x - 2 is divisible by 5.

- x = 4 or 9 or 14, or ... satisfies the above relation.
- $4x \equiv 0 \pmod{6}$
- \Rightarrow 4x is divisible by 6

45. Given $13 \equiv 3 \pmod{p}$				
\Rightarrow 13 – 3 is divisible by <i>p</i> .				
\Rightarrow 10 is divisible by <i>p</i> ,				
i.e., p is a factor of 10.				
$\therefore p = 1, 2, 5 \text{ or } 10.$				
\therefore All the options are true.				
46. The given year is a non-leap year and contains 365 days.(The number of days from 1st January to 31st December is 365)				
The 365th day is equivalent to the first day of the				
· But the first day of the week is Thursday				
But the first day of the week is 1 hursday.				
Hence, 51st December is Thursday.				
47. Given $x + 10 = 1 \pmod{8}$				
\Rightarrow x + 10 - 1 is divisible by 8				
\Rightarrow x + 9 is divisible by 8				
From the options, if $x = 7$ then $7 + 19$, i.e., 16 is divisible by 8.				
$\therefore x = 7.$				
48. $\Sigma_6 = \{0, 1, 2, 3, 4, 5\}$ and $x \in \Sigma_6$. Given, $3 + x \equiv 2 \pmod{6}$ $\Rightarrow -3 + x = 2 \pmod{6}$				
\rightarrow x + 1 is divisible by 0				
x = 3 satisfies the above conditions.				
49. The number of days from 2.1.2009 to 1.1.2010 is 365 days				
$\Rightarrow 365 \equiv 1 \pmod{7}$				
\therefore 1.1.2010 is Friday (\therefore 2nd January 2009 is				
Friday)				
∴ 1st Sunday falls on 3.01.2010				
∴ 2nd Sunday falls on 10.01.2010				
∴ 3rd Sunday falls on 17.01.2010				
: 4th Sunday falls on 24.01.2010.				
50. $5 \oplus_2 4 \equiv 17 \otimes_5 3 \pmod{7}$				
$1 \equiv 1 \pmod{7}$				
\therefore 1 – 1 is divisible by 7 (true).				