NURTURE COURSE

PERMUTATION & COMBINATION

CONTENTS

PERMUTATION & COMBINATION	
THEORY & ILLUSTRATIONS	Page – 01
EXERCISE (O-1)	Page – 24
EXERCISE (0-2)	Page – 29
EXERCISE (S-1)	Page – 33
EXERCISE (S-2)	Page - 36
EXERCISE (JM)	Page – 38
EXERCISE (JA)	Page – 39
ANSWER KEY	Page – 41
IIT-JEE Syllabus :	
Permutations and Combinations	

1

PERMUTATION & COMBINATION

1. FUNDAMENTAL PRINCIPLE OF COUNTING (counting without actual counting):

If an event A can occur in 'm' different ways and another event B can occur in 'n' different ways, then the total number of different ways of -

- (a) simultaneous occurrence of both events in a definite order is m× n. This can be extended to any number of events (known as multiplication principle).
- (b) happening exactly one of the events is m + n (known as addition principle).

Example : There are 15 IITs in India and let each IIT has 10 branches, then the IITJEE topper can select the IIT and branch in $15 \times 10 = 150$ number of ways.

Example : There are 15 IITs & 20 NITs in India, then a student who cleared both IITJEE & AIEEE exams can select an institute in (15 + 20) = 35 number of ways.

Illustration 1	: A college offers 6	courses in the	morning and 4 in the eve	ning. The possible number				
	of choices with the	e student if he w	vants to study one course	in the morning and one in				
	the evening is-							
	(A) 24	(B) 2	(C) 12	(D) 10				
Solution :	The student has 6	choices from the	ne morning courses out o	of which he can select one				
	course in 6 ways.							
	For the evening c	ourse, he has 4	choices out of which he	can select one in 4 ways.				
	Hence the total m	umber of ways	$6 \times 4 = 24.$	Ans.(A)				
Illustration 2	: A college offers 6	courses in the	morning and 4 in the eve	ning. The number of ways				
	a student can sele	student can select exactly one course, either in the morning or in the evening-						
	(A) 6	(B) 4	(C) 10	(D) 24				
Solution :	The student has 6	The student has 6 choices from the morning courses out of which he can select one						
	course in 6 ways.	course in 6 ways.						
	For the evening c	For the evening course, he has 4 choices out of which he can select one in 4 ways.						
	Hence the total ne	Hence the total number of ways $6 + 4 = 10$. Ans. (C)						
Do your	Do yourself - 1 :							
	here are 3 ways to go fi how many ways can a	· ·		1 way to go from A to C.				
(ii) Th	here are 2 red balls an	d 3 green balls.	All balls are identical exc	cept colour. In how many				

ways can a person select two balls?

2. FACTORIAL NOTATION :

- (i) A Useful Notation : n! (factorial n) = n.(n-1).(n-2).....3. 2. 1; n! = n.(n-1)! where $n \in N$
- (ii) 0! = 1! = 1
- (iii) Factorials of negative integers are not defined.
- (iv) n! is also denoted by \underline{n}
- (v) $(2n)! = 2^{n} \cdot n! [1 \cdot 3 \cdot 5 \cdot 7 \dots (2n-1)]$
- (vi) Prime factorisation of n! : Let p be a prime number and n be a positive integer, then exponent of p in n! is denoted by E_{n} (n!) and is given by

$$\mathbf{E}_{\mathbf{p}}(\mathbf{n}!) = \left[\frac{\mathbf{n}}{\mathbf{p}}\right] + \left[\frac{\mathbf{n}}{\mathbf{p}^2}\right] + \left[\frac{\mathbf{n}}{\mathbf{p}^3}\right] + \dots + \left[\frac{\mathbf{n}}{\mathbf{p}^k}\right]$$

where, $p^k \le n < p^{k+1}$ and [x] denotes the integral part of x.

If we isolate the power of each prime contained in any number n, then n can be written as $n = 2^{\alpha_1} \cdot 3^{\alpha_2} \cdot 5^{\alpha_3} \cdot 7^{\alpha_4} \dots$, where α_i are whole numbers.

Illustration 3: Find the exponent of 6 in 50!

Solution:

$$E_{2}(50!) = \left[\frac{50}{2}\right] + \left[\frac{50}{4}\right] + \left[\frac{50}{8}\right] + \left[\frac{50}{16}\right] + \left[\frac{50}{32}\right] + \left[\frac{50}{64}\right] \text{ (where []] denotes integral part)}$$

$$E_{2}(50!) = 25 + 12 + 6 + 3 + 1 + 0 = 47$$

$$E_{3}(50!) = \left[\frac{50}{3}\right] + \left[\frac{50}{9}\right] + \left[\frac{50}{27}\right] + \left[\frac{50}{81}\right]$$

$$E_{3}(50!) = 16 + 5 + 1 + 0 = 22$$

$$\Rightarrow 50! \text{ can be written as } 50! = 2^{47} \cdot 3^{22} \dots$$
Therefore exponent of 6 in 50! = 22
Ans.

3. PERMUTATION & COMBINATION :

(a) **Permutation :** Each of the arrangements in a definite order which can be made by taking some or all of the things at a time is called a PERMUTATION. In permutation, order of appearance of things is taken into account; when the order is changed, a different permutation is obtained.

Generally, it involves the problems of arrangements (standing in a line, seated in a row), problems on digit, problems on letters from a word etc.

 ${}^{n}P_{r}$ denotes the number of permutations of n **different** things, taken r at a time (n \in N, r \in W, r \leq n)

ⁿP_r = n (n-1) (n-2) (n-r+1) =
$$\frac{n!}{(n-r)!}$$

Note :

(i) ${}^{n}P_{n} = n!, {}^{n}P_{0} = 1, {}^{n}P_{1} = n$

- (ii) Number of arrangements of n distinct things taken all at a time = n!
- (iii) ${}^{n}P_{r}$ is also denoted by A_{r}^{n} or P(n,r).

nocko0s \B0AH;A1\Kote\LEE[Advanced]\Nurture\Waths\Sheet\Permutation & Combination\Eng.p65

(b) Combination :

Each of the groups or selections which can be made by taking some or all of the things without considering the order of the things in each group is called a COMBINATION.

Generally, involves the problem of selections, choosing, distributed groups formation, committee formation, geometrical problems etc.

 ${}^{n}C_{r}$ denotes the number of combinations of n different things taken r at a time (n \in N, r \in W, r \leq n)

$${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

Note :

node 06 \B0AH;A1\Kota\LEE[Advanced]\NNurture\Wethis\Sheet\Permutation & Combination\Eng.p65

Ε

(i) ${}^{n}C_{r}$ is also denoted by $\binom{n}{r}$ or C (n, r). (ii) ${}^{n}P_{r} = {}^{n}C_{r}$. r!

Illustration 4 :	of permutations	If <i>a</i> denotes the number of permutations of $(x + 2)$ things taken all at a time, <i>b</i> the number of permutations of x things taken 11 at a time and <i>c</i> the number of permutations of $(x - 11)$ things taken all at a time such that $a = 182$ bc, then the value of x is						
	(x - 11) things t (A) 15	(B) 12	such that $a = 182 t$ (C) 10	(D) 18				
Solution :	$^{x+2}P_{x+2} = a \Longrightarrow a$							
	$^{x}P_{11} = b \Longrightarrow b = \overline{(x)}$	$\frac{x!}{x-11)!}$						
	and $^{x-11}P_{x-11} = c$	$c \Rightarrow c = (x - 11)!$						
	∵a =182bc							
	$(x+2)! = 182 \frac{x!}{(x-11)!} (x-11)! \implies (x+2)(x+1) = 182 = 14 \times 13$							
	$\therefore x + 1 = 13 \implies$	x = 12		Ans. (B)				
Illustration 5 :		A box contains 5 different red and 6 different white balls. In how many ways can 6 balls						
			two balls of each co					
Solution :	The selections of 6 balls, consisting of atleast two balls of each colour from 5 red and 6 white balls, can be made in the following ways							
	Red balls (5)	White balls (6)	Number of ways					
	2	4	${}^{5}C_{2} \times {}^{6}C_{4} = 150$					
	3	3	${}^{5}C_{3} \times {}^{6}C_{3} = 200$	-				
	4	2	${}^{5}C_{4} \times {}^{6}C_{2} = 75$					
	Therefore total	number of ways =	= 425	Ans.				
Illustration 6 :	-	ter words can be f vords start with a		ters of the word 'ANSWER' ? How				

3

Solution :	Number of ways of arranging 4 different letters from 6 different letters are
	${}^{6}C_{4}4! = \frac{6!}{2!} = 360.$
	There are two vowels (A & E) in the word 'ANSWER'.
	Total number of 4 letter words starting with A : A = ${}^{5}C_{3}3! = \frac{5!}{2!} = 60$
	Total number of 4 letter words starting with E : E = ${}^{5}C_{3}3! = \frac{5!}{2!} = 60$
	\therefore Total number of 4 letter words starting with a vowel = $60 + 60 = 120$. Ans.
Illustration 7 :	If all the letters of the word 'RAPID' are arranged in all possible manner as they are in
	a dictionary, then find the rank of the word 'RAPID'.
Solution :	First of all, arrange all letters of given word alphabetically : 'ADIPR'
	Total number of words starting with A = $4! = 24$
	Total number of words starting with D = $4! = 24$
	Total number of words starting with I = $4! = 24$
	Total number of words starting with $P_{} = 4! = 24$
	Total number of words starting with RAD _ $= 2! = 2$
	Total number of words starting with RAI $= 2! = 2$
	Total number of words starting with RAPD _ = 1
	Total number of words starting with RAPI = 1
	:. Rank of the word RAPID = $24 + 24 + 24 + 24 + 2 + 2 + 1 + 1 = 102$ Ans.

Do yourself -2:

- (i) Find the exponent of 10 in $^{75}C_{25}$.
- (ii) If ${}^{10}P_r = 5040$, then find the value of r.
- (iii) Find the number of ways of selecting 4 even numbers from the set of first 100 natural numbers
- (iv) If all letters of the word 'RANK' are arranged in all possible manner as they are in a dictionary, then find the rank of the word 'RANK'.
- (v) How many words can be formed using all letters of the word 'LEARN'? In how many of these words vowels are together ?

4. **PROPERTIES OF** ${}^{n}P_{r}$ and ${}^{n}C_{r}$:

- (a) The number of permutation of n different objects taken r at a time, when p particular objects are always to be included is $r!.^{n-p}C_{r-p}$ ($p \le r \le n$)
- (b) The number of permutations of n different objects taken r at a time, when repetition is allowed any number of times is n^{r} .
- (c) Following properties of ${}^{n}C_{r}$ should be remembered :

(i)
$${}^{n}C_{r} = {}^{n}C_{n-r}$$
; ${}^{n}C_{0} = {}^{n}C_{n} = 1$
(ii) ${}^{n}C_{r} = {}^{n}C_{r-1} = {}^{n+1}C_{r}$
(ii) ${}^{n}C_{x} = {}^{n}C_{y} \Rightarrow x = y \text{ or } x + y = n$
(iv) ${}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + \dots + {}^{n}C_{n} = 2^{n}$
(v) ${}^{n}C_{r} = \frac{n}{r} {}^{n-1}C_{r-1}$

(vi) ${}^{n}C_{r}$ is maximum when $r = \frac{n}{2}$ if n is even & $r = \frac{n-1}{2}$ or $r = \frac{n+1}{2}$, if n is odd.

node06 \B0AHAI\Y6ata\EE[Advarced]\Nunture\Wethis\Sheet\Permutation & Combination\Eng.p65

Ans.(B)

- (d) The number of combinations of n different things taking r at a time,
 - (i) when p particular things are always to be included = ${}^{n-p}C_{r-p}$
 - (ii) when p particular things are always to be excluded = ${}^{n-p}C_{r}$
 - (iii) when p particular things are always to be included and q particular things are to be excluded = ${}^{n-p-q}C_{r-p}$
- Illustration 8 :
 There are 6 pockets in the coat of a person. In how many ways can he put 4 pens in these pockets?

 (A) 360
 (B) 1296
 (C) 4096
 (D) none of these

 Solution :
 Eirst non can be put in 6 years
- *Solution* : First pen can be put in 6 ways.

Similarly each of second, third and fourth pen can be put in 6 ways.

- Hence total number of ways = $6 \times 6 \times 6 \times 6 = 1296$
- *Illustration 9*: A delegation of four students is to be selected from a total of 12 students. In how many ways can the delegation be selected, if-
 - (a) all the students are equally willing ?
 - (b) two particular students have to be included in the delegation ?
 - (c) two particular students do not wish to be together in the delegation ?
 - (d) two particular students wish to be included together only?
 - (e) two particular students refuse to be together and two other particular students wish to be together only in the delegation ?
- Solution :
- (a) Formation of delegation means selection of 4 out of 12. Hence the number of ways = ${}^{12}C_4 = 495$.
 - (b) If two particular students are already selected. Here we need to select only 2 out of the remaining 10. Hence the number of ways = ${}^{10}C_2 = 45$.
 - (c) The number of ways in which both are selected = 45. Hence the number of ways in which the two are not included together = 495 45 = 450
 - (d) There are two possible cases
 - (i) Either both are selected. In this case, the number of ways in which the selection can be made = 45.
 - (ii) Or both are not selected. In this case all the four students are selected from the remaining ten students. This can be done in ${}^{10}C_4 = 210$ ways.
 - Hence the total number of ways of selection = 45 + 210 = 255
 - (e) We assume that students A and B wish to be selected together and students C and D do not wish to be together. Now there are following 6 cases.
 - (i) (A, B, C) selected, (D) not selected
 - (ii) (A, B, D) selected, (C) not selected
 - (iii) (A, B) selected, (C, D) not selected
 - (iv) (C) selected, (A, B, D) not selected
 - (v) (D) selected, (A, B, C) not selected
 - (vi) A, B, C, D not selected

	such that no two of them are consecutive : ${}^{n-r+1}C_r$
	Total number of gaps made by these 6 points = $6 + 1 = 7$ If we select 4 gaps out of these 7 gaps and put 4 points in selected gaps then the new points will represent 4 points such that no two of them are consecutive. x . x . x . x . Total number of ways of selecting 4 gaps out of 7 gaps = ${}^{7}C_{4}$ Ans. In general, total number of ways of selection of r points out of n points in a row such that no two of them are consecutive : ${}^{n-r+1}C_{r}$
	Total number of ways of selecting 4 gaps out of 7 gaps = ${}^{7}C_{4}$ Ans.
	$\mathbf{X} \cdot \mathbf{X} \cdot \mathbf{X} \cdot \mathbf{X} \cdot \mathbf{X} \cdot \mathbf{X} \cdot \mathbf{X}$
	points will represent 4 points such that no two of them are consecutive.
	If we select 4 gaps out of these 7 gaps and put 4 points in selected gaps then the new
	Total number of gaps made by these 6 points = $6 + 1 = 7$
Solution :	Total number of remaining non-selected points = 6
~ · ·	two of them are consecutive ?
Illustration 12:	There are 10 points in a row. In how many ways can 4 points be selected such that no
	So, the required number of triangles = $p^3 + 3p^2(p-1) = p^2(4p-3)$ Ans. (C)
	the other two lines = ${}^{3}C_{1} \{ {}^{p}C_{2} \times {}^{2p}C_{1} \} = 6p. \frac{p(p-1)}{2}$
	The number of triangles with two vertices on one line and the third vertex on any one of $r(n-1)$
Solution :	The number of triangles with vertices on different lines = ${}^{p}C_{1} \times {}^{p}C_{1} \times {}^{p}C_{1} = p^{3}$
	(A) $3p^{2}(p-1)+1$ (B) $3p^{2}(p-1)$ (C) $p^{2}(4p-3)$ (D) none of these
	maximum number of triangles with vertices at these points is :
Illustration 11:	There are three coplanar parallel lines. If any p points are taken on each of the lines, the
	these two cases, number of ways are = $({}^{8}C_{6} - 2) = 28 - 2 = 26$. Ans. (C)
	A A A A According to question, atleast one 'A' should be included in each row. So after subtracting
	(I) A A A A (II) A A A A
Solution :	There are 8 squares and 6 'A' in given figure. First we can put 6 'A' in these 8 squares by ${}^{8}C_{6}$ number of ways.
Solution .	(A) 24 (B) 25 (C) 26 (D) 27 There are 8 squares and 6 'A' in given figure. First we can put 6 'A' in these 8 squares by
	number of ways is it possible ?
	how many
	such a manner that every row contains at least one 'A'. In
Illustration 10:	In the given figure of squares, 6 A's should be written in
	Hence total number of ways = $8 + 8 + 28 + 56 + 56 + 70 = 226$. Ans.
	For (vi) the number of ways of selection $= {}^{8}C_{4} = 70$
	For (v) the number of ways of selection = ${}^{8}C_{3} = 56$
	For (iii) the number of ways of selection = ${}^{8}C_{2} = 28$ For (iv) the number of ways of selection = ${}^{8}C_{3} = 56$
	For (ii) the number of ways of selection = ${}^{8}C_{1} = 8$
	For (i) the number of ways of selection = ${}^{8}C_{1} = 8$

Do yourself-3 :

- (i) Find the number of ways of selecting 5 members from a committee of 5 men & 2 women such that all women are always included.
- (ii) Out of first 20 natural numbers, 3 numbers are selected such that there is exactly one even number. How many different selections can be made ?
- (iii) How many four letter words can be made from the letters of the word 'PROBLEM'. How many of these start as well as end with a vowel ?

5. FORMATION OF GROUPS :

- (a) (i) The number of ways in which (m + n) different things can be divided into two groups such that one of them contains m things and other has n things, is $\frac{(m+n)!}{m! n!} (m \neq n)$.
 - (ii) If m = n, it means the groups are equal & in this case the number of divisions is $\frac{(2n)!}{n! n! 2!}$.

As in any one way it is possible to interchange the two groups without obtaining a new distribution.

(iii) If 2n things are to be divided equally between two persons then the number of ways :

$$\frac{(2n)!}{n! n! (2!)} \times 2!$$

- (b) (i) Number of ways in which (m + n + p) different things can be divided into three groups containing m, n & p things respectively is : (m+n+p)!/m! n! p!, m≠n≠p.
 - (ii) If m = n = p then the number of groups $= \frac{(3n)!}{n! n! n! 3!}$.
 - (iii) If 3n things are to be divided equally among three people then the number of ways in which it can be done is $\frac{(3n)!}{(n!)^3}$.
- (c) In general, the number of ways of dividing n distinct objects into ℓ groups containing p objects

each and m groups containing q objects each is equal to
$$\frac{n!(\ell+m)!}{(p!)^{\ell}(q!)^{m}\ell!m!}$$

Here $\ell p + mq = n$

- *Illustration 13*: In how many ways can 15 students be divided into 3 groups of 5 students each such that 2 particular students are always together? Also find the number of ways if these groups are to be sent to three different colleges.
- **Solution :** Here first we seperate those two particular students and make 3 groups of 5,5 and 3 of the remaining 13 so that these two particular students always go with the group of 3 students.

:. Number of ways =
$$\frac{13!}{5!5!3!} \cdot \frac{1}{2!}$$
.

node08 \B0AHA1Y6ob/EEIAdvarced]/Nurture/Waths/Sheei/Permutation & Combination/Eng.p65

Now if these groups are to be sent to three different colleges, total number of

ways
$$=\frac{13!}{5!5!3!} \cdot \frac{1}{2!} \cdot 3!$$
 Ans.

- *Illustration 14*: Find the number of ways of dividing 52 cards among 4 players equally such that each gets exactly one Ace.
- Total number of ways of dividing 48 cards (Excluding 4Aces) in 4 groups = $\frac{48!}{(12!)^4 4!}$ Solution : Now, distribute exactly one Ace to each group of 12 cards. Total number of ways

$$=\frac{48!}{(12!)^44!} \times 4!$$

Now, distribute these groups of cards among four players

$$=\frac{48!}{(12!)^4 4!} \times 4! 4! = \frac{48!}{(12!)^4} \times 4!$$
 Ans.

- *Illustration 15*: In how many ways can 8 different books be distributed among 3 students if each receives at least 2 books?
- Solution : If each receives at least two books, then the division trees would be as shown below :

The number of ways of division for tree in figure (i) is $\left| \frac{8!}{(2!)^2 4! 2!} \right|$.

The number of ways of division for tree in figure (ii) is $\left\lceil \frac{8!}{(3!)^2 2! 2!} \right\rceil$.

The total number of ways of distribution of these groups among 3 students

is
$$\left\lfloor \frac{8!}{(2!)^2 4! 2!} + \frac{8!}{(3!)^2 2! 2!} \right\rfloor \times 3!$$
. Ans.
f-4 :
he number of ways in which 16 constables can be assigned to patrol 8 villages, 2 for
w many ways can 6 different books be distributed among 3 students such that none gets
number of books and each gets atleast one book ?
erent toys are to be distributed among n children. Find the number of ways in which
toys can be distributed so that exactly one child gets no toy.

Do yourself-4 :

- Find the number of ways in which 16 constables can be assigned to patrol 8 villages, 2 for (i) each.
- In how many ways can 6 different books be distributed among 3 students such that none gets **(ii)** equal number of books and each gets atleast one book?
- n different toys are to be distributed among n children. Find the number of ways in which (iii) these toys can be distributed so that exactly one child gets no toy.

Е

6. PRINCIPLE OF INCLUSION AND EXCLUSION :

In the Venn's diagram (i), we get

 $n(A \cup B) = n(A) + n(B) - n(A \cap B)$

$$n(A' \cap B') = n(U) - n(A \cup B)$$

In the Venn's diagram (ii), we get

$$\begin{split} n(A \cup B \cup C) \\ &= n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(A \cap C) + n(A \cap B \cap C) \\ n(A' \cap B' \cap C') &= n(U) - n(A \cup B \cup C) \end{split}$$

In general, we have $n(A_1 \cup A_2 \cup \dots \cup A_n)$

$$= \sum n(A_i) - \sum_{i \neq j} n(A_i \cap A_j) + \sum_{i \neq j \neq k} n(A_i \cap A_j \cap A_k) + \dots + (-1)^n \sum n(A_1 \cap A_2 \cap \dots \cap A_n)$$

Illustration 16: Find the number of permutations of letters a,b,c,d,e,f,g taken

all at a time if neither 'beg' nor 'cad' pattern appear.

Let A be the set of all possible permutations in which 'beg' pattern always appears : n(A) = 5!

Let B be the set of all possible permutations in which 'cad' pattern always appears : n(B) = 5!

 $n(A \cap B)$: Number of all possible permutations when both 'beg' and 'cad' patterns appear. $n(A \cap B)$ = 3!.

Therefore, the total number of permutations in which 'beg' and 'cad' patterns do not appear $n(A' \cap B') = n(U) - n(A \cap B) = n(U) - n(A) - n(B) + n(A \cap B)$

Ans.

Do yourself-5 :

(i) Find the number of n digit numbers formed using first 5 natural numbers, which contain the digits 2 & 4 essentially.

7. PERMUTATIONS OF ALIKE OBJECTS :

= 7! - 5! - 5! + 3!

Case-I : Taken all at a time -

The number of permutations of n things taken all at a time : when p of them are similar of one type, q of them are similar of second type, r of them are similar of third type and the remaining n - (p + q + r)

are all different is : $\frac{n!}{p! q! r!}$.

(ii)

Illustration 17 :	In how many ways the letters of the word "ARRANGE" can be arranged without altering the relative position of vowels & consonants.
Solution :	The consonants in their positions can be arranged in $\frac{4!}{2!} = 12$ ways.
	The vowels in their positions can be arranged in $\frac{3!}{2!} = 3$ ways
Illustration 18 :	\therefore Total number of arrangements = $12 \times 3 = 36$ Ans. How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places?
Solution :	(A) 17(B) 18(C) 19(D) 20There are 4 odd digits (1, 1, 3, 3) and 4 odd places (first, third, fifth and seventh). At these
	places the odd digits can be arranged in $\frac{4!}{2!2!} = 6$ ways
	Then at the remaining 3 places, the remaining three digits $(2, 2, 4)$ can be arranged in
	$\frac{3!}{2!} = 3$ ways
	$\therefore \text{ The required number of numbers} = 6 \times 3 = 18. \text{ Ans. (B)}$
Illustration 19 :	(a) How many permutations can be made by using all the letters of the word HINDUSTAN ?
	(b) How many of these permutations begin and end with a vowel?
	(c) In how many of these permutations, all the vowels come together ?
	(d) In how many of these permutations, none of the vowels come together ?
	(e) In how many of these permutations, do the vowels and the consonants occupy the same relative positions as in HINDUSTAN ?
Solution :	(a) The total number of permutations = Arrangements of nine letters taken all at a time = $\frac{9!}{2!}$ = 181440.
	(b) We have 3 vowels and 6 consonants, in which 2 consonants are alike. The first place can be filled in 3 ways and the last in 2 ways. The rest of the places can be
	filled in $\frac{7!}{2!}$ ways.
	Hence the total number of permutations = $3 \times 2 \times \frac{7!}{2!} = 15120$.
	(c) Assume the vowels (I, U, A) as a single letter. The letters (IUA), H, D, S, T, N, N can
	be arranged in $\frac{7!}{2!}$ ways. Also IUA can be arranged among themselves in $3! = 6$ ways.
	Hence the total number of permutations $=\frac{7!}{2!} \times 6 = 15120.$
	(d) Let us divide the task into two parts. In the first, we arrange the 6 consonants as $6!$
	shown below in $\frac{6!}{2!}$ ways.
	\times C \times C \times C \times C \times C \times C \times (Here C stands for a consonant and \times stands for a gap between two consonants)

Now 3 vowels can be placed in 7 places (gaps between the consonants) in ${}^{7}C_{3}.3! = 210$ ways.

Hence the total number of permutations $=\frac{6!}{2!} \times 210 = 75600.$

(e) In this case, the vowels can be arranged among themselves in 3! = 6 ways. Also, the consonants can be arranged among themselves in $\frac{6!}{2!}$ ways.

Hence the total number of permutations
$$=\frac{6!}{2!} \times 6 = 2160.$$
 Ans.

- *Illustration 20*: If all the letters of the word 'PROPER' are arranged in all possible manner as they are in a dictionary, then find the rank of the word 'PROPER'.
- **Solution :** First of all, arrange all letters of given word alphabetically : EOPPRR Total number of words starting with-

$$E_{----} = \frac{5!}{2!2!} = 30$$

$$O_{----} = \frac{5!}{2!2!} = 30$$

$$PE_{----} = \frac{4!}{2!} = 12$$

$$PO_{----} = \frac{4!}{2!} = 12$$

$$PP_{----} = \frac{4!}{2!} = 12$$

$$PRE_{---} = 3! = 6$$

$$PROE_{---} = 2! = 2$$

$$PROPER_{---} = 1 = 1$$

$$Rank of the word PROPER = 105$$

Ans.

Case-II : Taken some at a time

Illustration 21: Find the total number of 4 letter words formed using four letters from the word "PARALLELOPIPED'.

Given letters are PPP, LLL, AA, EE, R, O, I, D.

Cases	No.of ways	No.of ways	Total
Cases	of selection	of arrangements	Totai
All distinct	${}^{8}C_{4}$	${}^{8}C_{4} \times 4!$	1680
2 alike, 2 distinct	${}^{4}C_{1} \times {}^{7}C_{2}$	${}^{4}C_{1} \times {}^{7}C_{2} \times \frac{4!}{2!}$	1008
2 alike, 2 other alike	⁴ C ₂	${}^{4}C_{2} \times \frac{4!}{2!2!}$	36
3 alike, 1 distinct	${}^{2}C_{1} \times {}^{7}C_{1}$	${}^{2}C_{1} \times {}^{7}C_{1} \times \frac{4!}{3!}$	56
		Total	2780

Solution :

nockook /BOAH-A1/Koto / EEFAdvarced] / Nurture / Waths / Sheet/Permutation & Combination / Eng. p65

Illustration 22: Find the number of all 6 digit numbers such that all the digits of each number are selected from the set $\{1,2,3,4,5\}$ and any digit that appears in the number appears at least twice.

Solution :

Cases	No.of ways	No.of ways	Total
Cases	of selection	of arrangements	Total
Allalike	⁵ C ₁	${}^{5}C_{1} \times 1$	5
4 alike + 2 other alike	${}^{5}C_{2} \times 2!$	${}^{5}C_{2} \times 2 \times \frac{6!}{2!4!}$	300
3 alike + 3 other alike	⁵ C ₂	${}^{5}C_{2} \times \frac{6!}{3!3!}$	200
2 a like + 2 other a like	⁵ C ₃	${}^{5}C_{3} \times \frac{6!}{2!2!2!}$	900
+2 other alike	~ <u>3</u>	2!2!2!	200
		Total	1405

Ans.

Do yourself-6 :

- (i) In how many ways can the letters of the word 'ALLEN' be arranged ? Also find its rank if all these words are arranged as they are in dictionary.
- (ii) How many numbers greater than 1000 can be formed from the digits 1, 1, 2, 2, 3?

8. CIRCULAR PERMUTATION :

Let us consider that persons A,B,C,D are sitting around a round table. If all of them (A,B,C,D) are shifted by one place in anticlockwise order, then we will get Fig.(b) from Fig.(a). Now, if we shift A,B,C,D in anticlockwise order, we will get Fig.(c). Again, if we shift them, we will get Fig.(d) and in the next time, Fig.(a).

Thus, we see that if 4 persons are sitting at a round table, they can be shifted four times and the four different arrangements, thus obtained will be the same, because anticlockwise order of A,B,C,D does not change.

But if A,B,C,D are sitting in a row and they are shifted in such an order that the last occupies the place of first, then the four arrangements will be different.

Thus, if there are 4 things, then for each circular arrangement number of linear arrangements is 4.

Similarly, if n different things are arranged along a circle, for each circular arrangement number of linear arrangements is n.

Therefore, the number of linear arrangements of n different things is $n \times$ (number of circular arrangements of n different things). Hence, the number of circular arrangements of n different things is -

 $1/n \times (\text{number of linear arrangements of n different things}) = \frac{n!}{n} = (n-1)!$

node06/B0AH-A1YKota/JEEEAdvarcedJ/Nurture/Waths/Sheet/Permutation & Combination/Eng.p65

Therefore note that :

- The number of circular permutations of n different things taken all at a time is : (n-1)!. (i)
 - If clockwise & anti-clockwise circular permutations are considered to be same, then it is : $\frac{(n-1)!}{n}$.
- The number of circular permutations of n different things taking r at a time distinguishing (ii) clockwise & anticlockwise arrangements is : $\frac{{}^{n}P_{r}}{r}$
- *Illustration 23*: In how many ways can 5 boys and 5 girls be seated at a round table so that no two girls are together?

(A)
$$5! \times 5!$$
 (B) $5! \times 4!$ (C) $\frac{1}{2} (5!)^2$ (D) $\frac{1}{2} (5! \times 4!)$

Solution : Leaving one seat vacant between two boys, 5 boys may be seated in 4! ways. Then at remaining 5 seats, 5 girls sit in 5! ways. Hence the required number of ways = $4! \times 5!$ Ans. (B)

Illustration 24: The number of ways in which 7 girls can stand in a circle so that they do not have same neighbours in any two arrangements?

Seven girls can stand in a circle by $\frac{(7-1)!}{2!}$ number of ways, because there is no difference Solution : in

$$\therefore \frac{(7-1)!}{2!} = 360$$
 Ans. (C)

Illustration 25 : The number of ways in which 20 different pearls of two colours can be set alternately on a necklace, there being 10 pearls of each colour, is (A) $9! \times 10!$ (B) $5(9!)^2$ $(C)(9!)^{2}$ (D) none of these

Solution : Ten pearls of one colour can be arranged in
$$\frac{1}{2} \cdot (10-1)!$$
 ways. The number of arrangements

of 10 pearls of the other colour in 10 places between the pearls of the first colour = 10!

The required number of ways $=\frac{1}{2} \times 9 \times 10! = 5 (9!)^2$ Ans. (B)

Illustration 26 : A person invites a group of 10 friends at dinner. They sit (i) 5 on one round table and 5 on other round table,

Ŀ.

(ii) 4 on one round table and 6 on other round table.

Find the number of ways in each case in which he can arrange the guests.

- Solution : (i) The number of ways of selection of 5 friends for first table is ${}^{10}C_5$. Remaining 5 friends are left for second table.
 - The total number of permutations of 5 guests at a round table is 4!. Hence, the total

number of arrangements is ${}^{10}C_5 \times 4! \times 4! = \frac{10!4!4!}{5!5!} = \frac{10!}{25}$

(ii) The number of ways of selection of 6 guests is ${}^{10}C_6$.

The number of ways of permutations of 6 guests on round table is 5!. The number of permutations of 4 guests on round table is 3!

Therefore, total number of arrangements is :
$${}^{10}C_65 \times 3! = \frac{(10)!}{6!4!} 5!3! = \frac{(10)!}{24}$$
 Ans. (B)

nade08\B0AH.A1\Kota\EEEAdvarced}\\Nurture\Maths\Sheet\Permutation & Cambination\Eng.pd Ε

Do yourself-7 :

- (i) In how many ways can 3 men and 3 women be seated around a round table such that all men are always together ?
- (ii) Find the number of ways in which 10 different diamonds can be arranged to make a necklace.
- (iii) Find the number of ways in which 6 persons out of 5 men & 5 women can be seated at a round table such that 2 men are never together.
- (iv) In how many ways can 8 persons be seated on two round tables of capacity 5 & 3.

9. TOTAL NUMBER OF COMBINATIONS :

- (a) Given n different objects, the number of ways of selecting at least one of them is, ${}^{n}C_{1} + {}^{n}C_{2} + {}^{n}C_{3} + \dots + {}^{n}C_{n} = 2^{n} - 1$. This can also be stated as the total number of combinations of n distinct things.
- (b) (i) Total number of ways in which it is possible to make a selection by taking some or all out of p + q + r +.....things, where p are alike of one kind, q alike of a second kind, r alike of third kind & so on is given by : (p + 1) (q + 1) (r + 1).....-1.
 - (ii) The total number of ways of selecting one or more things from p identical things of one kind, q identical things of second kind, r identical things of third kind and n different things is given by :

 $(p+1)(q+1)(r+1)2^{n}-1.$

Illustration 27 :	A is a set containing n elements. A subset P of A is chosen. The set A is reconstructed by							
	replacing the elements of P. A subset Q of A is again chosen. The number of ways of							
	choosing P and Q so that $P \cap Q = \phi$ is :-							
	(A) $2^{2n} - {}^{2n}C_n$ (B) 2^n (C) $2^n - 1$ (D) 3^n							
Solution :	Let A = $\{a_1, a_2, a_3, \dots, a_n\}$. For $a_i \in A$, we have the following choices :							
	(i) $a_i \in P \text{ and } a_i \in Q$ (ii) $a_i \in P \text{ and } a_i \notin Q$							
	(iii) $a_i \notin P$ and $a_i \in Q$ (iv) $a_i \notin P$ and $a_i \notin Q$							
	Out of these only (ii), (iii) and (iv) imply $a_i \notin P \cap Q$. Therefore, the number of way	ys in						
	which none of a_1, a_2, \dots, a_n belong to $P \cap Q$ is 3^n . Ans.	(D)						
Illustration 28 :	There are 3 books of mathematics, 4 of science and 5 of english. How many diffe	rent						
	collections can be made such that each collection consists of-	ŝ						
	(i) one book of each subject ?	(i) one book of each subject ?						
	(i) one book of each subject ? (ii) at least one book of each subject ? (iii) at least one book of english ? (i) ${}^{3}C_{1} \times {}^{4}C_{1} \times {}^{5}C_{1} = 60$ (ii) $(2^{3}-1) (2^{4}-1) (2^{5}-1) = 7 \times 15 \times 31 = 3255$ (iii) $(2^{5}-1) (2^{3}) (2^{4}) = 31 \times 128 = 3968$ Ans.							
	(iii) at least one book of english ?	im utation 8						
Solution :	(i) ${}^{3}C_{1} \times {}^{4}C_{1} \times {}^{5}C_{1} = 60$	s\Sheet\Pe						
	(ii) $(2^{3}-1) (2^{4}-1) (2^{5}-1) = 7 \times 15 \times 31 = 3255$	urture/Math						
	(iii) $(2^5 - 1) (2^3) (2^4) = 31 \times 128 = 3968$	Ans.						
Illustration 29 :	Find the number of groups that can be made from 5 red balls, 3 green balls and 4 b	lack 🖓						
	balls, if at least one ball of all colours is always to be included. Given that all balls	are are www.						
	identical except colours.	node O6 \B(

Е

14

Solution: After selecting one ball of each colour, we have to find total number of combinations that can be made from 4 red. 2 green and 3 black balls. These will be (4 + 1)(2 + 1)(3 + 1) = 60

Do yourself-8 :

- (i) There are p copies each of n different books. Find the number of ways in which atleast one book can be selected ?
- (ii) There are 10 questions in an examination. In how many ways can a candidate answer the questions, if he attempts atleast one question.

10. DIVISORS :

Let $N = p^a$. q^b . r^c where p, q, r..... are distinct primes & a, b, c..... are natural numbers then :

- (a) The total numbers of divisors of N including 1 & N is = (a + 1) (b + 1) (c + 1).....
- (b) The sum of these divisors is

$$= (p^{0} + p^{1} + p^{2} + \dots + p^{a}) (q^{0} + q^{1} + q^{2} + \dots + q^{b}) (r^{0} + r^{1} + r^{2} + \dots + r^{c})\dots$$

- (c) Number of ways in which N can be resolved as a product of two factor is = $\frac{1}{2}$ (a+1) (b+1) (c+1)..... if N is not a perfect square $\frac{1}{2}$ [(a+1) (b+1) (c+1).....+1] if N is a perfect square
- (d) Number of ways in which a composite number N can be resolved into two factors which are relatively prime (or coprime) to each other is equal to 2ⁿ⁻¹ where n is the number of different prime factors in N.

Note :

- (i) Every natural number except 1 has atleast 2 divisors. If it has exactly two divisors then it is called a prime. System of prime numbers begin with 2. All primes except 2 are odd.
- (ii) A number having more than 2 divisors is called composite. 2 is the only even number which is not composite.
- (iii) Two natural numbers are said to be relatively prime or coprime if their HCF is one. For two natural numbers to be relatively prime, it is not necessary that one or both should be prime. It is possible that they both are composite but still coprime, eg. 4 and 25.
- (iv) 1 is neither prime nor composite however it is co-prime with every other natural number.
- (v) Two prime numbers are said to be twin prime numbers if their non-negative difference is 2 (e.g.5 & 7, 19 & 17 etc).
- (vi) All divisors except 1 and the number itself are called proper divisors.

Illustration 30: Find the number of proper divisors of the number 38808. Also find the sum of these divisors.

Hence the total number of divisors (excluding 1 and itself i.e. 38808) = $(3 + 1) (2 + 1) (2 + 1) (1 + 1) - 2 = 70$ The sum of these divisors = $(2^0 + 2^1 + 2^2 + 2^3) (3^0 + 3^1 + 3^2) (7^0 + 7^1 + 7^2) (11^0 + 11^1) - 1 - 38808$ = $(15) (13) (57) (12) - 1 - 38808 = 133380 - 1 - 38808 = 94571$. Ans. ow many ways the number 18900 can be split in two factors which are relative prime coprime) ? e N = 18900 = $2^2 \cdot 3^3 \cdot 5^2 \cdot 7^1$ mber of different prime factors in 18900 can be resolved into two factors which are relative ne (or coprime) = $2^{4-1} = 2^3 = 8$. Ans. d the total number of proper factors of the number 35700. Also find sum of all these factors, sum of the odd proper divisors,
The sum of these divisors = $(2^{0} + 2^{1} + 2^{2} + 2^{3})(3^{0} + 3^{1} + 3^{2})(7^{0} + 7^{1} + 7^{2})(11^{0} + 11^{1}) - 1 - 38808$ = (15) (13) (57) (12) - 1 - 38808 = 133380 - 1 - 38808 = 94571. Ans. ow many ways the number 18900 can be split in two factors which are relative prime coprime) ? e N = 18900 = 2^{2} . 3^{3} . 5^{2} . 7^{1} mber of different prime factors in 18900 = n = 4 ice number of ways in which 18900 can be resolved into two factors which are relative ine (or coprime) = 2^{4-1} = 2^{3} = 8. Ans. d the total number of proper factors of the number 35700. Also find sum of all these factors,
$=(2^{0} + 2^{1} + 2^{2} + 2^{3}) (3^{0} + 3^{1} + 3^{2}) (7^{0} + 7^{1} + 7^{2}) (11^{0} + 11^{1}) - 1 - 38808$ = (15) (13) (57) (12) - 1 - 38808 = 133380 - 1 - 38808 = 94571. Ans. ow many ways the number 18900 can be split in two factors which are relative prime coprime) ? e N = 18900 = 2^{2} . 3^{3} . 5^{2} . 7^{1} mber of different prime factors in 18900 = n = 4 ace number of ways in which 18900 can be resolved into two factors which are relative ne (or coprime) = 2^{4-1} = 2^{3} = 8. Ans. d the total number of proper factors of the number 35700. Also find sum of all these factors,
= (15) (13) (57) (12) - 1 - 38808 = 133380 - 1 - 38808 = 94571. Ans. ow many ways the number 18900 can be split in two factors which are relative prime coprime)? e N = 18900 = 2 ² . 3 ³ . 5 ² . 7 ¹ mber of different prime factors in 18900 = n = 4 ace number of ways in which 18900 can be resolved into two factors which are relative ne (or coprime) = 2 ⁴⁻¹ = 2 ³ = 8. Ans. d the total number of proper factors of the number 35700. Also find sum of all these factors,
ow many ways the number 18900 can be split in two factors which are relative prime coprime)? e N = 18900 = $2^2 \cdot 3^3 \cdot 5^2 \cdot 7^1$ mber of different prime factors in 18900 = n = 4 ice number of ways in which 18900 can be resolved into two factors which are relative ine (or coprime) = $2^{4-1} = 2^3 = 8$. d the total number of proper factors of the number 35700. Also find sum of all these factors,
coprime)? e N = 18900 = $2^2 \cdot 3^3 \cdot 5^2 \cdot 7^1$ mber of different prime factors in 18900 = n = 4 ince number of ways in which 18900 can be resolved into two factors which are relative ine (or coprime) = $2^{4-1} = 2^3 = 8$. Ans. d the total number of proper factors of the number 35700. Also find sum of all these factors,
mber of different prime factors in $18900 = n = 4$ ace number of ways in which 18900 can be resolved into two factors which are relative and (or coprime) = $2^{4-1} = 2^3 = 8$. Ans. Ans. If the total number of proper factors of the number 35700. Also find sum of all these factors,
the number of ways in which 18900 can be resolved into two factors which are relative the (or coprime) = $2^{4-1} = 2^3 = 8$. Ans. Ans. Ans. Ans. Ans. Ans. Ans. Ans. Ans.
The (or coprime) = $2^{4-1} = 2^3 = 8$. Ans. Ans. Ans. Ans. I the total number of proper factors of the number 35700. Also find sum of all these factors,
sum of all these factors,
sum of the odd proper divisors,
the number of proper divisors divisible by 10 and the sum of these divisors.
$00 = 5^2 \times 2^2 \times 3^1 \times 7^1 \times 17^1$
total number of factors is equal to the total number of selections from (5,5), (2,2), (3), and (17), which is given by $3 \times 3 \times 2 \times 2 \times 2 = 72$.
se include 1 and 35700. Therefore, the number of proper divisors (excluding 1 and 00) is $72 - 2 = 70$
Sum of all these factors (proper) is :
$(5^{\circ} + 5^{1} + 5^{2}) (2^{\circ} + 2^{1} + 2^{2}) (3^{\circ} + 3^{1}) (7^{\circ} + 7^{1}) (17^{\circ} + 17^{1}) - 1 - 35700$
$= 31 \times 7 \times 4 \times 8 \times 18 - 1 - 35700 = 89291$
The sum of odd proper divisors is :
$(5^{\circ} + 5^{1} + 5^{2}) (3^{\circ} + 3^{1}) (7^{\circ} + 7^{1}) (17^{\circ} + 17^{1}) - 1$
$= 31 \times 4 \times 8 \times 18 - 1 = 17856 - 1 = 17855$
The number of proper divisors divisible by 10 is equal to number of selections from (5,5), (2,2), (3), (7), (17) consisting of at least one 5 and at least one 2 and 35700 is to be excluded and is given by $2 \times 2 \times 2 \times 2 \times 2 - 1 = 31$.
Sum of these divisors is :
$(5^1 + 5^2) (2^1 + 2^2) (3^\circ + 3^1) (7^\circ + 7^1) (17^\circ + 17^1) - 35700$
$= 30 \times 6 \times 4 \times 8 \times 18 - 35700 = 67980$ Ans.

(i) Find the number of ways in which the number 94864 can be resolved as a product of two factors.

0

(ii) Find the number of different sets of solution of xy = 1440.

nodeOS \BOAH-A1\Kota \LEE(Advarced)\Nurture\Waths\Sheet\Permutation & Combination\Eng.pd5

11. TOTAL DISTRIBUTION :

- (a) **Distribution of distinct objects :** Number of ways in which n distinct things can be distributed to p persons if there is no restriction to the number of things received by them is given by : p^n
- (b) **Distribution of alike objects :** Number of ways to distribute n alike things among p persons so that each may get none, one or more thing(s) is given by ${}^{n+p-1}C_{p-1}$.
- *Illustration 33:* In how many ways can 5 different mangoes, 4 different oranges & 3 different apples be distributed among 3 children such that each gets alteast one mango ?
- *Solution*: 5 different mangoes can be distributed by following ways among 3 children such that each gets atleast 1 :

$$3 \ 1 \ 1 \\ 2 \ 2 \ 1$$

Total number of ways : $\left(\frac{5!}{3!1!1!2!} + \frac{5!}{2!2!2!}\right) \times 3!$

Now, the number of ways of distributing remaining fruits (i.e. 4 oranges + 3 apples) among 3 children = 3^7 (as each fruit has 3 options).

:. Total number of ways =
$$\left(\frac{5!}{3!2!} + \frac{5!}{(2!)^3}\right) \times 3! \times 3^7$$
 Ans.

- *Illustration 34:* In how many ways can 12 identical apples be distributed among four children if each gets atleast 1 apple and not more than 4 apples.
- Solution : Let x,y,z & w be the number of apples given to the children. \Rightarrow x + y + z + w = 12 Giving one-one apple to each Now, x + y + z + w = 8.....(i) Here, $0 \le x \le 3$, $0 \le y \le 3$, $0 \le z \le 3$, $0 \le w \le 3$ $x = 3 - t_1$, $y = 3 - t_2$, $z = 3 - t_3$, $w = 3 - t_4$. Putting value of x, y, z, w in equation (i) Put $12 - 8 = t_1 + t_2 + t_3 + t_4$ \Rightarrow t₁ + t₂ + t₃ + t₄ = 4 (Here max. value that $t_1, t_2, t_3 \& t_4$ can attain is 3, so we have to remove those cases when any of t_i getting value 4) $= {}^{7}C_{3}$ – (all cases when at least one is 4) $= {}^{7}C_{3} - 4 = 35 - 4 = 31$ Ans. Find the number of non negative integral solutions of the inequation $x + y + z \le 20$. **Illustration 35:** Solution : Let w be any number (0 < w < 20), then we can write the equation as : x + y + z + w = 20 (here x, y, z, $w \ge 0$) Total ways = ${}^{23}C_3$ Ans. Find the number of integral solutions of x + y + z + w < 25, where x > -2, y > 1, $z \ge 2$, **Illustration 36:** $w \ge 0$. Given x + y + z + w < 25Solution : x + y + z + w + v = 25.....(i) Let $x = -1 + t_1$, $y = 2 + t_2$, $z = 2 + t_3$, $w = t_4$, $v = 1 + t_5$ where $(t_1, t_2, t_3, t_4 \ge 0)$ Putting value of x, y, z, w, v in equation (i) $\Rightarrow t_1 + t_2 + t_3 + t_4 + t_5 = 21.$ Number of solutions = ${}^{25}C_{4}$ Ans.

tation & Combination\Eng.p65

17

Illustration 37:	Find the number of positive integral solutions of the inequation $x + y + z \ge 150$, where $0 < 150$
	$x \le 60, \ 0 < y \le 60, \ 0 < z \le 60.$
Solution :	Let $x = 60 - t_1$, $y = 60 - t_2$, $z = 60 - t_3$ (where $0 \le t_1 \le 59$, $0 \le t_2 \le 59$, $0 \le t_3 \le 59$)
	Given $x + y + z \ge 150$
	or $x + y + z - w = 150$ (where $0 \le w \le 147$)(i)
	Putting values of x, y, z in equation (i)
	$60 - t_1 + 60 - t_2 + 60 - t_3 - w = 150$
	$30 = t_1 + t_2 + t_3 + w$
	Total solutions = ${}^{33}C_3$ Ans.
Illustration 38:	Find the number of positive integral solutions of $xy = 12$
Solution :	$xy = 12$ $xy = 2^2 \times 3^1$
	(i) 3 has 2 ways either 3 can go to x or y
	(i) 2^2 can be distributed between x & y as distributing 2 identical things between
	2 persons
	(where each person can get 0, 1 or 2 things). Let two person be $\ell_1 \& \ell_2$
	$\Rightarrow \ell_1 + \ell_2 = 2$
	$\Rightarrow {}^{2+1}C_1 = {}^{3}C_1 = 3$ So total ways = 2 × 3 = 6.
	Alternatively :
	$xy = 12 = 2^2 \times 3^1$
	$x = 2^{a_1} 3^{a_2}$ $0 \le a_1 \le 2$
	$0 \le a_2 \le 1$
	$y = 2^{b_1} 3^{b_2}$ $0 \le b_1 \le 2$
	$0 \le b_2 \le 1$
	$2^{a_1+b_1}3^{a_2+b_2} = 2^23^1$
	$\Rightarrow a_1 + b_1 = 2 \rightarrow {}^{3}C_1 \text{ ways}$
	$a_2 + b_2 = 1 \rightarrow {}^2C_1 \text{ ways}$
	Number of solutions = ${}^{3}C_{1} \times {}^{2}C_{1} = 3 \times 2 = 6$ Ans.
Illustration 39 : Solution :	Find the number of solutions of the equation $xyz = 360$ when (i) $x,y,z \in N$ (ii) $x,y,z \in I$ (i) $xyz = 360 = 2^3 \times 3^2 \times 5$ ($x,y,z \in N$)
Solution .	E E E E E E E E E E E E E E E E E E E
	$y = 2^{b_1} 3^{b_2} 5^{b_3} \text{ (where } 0 \le b_1 \le 3, \ 0 \le b_2 \le 2, \ 0 \le b_3 \le 1)$
	$y = 2^{-5} 5^{-5}$ (where $0 \le 0_1 \le 5, 0 \le 0_2 \le 2, 0 \le 0_3 \le 1$)
	$z = 2^{c_1} 3^{c_2} 5^{c_3} \text{ (where } 0 \le c_1 \le 3, \ 0 \le c_2 \le 2, \ 0 \le c_3 \le 1)$
	$\begin{split} x &= 2^{a_1} 3^{a_2} 5^{a_3} \text{ (where } 0 \le a_1 \le 3, \ 0 \le a_2 \le 2, \ 0 \le a_3 \le 1) \\ y &= 2^{b_1} 3^{b_2} 5^{b_3} \text{ (where } 0 \le b_1 \le 3, \ 0 \le b_2 \le 2, \ 0 \le b_3 \le 1) \\ z &= 2^{c_1} 3^{c_2} 5^{c_3} \text{ (where } 0 \le c_1 \le 3, \ 0 \le c_2 \le 2, \ 0 \le c_3 \le 1) \\ \Rightarrow 2^{a_1} 3^{a_2} 5^{a_3} . 2^{b_1} 3^{b_2} 5^{b_3} . 2^{c_1} 3^{c_2} 5^{c_3} = 2^3 \times 3^2 \times 5^1 \\ \Rightarrow 2^{a_1 + b_1 + c_1} . 3^{a_2 + b_2 + c_2} . 5^{a_3 + b_3 + c_3} = 2^3 \times 3^3 \times 5^1 \end{split}$
10	-
18	•• E

- $\Rightarrow a_1 + b_1 + c_1 = 3 \rightarrow {}^5C_2 = 10$ $a_2 + b_2 + c_2 = 2 \rightarrow {}^4C_2 = 6$ $a_3 + b_3 + c_3 = 1 \rightarrow {}^3C_2 = 3$ Total solutions = $10 \times 6 \times 3 = 180$.
- (ii) If $x, y, z \in I$ then, (a) all positive (b) 1 positive and 2 negative. Total number of ways = $180 + {}^{3}C_{2} \times 180 = 720$

Ans.

Do yourself -10 :

- (i) In how many ways can 12 identical apples be distributed among 4 boys. (a) If each boy receives any number of apples. (b) If each boy receives atleast 2 apples.
- (ii) Find the number of non-negative integral solutions of the equation x + y + z = 10.
- (iii) Find the number of integral solutions of x + y + z = 20, if $x \ge -4$, $y \ge 1$, $z \ge 2$

12. DEARRANGEMENT :

There are n letters and n corresponding envelopes. The number of ways in which letters can be placed in the envelopes (one letter in each envelope) so that no letter is placed in correct envelope is

 $n! \left[1 - \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{(-1)^n}{n!} \right]$

Proof : n letters are denoted by 1,2,3,....,n. Let A_i denote the set of distribution of letters in envelopes (one letter in each envelope) so that the ith letter is placed in the corresponding envelope. Then, $n(A_i) = 1 \times (n-1)!$ [since the remaining n–1 letters can be placed in n –1 envelops in (n–1)! ways] Then, $n(A_i \cap A_j)$ represents the number of ways where letters i and j can be placed in their corresponding envelopes. Then,

$$n(A_i \cap A_i) = 1 \times 1 \times (n-2)!$$

Also $n(A_i \cap A_i \cap A_k) = 1 \times 1 \times 1 \times (n-3)!$

Hence, the required number is

$$\begin{split} &n(A_{1}' \cup A_{2}' \cup \dots \cup A_{n}') = n! - n(A_{1} \cup A_{2} \cup \dots \cup A_{n}) \\ &= n! - \left[\sum n(A_{i}) - \sum n(A_{i} \cap A_{j}) + \sum n(A_{i} \cap A_{j} \cap A_{k}) + \dots + (-1)^{n} \sum n(A_{i} \cap A_{2} \dots \cap A_{n})\right] \\ &= n! - \left[{}^{n}C_{1}(n-1)! - {}^{n}C_{2}(n-2)! + {}^{n}C_{3}(n-3)! + \dots + (-1)^{n-1} \times {}^{n}C_{n}1\right] \\ &= n! - \left[\frac{n!}{1!(n-1)!}(n-1)! - \frac{n!}{2!(n-2)!}(n-2)! + \dots + (-1)^{n-1}\right] = n! \left[1 - \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{(-1)^{n}}{n!}\right] \end{split}$$

Illustration 40: A person writes letters to six friends and addresses the corresponding envelopes. In how many ways can the letters be placed in the envelopes so that

- (i) all the letters are in the wrong envelopes.
- (ii) at least two of them are in the wrong envelopes.

Solution: (i) The number of ways is which all letters be placed in wrong envelopes

$$= 6! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \frac{1}{6!} \right) = 720 \left(\frac{1}{2} - \frac{1}{6} + \frac{1}{24} - \frac{1}{120} + \frac{1}{720} \right)$$

$$= 360 - 120 + 30 - 6 + 1 = 265.$$

(i) The number of ways in which at least two of them in the wrong envelopes

$$= {}^{6}C_{4} \cdot 2! \left(1 - \frac{1}{1!} + \frac{1}{2!} \right) + {}^{6}C_{3} \cdot 3! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} \right) + {}^{6}C_{2} \cdot 4! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} \right)$$

+ ${}^{6}C_{1} \cdot 5! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} \right) + {}^{6}C_{0} \cdot 6! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \frac{1}{6!} \right)$
= $15 + 40 + 135 + 264 + 265 = 719.$ Ans

Do yourself - 11 :

(i) There are four balls of different colours and four boxes of colours same as those of the balls. Find the number of ways in which the balls, one in each box, could be placed in such a way that a ball does not go to box of its own colour.

Miscellaneous Illustrations :

Illustration 41: In how many ways can a person go from point A to point B if he can travel only to the right or upward along the lines (Grid Problem) ?

Solution: To reach the point B from point A, a person has to travel along 3 horizontal and 3 vertical strips. Therefore, we have to arrange 3H and 3V in a row. Total number of ways =

$$\frac{6!}{3!3!} = 20$$
 ways **Ans.**

Illustration 42: Find sum of all numbers formed using the digits 2,4,6,8 taken all at a time and no digit being repeated.

Solution : All possible numbers = 4! = 24

If 2 occupies the unit's place then total numbers = 6

Hence, 2 comes at unit's place 6 times.

Sum of all the digits occuring at unit's place

 $= 6 \times (2 + 4 + 6 + 8)$

Same summation will occur for ten's, hundred's & thousand's place. Hence required sum = $6 \times (2 + 4 + 6 + 8) \times (1 + 10 + 100 + 1000) = 133320$ Ans. *Illustration 43:* Find the sum of all the numbers greater than 1000 using the digits 0,1,2,2.

Solution : (i) When 1 is at thousand's place, total numbers formed will be $=\frac{3!}{2!}=3$

- (ii) When 2 is at thousand's place, total numbers formed will be = 3! = 6
- (iii) When 1 is at hundred's, ten's or unit's place then total numbers formed will be-Thousand's place is fixed i.e. only the digit 2 will come here, remaining two places can be filled in 2! ways.So total numbers = 2!
- (iv) When 2 is at hundred's, ten's or unit's place then total numbers formed will be-Thousand's place has 2 options and other two places can be filled in 2 ways. So total numbers = $2 \times 2 = 4$ Sum = $10^3 (1 \times 3 + 2 \times 6) + 10^2 (1 \times 2 + 2 \times 4) + 10^1 (1 \times 2 + 2 \times 4) + (1 \times 2 + 2 \times 4)$ = $15 \times 10^3 + 10^3 + 10^2 + 10$ = 16110Ans.

Illustration 44: Find the number of positive integral solutions of x + y + z = 20, if $x \neq y \neq z$.

Solution :

 $x \ge 1$

 $y = x + t_1$ $t_1 \ge 1$ $z = y + t_2$ $t_2 \ge 1$ $x + x + t_1 + x + t_1 + t_2 = 20$ $3x + 2t_1 + t_2 = 20$ (i) x = 1 $2t_1 + t_2 = 17$ $t_1 = 1, 2 \dots 8 \Longrightarrow 8$ ways $2t_1 + t_2 = 14$ (ii) x = 2 $t_1 = 1, 2 \dots 6 \Rightarrow 6$ ways $2t_1 + t_2 = 11$ (iii) x = 3 $t_1 = 1, 2 \dots 5 \Longrightarrow 5$ ways $2t_1 + t_2 = 8$ (vi) x = 4 $t_1 = 1, 2, 3 \Longrightarrow 3$ ways $2t_1 + t_2 = 5$ (v) x = 5 $t_1 = 1, 2 \Longrightarrow 2$ ways Total = 8 + 6 + 5 + 3 + 2 = 24But each solution can be arranged by 3! ways. So total solutions = $24 \times 3! = 144$.

21

node06\B0AHA1V6ab\EE[Advarced]\Nyuture\Weths\Sheet\Permutarian & Combination\Eng.p65

Illustration 45: A regular polygon of 15 sides is constructed. In how many ways can a triangle be formed using the vertices of the polygon such that no side of triangle is same as that of polygon ?

Solution : Select one point out of 15 point, therefore total number of ways = ${}^{15}C_1$ Suppose we select point P₁. Now we have to choose 2 more point which are not

consecutive.

since we can not select $P_2 \& P_{15}$.

Total points left are 12.

Now we have to select 2 points out of 12 points

which are not consecutive

Total ways = ${}^{12-2+1}C_2 = {}^{11}C_2$

Every select triangle will be repeated 3 times.

So total number of ways = $\frac{{}^{15}C_1 \times {}^{11}C_2}{3} = 275$

Alternative :

First of all let us cut the polygon between points $P_1 \& P_{15}$. Now there are 15 points on a straight line and we have to select 3 points out of these, such that the selected points are not consecutive.

x O y O z O w

Here bubbles represents the selected points,

x represents the number of points before first selected point,

y represents the number of points between Ist & IInd selected point, z represents the number of points between IInd & IIIrd selected point and w represents the number of points after IIIrd selected point.

x + y + z + w = 15 - 3 = 12

here $x \ge 0$, $y \ge 1$, $z \ge 1$, $w \ge 0$ Put y = 1 + y' & z = 1 + z' ($y' \ge 0$, $z' \ge 0$) $\Rightarrow x + y' + z' + w = 10$

Total number of ways = ${}^{13}C_3$

These selections include the cases when both the points $P_1 \& P_{15}$ are selected. We have to remove those cases. Here a represents number of points between $P_1 \& 3^{rd}$ selected point & b represents number of points between 3^{rd} selected point and P_{15}

$$\Rightarrow a + b = 15 - 3 = 12 \quad (a \ge 1, b \ge 1)$$

put a = 1 + t₁ & b = 1 + t₂
t₁ + t₂ = 10
Total number of ways = ¹¹C₁ = 11
Therefore required number of ways = ¹³C₃ - ¹¹C₁ = 286 - 11 = 275

Ε

Find the number of ways in which three numbers can be selected from the set $\{5^1, 5^2, 5^3, \dots, 5^{11}\}$ Illustration 46: so that they form a G.P. Solution : Any three selected numbers which are in G.P. have their powers in A.P. Set of powers is = $\{1, 2, \dots, 6, 7, \dots, 11\}$

By selecting any two numbers from $\{1,3,5,7,9,11\}$, the middle number is automatically fixed. Total number of ways = ${}^{6}C_{2}$

Now select any two numbers from $\{2,4,6,8,10\}$ and again middle number is automatically fixed. Total number of ways $= {}^{5}C_{2}$

Total number of ways are = ${}^{6}C_{2} + {}^{5}C_{2} = 15 + 10 = 25$ *.*.. Ans.

			AN	SWERS FOR	DO	YOURSE	LF			
1:	(i)	7	(ii)	3						
2 :	(i)	0	(ii)	r = 4	(iii)	${}^{50}C_4$	(iv)	20	(v)	120, 48
3:	(i)	10	(ii)	450	(iii)	840, 40				
4:	(i)	$\frac{16!}{(2!)^8 8!} \times 8!$	(ii)	360	(iii)	$^{n}C_{2}.n!$				
5:	(i)	$5^n-4^n-4^n+3^n$								
6:	(i)	60, 6 th	(ii)	60						
4: 5: 6: 7: 8: 9: 10: 11:	(i)	36	(ii)	$\frac{9!}{2} = 181440$	(iii)	5400	(iv)	2688		
8 :	(i)	$(p+1)^{n}-1$	(ii)	$2^{10} - 1$						
9:	(i)	23	(ii)	36						
10:	(i)	(a) ${}^{15}C_3$ (b) ${}^{7}C_3$	(ii)	${}^{12}C_{2}$	(iii)	²³ C ₂				
11:	(i)	9								
:										2

EXERCISE (O-1)

ONLY ONE CORRECT :

1.	Number of natural num	bers between 100 and 100	00 such that at least one of	f their digits is 7, is
	(A) 225	(B) 243	(C) 252	(D) none
2.	Number of 4 digit num	bers of the form $N = abcd$	which satisfy following th	ree conditions :
	(i) $4000 \le N \le 6000$	(ii) N is multiple of 5	(iii) $3 \le b < c \le 6$	
	is equal to			
	(A) 12	(B) 18	(C) 24	(D) 48
3.	How many of the 900 t	hree digit numbers have a	t least one even digit?	
	(A) 775	(B) 875	(C) 450	(D) 750
4.		rent seven digit number lition that the digit 2 occur		
	(A) 672	(B) 640	(C) 512	(D) none
5.	Out of seven consonant	ts and four vowels, the nur	mber of words of six letter	rs, formed by taking four
	consonants and two vo	wels is (Assume that each	ordered group of letter is	a word):
	(A) 210	(B) 462	(C) 151200	(D) 332640
6.	-	bers which are divisible by al to k(4!), the value of k	-	taining the digit 5, digits
	(A) 84	(B) 168	(C) 188	(D) 208
7.		numbers that can be forme erminal digits are even is :	ed from the digits 1, 2, 3,	4, 5, 6 & 7 so that digits
	(A) 144	(B) 72	(C) 288	(D) 720
8.		ord "VARUN" are written k of the word VARUN is		hen are arranged as in a
	(A) 98	(B) 99	(C) 100	(D) 101
9.		gned with six vertical strips ber of ways this can be do	-	
	(A) 12 × 81	(B) 16 × 192	(C) 20 × 125	(D) 24 × 216
10.		comprising of the vertices on the formed using these points of the second states of the second states and the second states of the seco		Ē
	(A) 4	(B) 6	(C) 8	(D) 10
11.	A 5 digit number divisit The total number of wa	ble by 3 is to be formed using this can be done is :	ng the numerals $0, 1, 2, 3, 4$	(D) 10 (D) 216
	(A) 3125	(B) 600	(C) 240	(D) 216
24		•	•	E

12.	Number of permutation	tions of 1, 2, 3, 4, 5, 6,	7, 8 and 9 taken all at a tim	e, such that the digit
	1 appearing son	newhere to the left of 2		
	3 appearing to t	he left of 4 and		
	5 somewhere to	the left of 6, is		
	(<i>e.g.</i> 815723946 wo	ould be one such permu	tation)	
	(A) $9 \cdot 7!$	(B) 8!	(C) 5! · 4!	(D) 8! · 4!
13.	The number of ways	s in which 5 different b		ong 10 people if each person
	can get at most one			
	-		(C) 5 ¹⁰	(D) $100 51$
	(A) 252	(B) 10 ⁵		(D) ${}^{10}C_5.5!$
14.	5 Indian & 5 Americ	an couples meet at a pa	rty & shake hands . If no w	ife shakes hands with her own
	husband & no Indian	n wife shakes hands wit	h a male, then the number of	f hand shakes that takes place
	in the party is :			
	(A) 95	(B) 110	(C) 135	(D) 150
15.	A student has to ans	wer 10 out of 13 quest	ions in an examination. Th	e number of ways in which he
			ne first five questions is :	
	(A) 276	(B) 267	(C) 80	(D) 1200
16.	The number of n dig	it numbers which consis	sts of the digits 1 & 2 only if	each digit is to be used atleast
	once, is equal to 510) then <i>n</i> is equal to		-
	(A) 7	(B) 8	(C) 9	(D) 10
17.	There are counters	available in x different	colours. The counters are a	all alike except for the colour.
				ifficient number of counters of
			all counters of the same colo	
	(A) $x^y - x$	(B) $x^{y} - y$	(C) $y^x - x$	(D) $y^x - y$
18.	A question paper on	mathematics consists of	twelve questions divided in	to three parts A, B and C, each
		ions. In how many ways	can an examinee answer five	questions, selecting atleast one
	from each part.			
19.	(A) 624 If <i>m</i> denotes the pur	(B) 208 nhar of 5 digit numbers	(C) 1248	(D) 2304 re in their descending order of
17.		_	-	ascending order of magnitude
	then $(m-n)$ has the	1 00	, , ,	
	(A) ${}^{10}C_4$	(B) ⁹ C ₅	(C) ${}^{10}C_3$	(D) ⁹ C ₃
· <u>3</u> 20.	A rack has 5 differer	nt pairs of shoes. The m	umber of ways in which 4 sh	noes can be chosen from it, so
inction/En	that there will be no	complete pair is :		
n & Camb	(A) 1920	(B) 200	(C) 110	(D) 80
^{21.}	Number of ways in	which 8 people can be	arranged in a line if A and H	B must be next each other and
ths\Sheet		ere behind D, is equal to		
urture/Ma	(A) 10080	(B) 5040	(C) 5050	(D) 10100
×. 22.	-			at a time, to zoological garden
ı∖JEE(Adv	as often as she can,	without taking the san	ne 5 kids more than once.	Then the number of visits, the
AH-AI/Kok		e garden exceeds that o	•	
20. 21. 21. 22. 22.	(A) ${}^{25}C_5 - {}^{24}C_5$	(B) ${}^{24}C_5$	(C) ${}^{24}C_4$	(D) none
° E				25
				23

- 23. Seven different coins are to be divided amongst three persons . If no two of the persons receive the same number of coins but each receives atleast one coin & none is left over, then the number of ways in which the division may be made is

 (A) 420
 (B) 630
 (C) 710
 (D) none

 24. The number of ways in which 8 distinguishable apples can be distributed among 3 boys such that every boy should get atleast 1 apple & atmost 4 apples is K · ⁷P₃ where K has the value equal to

 (A) 14
 (B) 66
 (C) 44
 (D) 22
- 25. An old man while dialing a 7 digit telephone number remembers that the first four digits consists of one 1's, one 2's and two 3's. He also remembers that the fifth digit is either a 4 or 5 while has no memorising of the sixth digit, he remembers that the seventh digit is 9 minus the sixth digit. Maximum number of distinct trials he has to try to make sure that he dials the correct telephone number, is (A) 360 (B) 240 (C) 216 (D) none
- **26.** Number of ways in which 9 different toys be distributed among 4 children belonging to different age groups in such a way that distribution among the 3 elder children is even and the youngest one is to receive one toy more, is :

(A)
$$\frac{(5!)^2}{8}$$
 (B) $\frac{9!}{2}$ (C) $\frac{9!}{3!(2!)^3}$ (D) none

27. Let P_n denotes the number of ways in which three people can be selected out of 'n' people sitting in a row, if no two of them are consecutive. If, $P_{n+1} - P_n = 15$ then the value of 'n' is : (A) 7 (B) 8 (C) 9 (D) 10

28. There are six periods in each working day of a school. Number of ways in which 5 subjects can be arranged if each subject is allotted at least one period and no period remains vacant is

- (A) 210 (B) 1800 (C) 360 (D) 3600
- **29.** Number of ways in which 7 green bottles and 8 blue bottles can be arranged in a row if exactly 1 pair of green bottles is side by side, is (Assume all bottles to be alike except for the colour).

- **30.** There are 10 red balls of different shades & 9 green balls of identical shades. Then the number of arranging them in a row so that no two green balls are together is
 - (A) $(10 !) . {}^{11}P_9$ (B) $(10 !) . {}^{11}C_9$ (C) 10 !(D) 10 ! 9 !
- **31.** A gentleman invites a party of m + n ($m \ne n$) friends to a dinner & places m at one table T_1 and n at another table T_2 , the table being round. If not all people shall have the same neighbour in any two arrangement, then the number of ways in which he can arrange the guests, is

(A)
$$\frac{(m+n)!}{4 mn}$$
 (B) $\frac{1}{2} \frac{(m+n)!}{mn}$ (C) $2 \frac{(m+n)!}{mn}$ (D) none

- 32. A team of 8 students goes on an excursion, in two cars, of which one can seat 5 and the other only 4. If internal arrangement inside the car does not matter then the number of ways in which they can travel, is
 - (A) 91 (B) 182 (C) 126 (D) 3920

33.	to study the readership p	attern. It is found that 80 r	st one of the three business ead Business India, 50 read e three magazines. How 1	Business world, and 30
	(A) 50	(B) 10	(C) 95	(D) 65
34.	Number of cyphers at the	he end of ${}^{2002}C_{1001}$ is		
	(A) 0	(B) 1	(C) 2	(D) 200
35.			selected. If the number of ngle is also the side of the	-
	(A) Heptagon	(B) Octagon	(C) Nonagon	(D) Decagon
36.	Number of 5 digit number	pers divisible by 25 that ca	n be formed using only the	he digits
	1, 2, 3, 4, 5 & 0 taken t	five at a time is		
	(A) 2	(B) 32	(C) 42	(D) 52
37.			beople out of 'n' sitting in a re when they are in a circle.	
	(A) 8	(B) 9	(C) 10	(D) 12
38.		•	rent books are distributed a number of ways of distribu	
	(A) $m = 4n$	(B) $n = 4m$	(C) $m = 24n$	(D) none
39.	Number of 7 digit number	pers the sum of whose dig	its is 61 is :	
	(A) 12	(B) 24	(C) 28	(D) none
40.		h they can be arranged in	balls and 4 green balls on a row so that atleast one balls	
	(A) $6(7!-4!)$	(B) $7(6!-4!)$	(C) $8! - 5!$	(D) none
41.	5	2	l five indistinguishable mai receives atleast one toy ar	
	(A) 42	(B) 100	(C) 150	(D) 216
42.	1 5		n, they decide to play on till on by India, if no match en	
	(A) 126	(B) 252	(C) 225	(D) none
43.	There are 100 different two of which are neight		f ways in which 3 books ca	in be selected so that no
	(A) ${}^{100}C_3 - 98$	(B) ${}^{97}C_3$	(C) ${}^{96}C_3$	(D) ${}^{98}C_3$
Ε		•	•	27

Е

node06\B0AH;A1Vkota\LEE[Advanced]\Nurture\Waths\Sheel\Permutation & Combination\Erg.p65

44.	Nun	ber of positive in	tegral solutions satisfying	ng the equation $(x_1 + x_2 + x_3)$	$+ x_3) (y_1 + y_2)$	$_{2}) = 77$	', is							
	(A)	150	(B) 270	(C) 420	(D)	1024								
45.	exce cons	pt for the colour. ists of counters of	If 'm' denotes the numb	ours (atleast four of each oper of arrangements of four notes the corresponding fi	ur counters i	f no ar	rangemer							
	(A) 1	m = 2n	(B) $6m = 13n$	(C) $3m = 5n$	(D) :	5m=3	n							
46.	diffe	rent. If the number	er of selections each of v	s in our library, the boo which consists of 3 books s in the library are respect	on each top		5							
	(A)	3 and 9	(B) 4 and 8	(C) 5 and 7	(D)	6 and	6							
47.	The	The are $(p+q)$ diffe	erent books on different	topics in Mathematics. (p	o≠q)									
			ways in which these boo d Y gets q books.	oks are distributed betwee	en two stude	nts X a	and Y suc							
			yays in which these boo p books and another get	ks are distributed between ts q books.	n two studer	nts X a	nd Y suc							
	N='	The number of wa	ys in which these books a	are divided into two group	s of p books	and q t	books ther							
	(A)	L = M = N	(B) $L = 2M = 2N$	(C) 2L = M = 2N	(D)	L = M	l = 2N							
48.		•	hich 5 A's and 6 B's can											
	(A)	6	(B) 8	(C) 10	(D) 1	12								
19.	A pe in w	erson writes letter	s to his 5 friends and add	(C) 10 dresses the corresponding velope, so that atleast tw	envelopes.	Numb	-							
49.	A pe in w	rson writes letter hich the letters c lopes,is,	s to his 5 friends and add	dresses the corresponding	envelopes.	Numb are in	-							
	A pe in w enve (A)	rson writes letter hich the letters c lopes,is,	s to his 5 friends and add an be placed in the env (B) 2	dresses the corresponding velope, so that atleast tw	envelopes. o of them	Numb are in	-							
MA'	A pe in w enve (A)	rson writes letter hich the letters c lopes,is, l	s to his 5 friends and add an be placed in the env (B) 2	dresses the corresponding velope, so that atleast tw	envelopes. o of them	Numb are in 119	-							
MA'	A pe in w enve (A)	rson writes letter hich the letters c lopes,is, I THE COLUMN Column-I	s to his 5 friends and add an be placed in the env (B) 2	dresses the corresponding velope, so that atleast tw	envelopes. o of them (D)	Numb are in 119	the wron							
MA'	A pe in w enve (A) TCH	rrson writes letter hich the letters c lopes,is, I THE COLUMN Column-I Number of incre	s to his 5 friends and add an be placed in the env (B) 2 N : easing permutations of <i>n</i>	dresses the corresponding velope, so that atleast tw (C) 118 <i>i</i> symbols are there from th	genvelopes. o of them (D)	Numb are in 119 Colu	the wron							
MA'	A pe in w enve (A) TCH	rrson writes letter hich the letters c lopes,is, I THE COLUMN Column-I Number of incre numbers {a ₁ , a ₂	s to his 5 friends and add an be placed in the env (B) 2 V: easing permutations of n ,, a_n where the order	dresses the corresponding velope, so that atleast tw (C) 118	genvelopes. o of them (D)	Numb are in 119 Colu	the wron							
MA'	A pe in w enve (A) TCH (A)	rson writes letter hich the letters c lopes, is, THE COLUMN Column-I Number of increase numbers $\{a_1, a_2, a_3, \dots, a_2, \dots, a_3, \dots\}$	s to his 5 friends and add an be placed in the env (B) 2 V: easing permutations of <i>n</i> ,, a_n where the order $a_{n-1} < a_n$ is	dresses the corresponding velope, so that atleast tw (C) 118 <i>i</i> symbols are there from th r among the numbers is give	genvelopes. o of them (D) ne <i>n</i> set wen by	Numb are in 119 Colu (P)	the wron							
MA'	A pe in w enve (A) TCH	rrson writes letter hich the letters c lopes, is, 1 THE COLUMN Column-I Number of increa numbers $\{a_1, a_2, a_3, \dots, a_1 < a_2 < a_3 < \dots\}$ There are <i>m</i> me	s to his 5 friends and add an be placed in the env (B) 2 V: easing permutations of <i>n</i> ,, a_n where the order $a_{n-1} < a_n$ is n and <i>n</i> monkeys. Numb	dresses the corresponding velope, so that atleast tw (C) 118 <i>a</i> symbols are there from the r among the numbers is given per of ways in which every	genvelopes. o of them (D) ne <i>n</i> set wen by	Numb are in 119 Colu	the wron							
MA'	A pec in w enve (A) TCH (A) (B)	rrson writes letter hich the letters c lopes, is, 1 THE COLUMN Column-I Number of increa numbers $\{a_1, a_2, a_1 < a_2 < a_3 < \dots$ There are <i>m</i> me has a master, if a	s to his 5 friends and add an be placed in the env (B) 2 U: easing permutations of <i>n</i> ,, a_n where the order $a_{n-1} < a_n$ is n and <i>n</i> monkeys. Numb a man can have any num	dresses the corresponding velope, so that atleast tw (C) 118 <i>a</i> symbols are there from the r among the numbers is given over of ways in which every ber of monkeys	genvelopes. o of them (D) ne <i>n</i> set wen by y monkey	Numb are in 119 Colu (P) (Q)	the wron							
MA'	A pe in w enve (A) TCH (A)	rrson writes letter hich the letters c lopes, is, 1 THE COLUMN Column-I Number of increa numbers $\{a_1, a_2, a_1 < a_2 < a_3 < \dots$ There are <i>m</i> me has a master, if a Number of way	s to his 5 friends and add an be placed in the env (B) 2 I: easing permutations of <i>n</i> ,, a_n } where the order $a_{n-1} < a_n$ is n and <i>n</i> monkeys. Numb a man can have any num s in which <i>n</i> red balls and	dresses the corresponding velope, so that atleast tw (C) 118 <i>a</i> symbols are there from the r among the numbers is give per of ways in which every ber of monkeys d $(m - 1)$ green balls can b	genvelopes. o of them (D) ne <i>n</i> set wen by y monkey	Numb are in 119 Colu (P)	the wron							
MA'	A pec in w enve (A) TCH (A) (B)	rrson writes letter hich the letters c lopes, is, 1 THE COLUMN Column-I Number of increa numbers $\{a_1, a_2 \\ a_1 < a_2 < a_3 < \dots$ There are <i>m</i> me has a master, if a Number of way in a line, so that	s to his 5 friends and add an be placed in the env (B) 2 I: easing permutations of <i>n</i> ,, a_n where the order $a_{n-1} < a_n$ is n and <i>n</i> monkeys. Numb a man can have any num s in which <i>n</i> red balls and no two red balls are toge	dresses the corresponding velope, so that atleast tw (C) 118 <i>a</i> symbols are there from the r among the numbers is give per of ways in which every ber of monkeys d $(m - 1)$ green balls can b	genvelopes. o of them (D) ne <i>n</i> set wen by y monkey	Numb are in 119 Colu (P) (Q)	the wron							
MA'	A pec in w envec (A) TCH (A) (B) (C)	rrson writes letter hich the letters c lopes, is, 1 THE COLUMN Column-I Number of increa numbers $\{a_1, a_2 \\ a_1 < a_2 < a_3 < \dots$ There are <i>m</i> me has a master, if a Number of way in a line, so that (balls of the same	s to his 5 friends and add an be placed in the env (B) 2 V: easing permutations of <i>n</i> ,, a_n where the order $a_{n-1} < a_n$ is n and <i>n</i> monkeys. Numb a man can have any num s in which <i>n</i> red balls and no two red balls are toge the colour are alike)	dresses the corresponding velope, so that atleast tw (C) 118 <i>n</i> symbols are there from the r among the numbers is give ber of ways in which every ber of monkeys d $(m - 1)$ green balls can be ether, is	genvelopes. o of them (D) ne <i>n</i> set ven by v monkey e arranged	Numbare in 119 Colu (P) (Q) (R)	the wron							
49. MA'	A pec in w enve (A) TCH (A) (B)	rrson writes letter hich the letters c lopes, is, 1 THE COLUMN Column-I Number of increanumbers $\{a_1, a_2 \\ a_1 < a_2 < a_3 < \dots$ There are <i>m</i> me has a master, if a Number of way in a line, so that (balls of the sam Number of way	s to his 5 friends and add an be placed in the env (B) 2 V: easing permutations of <i>n</i> ,, a_n where the order $a_{n-1} < a_n$ is n and <i>n</i> monkeys. Numb a man can have any num s in which <i>n</i> red balls and no two red balls are toge the colour are alike)	dresses the corresponding velope, so that atleast tw (C) 118 (C) 118 (C) 118 (C) 118 (m) symbols are there from the r among the numbers is give ber of ways in which every ber of monkeys (m-1) green balls can be over ther, is	genvelopes. o of them (D) ne <i>n</i> set ven by v monkey e arranged	Numb are in 119 Colu (P) (Q)	umn-II n ^m ^m C _n							

EXERCISE (O-2)

ONLY ONE CORRECT :

node06\B0AH:A1\Kota\LEE[Advanced]\\Nurture\\Verths\Sheet\Permutation & Cambination\Eng.p65

1. In a certain strange language, words are written with letters from the following six-letter alphabet : A, G, K, N, R, U. Each word consists of six letters and none of the letters repeat. Each combination of these six letters is a word in this language. The word "KANGUR" remains in the dictionary at, (B) 247th (A) 248th (C) 246th (D) 253rd 2. All possible three digits even numbers which can be formed with the condition that if 5 is one of the digit, then 7 is the next digit is : (C) 345 (D) 365 (A) 5 (B) 325 3. Number of 3 digit numbers in which the digit at hundredth's place is greater than the other two digit is (A) 285 (B) 281 (C) 240 (D) 204 4. The number of three digit numbers having only two consecutive digits identical is : (A) 153 (B) 162 (C) 180 (D) 161 A committee of 5 is to be chosen from a group of 9 people. Number of ways in which it can be 5. formed if two particular persons either serve together or not at all and two other particular persons refuse to serve with each other, is (A) 41 (C) 47 (B) 36 (D) 76 6. There are m points on a straight line AB & n points on the line AC none of them being the point A. Triangles are formed with these points as vertices, when (i) A is excluded (ii) A is included. The ratio of number of triangles in the two cases is: (C) $\frac{m+n-2}{m+n+2}$ (A) $\frac{m+n-2}{m+n}$ (B) $\frac{m+n-2}{m+n-1}$ (D) $\frac{m(n-1)}{(m+1)(n+1)}$ 7. There are 10 straight lines in a plane, such that no 3 are concurrent and no 2 are parallel to each other. If points of intersection of above lines are joined, then maximum number of lines thus formed are (including old lines) -(A) 610 (B) 620 (C) 630 (D) 640 8. Number of rectangles in the grid shown which are not squares is (A) 160 (B) 162 (C) 170 (D) 185 9. Six people are going to sit in a row on a bench. A and B are adjacent, C does not want to sit adjacent to D. E and F can sit anywhere. Number of ways in which these six people can be seated, is (A) 200 (B) 144 (C) 120 (D) 56 Given 11 points, of which 5 lie on one circle, other than these 5, no 4 lie on one circle. Then the 10. maximum number of circles that can be drawn so that each contains atleast three of the given points is : (D) none (A) 216 (B) 156 (C) 172 29 Е

11.	Six married couple are that	sitting in a room. Find the	number of ways in which	ch 4 people can be selected so
	(a) they do not form a	couple	(b) they form exact	tly one couple
	(c) they form at least of	one couple	(d) they form atmo	st one couple
12.	The number of ways	of choosing a committee	of 2 women & 3 men	from 5 women & 6 men, if
	-	-		an only serve, if Miss C is the
	member of the commit	tee, is		
	(A) 60	(B) 84	(C) 124	(D) none
13.	Product of all the even	divisors of $N = 1000$, is		
	(A) $32 \cdot 10^2$	(B) $64 \cdot 2^{14}$	(C) $64 \cdot 10^{18}$	(D) 128 · 10 ⁶
14.	Two classrooms A and	B having capacity of 25 a	and (n-25) seats respec	tively.A _n denotes the number
		-		to be seated in these rooms, $A_{n-1} = 25! ({}^{49}C_{25})$ then 'n'
	equals -			
	(A) 50	(B) 48	(C) 49	(D) 51
15.	-	-		dicine or Engineering. Number
				s wards if every one of them be
	(A) 120	es to study, and atleast one o (B) 216	(C) 729	(D) 540
16.	Consider the word W	× ,	(C) 729	(D) 340
10.			ng of 5 lottors from the x	word W = MISSISSIPPI then
	N belongs to the s			
	(A) {15, 16, 17, 1		(B) {20, 21, 22, 23	21)
	(C) $\{25, 26, 27, 2\}$		(D) {30, 31, 32, 33	
				inged if atleast one vowel is
	separated from res			inged if diledst one vower is
	-		01.1.61	01 165
	(A) $\frac{8! \cdot 161}{4! \cdot 4! \cdot 2!}$	(B) $\frac{8! \cdot 161}{4 \cdot 4! \cdot 2!}$	(C) $\frac{8! \cdot 161}{4! \cdot 2!}$	(D) $\frac{8!}{4! \cdot 2!} \cdot \frac{165}{4!}$
	(c) If the number of a	rrangements of the letters	of the word W if all th	e S's and P's are separated is
	$(\mathbf{K})\left(\frac{10!}{4!\cdot 4!}\right), \text{ then } \mathbf{I}$	K equals -		8
	(A) $\frac{6}{5}$		4	3
	(A) $\frac{-}{5}$	(B) 1	(C) $\frac{4}{3}$	(D) $\frac{3}{2}$
		Paragraph for Ques	stion Nos. 17 to 19	A Perm undrik
				uffix player is better than any
				a comprising of 4 players and
17.	-	up is selected for semifina iich 16 players can be div		(D) $\frac{3}{2}$ uffix player is better than any a comprising of 4 players and oups, is (D) $\frac{35}{6} \prod_{r=1}^{8} (2r-1)$
	(A) $\frac{35}{27} \prod^{8} (2r-1)$	(B) $\frac{35}{24} \prod^{8} (2r-1)$	(C) $\frac{35}{52} \prod^{8} (2r-1)$	(D) $\frac{35}{6} \prod_{r=1}^{8} (2r-1)$
	$2/\frac{1}{r=1}$	$24_{r=1}^{2}$	$52 \frac{1}{r=1}$	
~ ~				

30

(A)
$$\frac{35}{27} \prod_{r=1}^{8} (2r-1)$$
 (B) $\frac{35}{24} \prod_{r=1}^{8} (2r-1)$ (C) $\frac{35}{52} \prod_{r=1}^{8} (2r-1)$ (D) $\frac{35}{6} \prod_{r=1}^{8} (2r-1)$

Number of ways in which they can be divided into 4 equal groups if the players P_1 , P_2 , P_3 and P_4 are 18. in different groups, is :

(A)
$$\frac{(11)!}{36}$$
 (B) $\frac{(11)!}{72}$ (C) $\frac{(11)!}{108}$ (D) $\frac{(11)!}{216}$

19. Number of ways in which these 16 players can be divided into four equal groups, such that when the

best player is selected from each group, P₆ is one among them, is (k) $\frac{12}{(4!)^3}$. The value of k is : (B) 24 (D) 20

MORE THAN ONE ARE CORRECT :

Lines y = x + i & y = -x + j are drawn in x - y plane such that $i \in \{1, 2, 3, 4\} \& j \in \{1, 2, 3, 4, 5, 6\}$. 20. If m represents the total number of squares formed by the lines and n represents the total number of triangles formed by the given lines & x-axis, then correct option/s is/are-4

(A)
$$m + n = 50$$
 (B) $m - n = 2$ (C) $m + n = 48$ (D) $m - n = 48$
21. The combinatorial coefficient C(n, r) is equal to

- (A) number of possible subsets of r members from a set of n distinct members.
 - (B) number of possible binary messages of length n with exactly r 1's.
 - (C) number of non decreasing 2-D paths from the lattice point (0, 0) to (r, n).
 - (D) number of ways of selecting r things out of n different things when a particular thing is always included plus the number of ways of selecting 'r' things out of n, when a particular thing is always excluded.
- 22. There are 10 questions, each question is either True or False. Number of different sequences of incorrect answers is also equal to
 - (A) Number of ways in which a normal coin tossed 10 times would fall in a definite order if both Heads and Tails are present.
 - (B) Number of ways in which a multiple choice question containing 10 alternatives with one or more than one correct alternatives, can be answered.
 - (C) Number of ways in which it is possible to draw a sum of money with 10 coins of different denominations taken some or all at a time.
 - (D) Number of different selections of 10 indistinguishable things taken some or all at a time.
- 23. The maximum number of permutations of 2n letters in which there are only a's & b's, taken all at a time is given by :

(A)
$${}^{2n}C_n$$

(B) $\frac{2}{1} \cdot \frac{6}{2} \cdot \frac{10}{3} \dots \frac{4n-6}{n-1} \cdot \frac{4n-2}{n}$
(C) $\frac{n+1}{1} \cdot \frac{n+2}{2} \cdot \frac{n+3}{3} \cdot \frac{n+4}{4} \dots \frac{2n-1}{n-1} \cdot \frac{2n}{n}$
(D) $\frac{2^n \cdot [1 \cdot 3 \cdot 5 \dots (2n-3)(2n-1)]}{n!}$

24. Number of ways in which 3 numbers in A.P. can be selected from 1, 2, 3, n is :

(A)
$$\left(\frac{n-1}{2}\right)^2$$
 if n is even
(B) $\frac{n(n-2)}{4}$ if n is odd
(C) $\frac{(n-1)^2}{4}$ if n is odd
(D) $\frac{n(n-2)}{4}$ if n is even

- The combinatorial coefficient ${}^{n-1}C_p$ denotes 25.
 - (A) the number of ways in which *n* things of which p are alike and rest different can be arranged in a circle.
 - (B) the number of ways in which p different things can be selected out of n different thing if a particular thing is always excluded.

node.05 \B0AH:A1\Kots\LEE[Advanced]\\Nuture\Waths\Sheet\Permutation & Combination\Eng.p65

- (C) number of ways in which n alike balls can be distributed in p different boxes so that no box remains empty and each box can hold any number of balls.
- (D) the number of ways in which (n-2) white balls and p black balls can be arranged in a line if black balls are separated, balls are all alike except for the colour.
- 26. Which of the following statements are correct?
 - (A) Number of words that can be formed with 6 only of the letters of the word "CENTRIFUGAL" if each word must contain all the vowels is $3 \cdot 7!$
 - (B) There are 15 balls of which some are white and the rest black. If the number of ways in which the balls can be arranged in a row, is maximum then the number of white balls must be equal to 7 or 8. Assume balls of the same colour to be alike.
 - (C) There are 12 things, 4 alike of one kind, 5 alike and of another kind and the rest are all different. The total number of combinations is 240.
 - (D) Number of selections that can be made of 6 letters from the word "COMMITTEE" is 35.
- 27. Number of ways in which the letters of the word 'B U L B U L' can be arranged in a line in a definite order is also equal to the
 - (A) number of ways in which 2 alike Apples and 4 alike Mangoes can be distributed in 3 children so that each child receives any number of fruits.
 - (B) Number of ways in which 6 different books can be tied up into 3 bundles, if each bundle is to have equal number of books.
 - (C) coefficient of $x^2y^2z^2$ in the expansion of $(x + y + z)^6$.
 - (D) number of ways in which 6 different prizes can be distributed equally in three children.

MATCH THE COLUMN:

28.		Column-I	Column-II	ĺ
	(A)	Four different movies are running in a town. Ten students go to watch	(P)	11
		these four movies. The number of ways in which every movie is watched		
		by atleast one student, is		
		(Assume each way differs only by number of students watching a movie)	(Q)	36
	(B)	Consider 8 vertices of a regular octagon and its centre. If T denotes the		
		number of triangles and S denotes the number of straight lines that can		
		be formed with these 9 points then the value of $(T - S)$ equals		2
	(C)	In an examination, 5 children were found to have their mobiles in their	(R)	52 June 1
		pocket. The Invigilator fired them and took their mobiles in his possession.		Combinet
		Towards the end of the test, Invigilator randomly returned their mobiles. The		im utation 8
		number of ways in which at most two children did not get their own mobiles	is (S)	60 Sheet/Pe
	(D)	The product of the digits of 3214 is 24. The number of 4 digit natural		inture/Wath
		numbers such that the product of their digits is 12, is		anced)/N/
	(E)	The number of ways in which a mixed double tennis game can be) NEE(Adv
		arranged from amongst 5 married couple if no husband & wife plays	(T)	84 (MoyNet
		in the same game, is		52 3000 Monthal Katholic Back Remoterion & Combination & C
32		••		Ē

32

EXERCISE (S-1)

- 1. Four visitors A, B, C & D arrive at a town which has 5 hotels. In how many ways can they disperse themselves among 5 hotels, if 4 hotels are used to accommodate them.
- 2. There are 6 roads between A & B and 4 roads between B & C.
 - (i) In how many ways can one drive from A to C by way of B?
 - (ii) In how many ways can one drive from A to C and back to A, passing through B on both trips ?
 - (iii) In how many ways can one drive the circular trip described in (ii) without using the same road more than once.
- 3. (i) Find the number of four letter word that can be formed from the letters of the word HISTORY. (each letter to be used atmost once)
 - (ii) How many of them contain only consonants?
 - (iii) How many of them begin & end in a consonant?
 - (iv) How many of them begin with a vowel?
 - (v) How many contain the letters Y?
 - (vi) How many begin with T & end in a vowel?
 - (vii) How many begin with T & also contain S?
 - (viii) How many contain both vowels?
- 4. If repetitions are not permitted
 - (i) How many 3 digit numbers can be formed from the six digits 2, 3, 5, 6, 7 & 9?
 - (ii) How many of these are less than 400?
 - (iii) How many are even ?
 - (iv) How many are odd ?
 - (v) How many are multiples of 5?
- 5. How many two digit numbers are there in which the tens digit and the units digit are different and odd ?
- 6. Every telephone number consists of 7 digits. How many telephone numbers are there which do not include any other digits but 2, 3, 5 & 7?
- (a) In how many ways can four passengers be accommodated in three railway carriages, if each carriage can accommodate any number of passengers.
 - (b) In how many ways four persons can be accommodated in 3 different chairs if each person can occupy only one chair.
- 8. How many odd numbers of five distinct digits can be formed with the digits 0,1,2,3,4?
- **9.** Number of ways in which 7 different colours in a rainbow can be arranged if green is always in the middle.
- **10.** Find the number of ways in which the letters of the word "MIRACLE" can be arranged if vowels always occupy the odd places.
- **11.** A letter lock consists of three rings each marked with 10 different letters. Find the number of ways in which it is possible to make an unsuccessful attempts to open the lock.

- **12.** Find the number of ways in which letters of the word VALEDICTORY be arranged so that the vowels may never be separated.
- **13.** (i) Prove that $: {}^{n}P_{r} = {}^{n-1}P_{r} + r. {}^{n-1}P_{r-1}$
 - (ii) If ${}^{20}C_{r+2} = {}^{20}C_{2r-3}$ find ${}^{12}C_r$
 - (iii) Prove that ${}^{n-1}C_3 + {}^{n-1}C_4 > {}^{n}C_3$ if n > 7.
 - (iv) Find r if ${}^{15}C_{3r} = {}^{15}C_{r+3}$
- 14. There are 2 women participating in a chess tournament. Every participant played 2 games with the other participants. The number of games that the men played between themselves exceeded by 66 as compared to the number of games that the men played with the women. Find the number of participants & the total numbers of games played in the tournament.
- **15.** 5 boys & 4 girls sit in a straight line. Find the number of ways in which they can be seated if 2 girls are together & the other 2 are also together but separate from the first 2.
- 16. An examination paper consists of 12 questions divided into parts A & B. Part-A contains 7 questions & Part-B contains 5 questions. A candidate is required to attempt 8 questions selecting atleast 3 from each part. In how many maximum ways can the candidate select the questions ?
- 17. In how many ways can a team of 6 horses be selected out of a stud of 16, so that there shall always be 3 out of A B C A' B' C', but never A A', B B' or C C' together.
- **18.** During a draw of lottery, tickets bearing numbers 1, 2, 3,....., 40, 6 tickets are drawn out & then arranged in the descending order of their numbers. In how many ways, it is possible to have 4th ticket bearing number 25.
- **19.** Find the number of distinct natural numbers upto a maximum of 4 digits and divisible by 5, which can be formed with the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 each digit not occuring more than once in each number.
- **20.** In how many ways can you divide a pack of 52 cards equally among 4 players. In how many ways the cards can be divided in 4 sets, 3 of them having 17 cards each & the 4th with 1 card.
- **21.** A firm of Chartered Accountants in Bombay has to send 10 clerks to 5 different companies, two clerks in each. Two of the companies are in Bombay and the others are outside. Two of the clerks prefer to work in Bombay while three others prefer to work outside. In how many ways can the assignment be made if the preferences are to be satisfied.
- 22. In a certain algebraical exercise book there are 4 examples on arithmetical progressions, 5 examples on permutation-combination and 6 examples on binomial theorem. Number of ways a teacher can select for his pupils atleast one but not more than 2 examples from each of these sets, is _____.
- 23. Find the number of ways in which two squares can be selected from an 8 by 8 chess board of size 1×1 so that they are not in the same row and in the same column.
- 24. There are 10 seats in a double decker bus, 6 in the lower deck and 4 on the upper deck. Ten passengers board the bus, of them 3 refuse to go to the upper deck and 2 insist on going up. The number of ways in which the passengers can be accommodated is _____. (Assume all seats to be duly numbered)
- **25.** Find the number of permutations of the word "AUROBIND" in which vowels appear in an alphabetical order.

34

- **26.** In how many different ways a grandfather along with two of his grandsons and four grand daughters can be seated in a line for a photograph so that he is always in the middle and the two grandsons are never adjacent to each other.
- 27. Define a 'good word' as a sequence of letters that consists only of the letters A, B and C and in which A never immediately followed by B, B is never immediately followed by C, and C is never immediately followed by A. If the number of n-letter good words are 384, find the value of n.
- 28. In how many other ways can the letters of the word MULTIPLE be arranged;
 - (i) without changing the order of the vowels

N.

- (ii) keeping the position of each vowel fixed &
- (iii) without changing the relative order/position of vowels & consonants.
- **29.** Each of 3 committees has 1 vacancy which is to be filled from a group of 6 people. Find the number of ways the 3 vacancies can be filled if ;
 - (i) Each person can serve on atmost 1 committee.
 - (ii) There is no restriction on the number of committees on which a person can serve.
 - (iii) Each person can serve on atmost 2 committees.
- **30.** How many 6 digits odd numbers greater than 60,0000 can be formed from the digits 5, 6, 7, 8, 9, 0 if
 - (i) repetitions are not allowed (ii) repetitions are allowed.
- **31.** Find the number of ways in which the letters of the word 'KUTKUT' can be arranged so that no two alike letters are together.
- **32.** If as many more words as possible be formed out of the letters of the word "DOGMATIC" then find the number of words in which the relative order of vowels and consonants remain unchanged.
- **33.** Find the number of ways in which 3 distinct numbers can be selected from the set $\{3^1, 3^2, 3^3, \dots, 3^{100}, 3^{101}\}$ so that they form a G.P.

Paragraph for Question 34 & 35

Consider the number N = 2910600.

On the basis of above information, answer the following questions :

34. Total number of divisors of N, which are divisible by 15 but not by 36 are-

(A) 92 (B) 94 (C) 96 (D) 98

35. Total number of ways, in which the given number can be split into two factors such that their highest common factor is a prime number is equal to-

- (A) 16 (B) 32 (C) 48 (D) 64
- **36.** Determine the number of paths from the origin to the point (9, 9) in the cartesian plane which never pass through (5, 5) in paths consisting only of steps going 1 unit North and 1 unit East.
- **37.** There are 20 books on Algebra & Calculus in our library. Prove that the greatest number of selections each of which consists of 5 books on each topic is possible only when there are 10 books on each topic in the library.

- 38. How many divisors are there of the number x = 21600. Find also the sum of these divisors. (a)
 - In how many ways the number 7056 can be resolved as a product of 2 factors. (b)
 - (c) Find the number of ways in which the number 300300 can be split into 2 factors which are relatively prime.
 - (d) Find the number of positive integers that are divisors of atleast one of the numbers 10^{10} ; 15^7 ; 18^{11} .
- There are 10 different books in a shelf. Find the number of ways in which 3 books can be selected so 39. that exactly two of them are consecutive.
- **40.** On the normal chess board as shown, $I_1 \& I_2$ are two insects which starts moving towards each other. Each insect moving with the same constant speed. Insect I₁ can move only to the right or upward along the lines while the insect I₂ can move only to the left or downward along the lines of the chess board. Find the total number of ways the

two insects can meet at same point during their trip.

A committee of 10 members is to be formed with members chosen from the faculties of Arts, Economics, 41. Education, Engineering, Medicine and Science. Number of possible ways in which the faculties representation be distributed on this committee, is _____

(Assume every department contains more than 10 members).

If x_1, x_2, x_3 are the whole numbers and gives remainders 0,1,2 respectively, when divided by 3 then 42.

total number of different solutions of the equation $x_1 + x_2 + x_3 = 33$ are k, then $\frac{k}{11}$ is equal to

EXERCISE (S-2)

- 1. The straight lines l_1 , $l_2 \& l_3$ are parallel & lie in the same plane. A total of m points are taken on the line l_1 , n points on l_2 & k points on l_3 . How many maximum number of triangles are there whose vertices are at these points?
- 2. (a) How many five digits numbers divisible by 3 can be formed using the digits 0, 1, 2, 3, 4, 7 and 8 if each digit is to be used atmost once.
 - Find the number of 4 digit positive integers if the product of their digits is divisible by 3. (b)
- 3. Find the number of words each consisting of 3 consonants & 3 vowels that can be formed from the nade06\B0AH.AI\Kota\LEE[Advarced]\Nurture\Waths\Sheet\Permutation & Combination\Eng letters of the word "Circumference". In how many of these c's will be together.
- 4. Find the number of three elements sets of positive integers $\{a, b, c\}$ such that $a \times b \times c = 2310$.

Paragraph for Question 5 & 6

If 10 vertical equispaced (1 cm) lines and 9 horizontal equispaced lines (1 cm) are drawn in a plane as shown in the given figure.

On the basis of above information, answer the following questions :

Е

- 5. Total number of rectangles with one side odd & one side even are given by-
 - (A) 600 (B) 700 (C) 800 (D) 900
- 6. If squares of odd side length are selected from the above grid, then sum of their areas is equal to-

(A)
$$\sum_{r=1}^{4} (11-2r)(10-2r)(2r-1)^2 \text{ cm}^2$$

(B) $\sum_{r=1}^{8} (9-2r)(7-2r)(2r+1)^2 \text{ cm}^2$
(C) $\sum_{r=1}^{8} (11-2r)(9-2r)(2r+1)^2 \text{ cm}^2$
(D) $\sum_{r=1}^{5} (11+2r)(9+2r)(2r-1)^2 \text{ cm}^2$

7. How many 4 digit numbers are there which contains not more than 2 different digits?

Instruction for question nos. 8 to 10 :

2 American men; 2 British men; 2 Chinese men and one each of Dutch, Egyptial, French and German persons are to be seated for a round table conference.

- 8. If the number of ways in which they can be seated if exactly two pairs of persons of same nationality are together is p(6!), then find p.
- 9. If the number of ways in which only American pair is adjacent is equal to q(6!), then find q.
- 10. If the number of ways in which no two people of the same nationality are together given by r (6!), find r.
- 11. For each positive integer k, let S_k denote the increasing arithmetic sequence of integers whose first term is 1 and whose common difference is k. For example, S₃ is the sequence 1, 4, 7, 10..... Find the number of values of k for which S_k contain the term 361.
- 12. A shop sells 6 different flavours of ice-cream. In how many ways can a customer choose 4 ice-cream cones if
 - (i) they are all of different flavours
 - (ii) they are non necessarily of different flavours
 - (iii) they contain only 3 different flavours
 - (iv) they contain only 2 or 3 different flavours?

13. How many different ways can 15 Candy bars be distributed between Ram, Shyam, Ghanshyam and Balram, if Ram can not have more than 5 candy bars and Shyam must have at least two. Assume all Candy bars to be alike.

- 14. Find the sum of all numbers greater than 10000 formed by using the digits 0, 1, 2, 4, 5 no digit being repeated in any number.
- **15.** There are 3 cars of different make available to transport 3 girls and 5 boys on a field trip. Each car can hold up to 3 children. Find
 - (a) the number of ways in which they can be accomodated.
 - (b) the numbers of ways in which they can be accomodated if 2 or 3 girls are assigned to one of the cars.

In both the cases internal arrangement of children inside the car is considered to be immaterial.

node06\B0AHA1V6ab\EE[Advarced]\Nyuture\Weths\Sheet\Permutarian & Combination\Eng.p65

EXERCISE (JM)

		EALIC		
1.	From 6 different novel	s and 3 different dictiona	aries, 4 novels and 1 dict	ionary are to be selected and
	arranged in a row on a	shelf so that the diction	ary is always in the mide	lle. Then the number of such
	arrangements is -			[AIEEE 2009]
	(1) At least 750 but le	ss than 1000	(2) At least 1000	
	(3) Less than 500		(4) At least 500 but	less than 750
2.	There are two urns. Un	rn A has 3 distinct red ba	alls and urn B has 9 disti	nct blue balls. From each urn
	two balls are taken ou	t at random and then tra	insferred to the other. T	he number of ways in which
	this can be done is -			[AIEEE-2010]
	(1) 3	(2) 36	(3) 66	(4) 108
3.	Statement - 1 : The n	umber of ways of distri	buting 10 identical balls	in 4 distinct boxes such that
	no box is empty is ⁹ C	5		[AIEEE-2011]
		•	osing any 3 places from	9 different places is ${}^{9}C_{3}$.
	(1) Statement-1 is true			
	(2) Statement-1 is false			
				xplanation for Statement-1
_				explanation for Statement-1.
4.	-	-	are collinear. If N is the	e number of triangles formed
	by joining these points	·		[AIEEE-2011]
	(1) N > 190	(2) N ≤ 100	(3) $100 < N \le 140$	(4) $140 < N \le 190$
5.	Assuming the balls to b	be identical except for di	fference in colours, the r	number of ways in which one
	or more balls can be s	elected from 10 white,	9 green and 7 black bal	ls is - [AIEEE-2012]
	(1) 879	(2) 880	(3) 629	(4) 630
6.	Let A and B be two se	ts containing 2 elements	and 4 elements respect	ively. The number of subsets
	of $A \times B$ having 3 or	more elements is		[JEE (Main)-2013]
	(1) 256	(2) 220	(3) 219	(4) 211
7.	Let T_n be the number o	f all possible triangles for	med by joining vertices of	of an n-sided regular polygon.
	If $T_{n+1} - T_n = 10$, then			[JEE (Main)-2013]
	(1) 7	(2) 5	(3) 10	(4) 8
8.				ne interior of the triangle with
0.	vertices (0, 0), (0, 41)	-		[JEE (Main)-2015]
			(2) 001	
0	(1) 820	(2) 780	(3) 901	(4) 861
9.				Then the number of subsets
	,	having at least three el (2) 510		[JEE (Main)-2015]
10	(1) 275	(2) 510	(3) 219	(4) 256
10.	-	s greater than 6000 that	can be formed, using the	e digits 3,5,6,7 and 8 without
	repetition, is :			[JEE (Main)-2015]
	(1) 120	(2) 72	(3) 216	(4) 192
11.	If all the words (with o	or without meaning) hav	ving five letters, formed	using the letters of the word
	SMALL and arranged	as in a dictionary; then	the position of the wor	rd SMALL is :
			r r r r r r r r r r r r r r r r r r r	[JEE (Main)-2016]
	(1) 58 th	(2) 46 th	(3) 59 th	[JEE (Main)-2015] (4) 192 using the letters of the word rd SMALL is : [JEE (Main)-2016] (4) 52 nd
38	. /			E
50				E

same number and		red 1 in always placed (C) 53	d in envelope numbered 2. Then [JEE(Advanced)-2014, 3(-1)] (D) 67
same number and	moreover the card number	ed 1 in always placed	-
			aced in the envelope bearing the
Six cards and six e	envelopes are numbered 1,	2, 3, 4, 5, 6 and care	[JEE(Advanced)-2014, 3] ds are to be placed in envelopes
segment. Colour th	ne line segment joining eve	ery pair of adjacent po	bints by blue and the rest by red.
of such distinct ar	rangements $(n_1, n_2, n_3, n_4, n_5)$	is	[JEE(Advanced)-2014, 3]
Which of the follow	ving is correct ?		[JEE 2012, 3M, -1M]
(A) 7	(B) 8	(C) 9	(D) 11
			[JEE 2012, 3M, -1M]
consecutive digits i	in them are 0. Let $b_n = $ the r	number of such n-digi	
			· · · · · · · · · · · · · · · · · · ·
-	-		[JEE 2012, 3M, -1M] (D) 243
(A) 25	(B) 34	(C) 42	(D) 41
		<u> </u>	[JEE 10, 5M, –2M]
× /		. ,	
and 3 only, is			(D) 88 [JEE 2009, 3]
(3) at least 750 but			
(1) less than 500	1 1 1000		out less than 750
			number of such arrangements is-
			(4) 469 narv are to be selected and arranged
X and Y together ca in this party, is :	an throw a party inviting 3 k	adies and 3 men, so that	at 3 friends of each of X and Y are [JEE (Main)-2017]
	ladies and 4 are ment X and Y together calin this party, is : (1) 484 From 6 different now in a row on a shelf s (1) less than 500 (3) at least 750 but The number of sever and 3 only, is (A) 55 Let S = {1,2,3,4}. (A) 25 The total number of so that each perso (A) 75 graph for Question Let a _n denotes the miconsecutive digits if $c_n =$ the number of The value of b ₆ is (A) 7 Which of the follow (A) a ₁₇ = a ₁₆ + a ₁₅ Let n ₁ < n ₂ < n ₃ < of such distinct are Let n \geq 2 b an intisegment. Colour the If the number of r	ladies and 4 are men. Assume X and Y have no of X and Y together can throw a party inviting 3 la in this party, is : (1) 484 (2) 485 From 6 different novels and 3 different dictionarie in a row on a shelf so that the dictionary is alwa (1) less than 500 (3) at least 750 but less than 1000 EXERCO The number of seven digit integers, with sum of and 3 only, is (A) 55 (B) 66 Let S = {1,2,3,4}. The total number of unordor (A) 25 (B) 34 The total number of ways in which 5 balls of so that each person gets at least one ball is (A) 75 (B) 150 graph for Question 4 and 5 : Let a _n denotes the number of all n-digit positiv consecutive digits in them are 0. Let b _n = the n c _n = the number of such n-digit integers ending The value of b ₆ is (A) 7 (B) 8 Which of the following is correct ? (A) a ₁₇ = a ₁₆ + a ₁₅ (B) c ₁₇ \neq c ₁₆ + c ₁₅ Let n ₁ < n ₂ < n ₃ < n ₄ < n ₅ be positive integer of such distinct arrangements (n ₁ ,n ₂ ,n ₃ ,n ₄ ,n ₅) Let n \geq 2 b an integer. Take n distinct poir segment. Colour the line segment joining even If the number of red and blue line segments	(1) 484 (2) 485 (3) 468 From 6 different novels and 3 different dictionaries, 4 novels and 1 diction in a row on a shelf so that the dictionary is always in the middle. The [JEE(Main)-20 (1) less than 500 (2) at least 500 1 (3) at least 750 but less than 1000 (4) at least 1000 EXERCISE (JA) The number of seven digit integers, with sum of the digits equal to 10 and 3 only, is (A) 55 (B) 66 (C) 77 Let S = {1,2,3,4}. The total number of unordered pairs of disjoint set (A) 25 (B) 34 (C) 42 The total number of ways in which 5 balls of different colours can so that each person gets at least one ball is - (A) 75 (B) 150 (C) 210 graph for Question 4 and 5 : Let a _n denotes the number of all n-digit positive integers formed by t consecutive digits in them are 0. Let b _n = the number of such n-digit c _n = the number of such n-digit integers ending with digit 0. The value of b ₆ is (A) 7 (B) 8 (C) 9 Which of the following is correct ? (A) a ₁₇ = a ₁₆ + a ₁₅ (B) c ₁₇ \neq c ₁₆ + c ₁₅ (C) b ₁₇ \neq b ₁₆ + c Let n ₁ < n ₂ < n ₃ < n ₄ < n ₅ be positive integers such that n ₁ + n ₂ + of such distinct arrangements (n ₁ ,n ₂ ,n ₃ ,n ₄ ,n ₅) is Let n ≥ 2 b an integer. Take n distinct points on a circle and jc segment. Colour the line segment joining every pair of adjacent pc If the number of red and blue line segments are equal, then the

9. Let n be the number of ways in which 5 boys and 5 girls can stand in a queue in such a way that all the girls stand consecutively in the queue. Let m be the number of ways in which 5 boys and 5 girls can stand in a queue in such a way that exactly four girls stand consecutively in the queue. Then the

value of $\frac{m}{n}$ is

I IST I

[JEE (Advanced) 2015, 4M, -0M]

[JEE(Advanced)-2016, 3(-1)]

- 10. A debate club consists of 6 girls and 4 body. A team of 4 members is to be selected from this club including the selection of a captain (from among these 4 member) for the team. If the team has to include at most one boy, then the number of ways of selecting the team is
 - (A) 380 (B) 320 (C) 260 (D) 95
- Words of length 10 are formed using the letters A, B, C, D, E, F, G, H, I, J. Let x be the number 11. of such words where no letter is repeated; and let y be the number of such words where exactly

one letter is repeated twice and no other letter is repeated. Then $\frac{y}{q_x}$

[JEE(Advanced)-2017, 3]

- Let S = {1, 2, 3,....,9}. For k = 1,2,, 5, let N_k be the number of subsets of S, each containing 12. five elements out of which exactly k are odd. Then $N_1 + N_2 + N_3 + N_4 + N_5 =$
 - [JEE(Advanced)-2017, 3(-1)]
 - (A) 125 (B) 252 (C) 210 (D) 126
- 13. The number of 5 digit numbers which are divisible by 4, with digits from the set $\{1, 2, 3, 4, 5\}$ and the repetition of digits is allowed, is [JEE(Advanced)-2018, 3(0)]
- In a high school, a committee has to be formed from a group of 6 boys M₁, M₂, M₃, M₄, M₅, M₆ and 14. 5 girls G₁, G₂, G₃, G₄, G₅.
 - (i) Let α_1 be the total number of ways in which the committee can be formed such that the committee has 5 members, having exactly 3 boy and 2 girls.
 - (ii) Let α_2 be the total number of ways in which the committee can be formed such that the committee has at least 2 members, and having an equal number of boys and girls.
 - (iii) Let α_3 be the total number of ways in which the committee can be formed such that the committee has 5 members, at least 2 of them being girls.
 - (iv) Let α_1 be the total number of ways in which the committee can be formed such that the committee has 4 members, having at least 2 girls and such that both M₁ and G₁ are **NOT** in the committee together.

I IST II

LIS1-1	LIS1-11
P. The value of α_1 is	1. 136
Q. The value of α_2 is	1. 136 136 2. 189 189
R. The value of α_3 is	3. 192
S. The value of α_4 is	4. 200
	5. 381
	6. 461
The correct option is :-	Averced)
(A) $\mathbf{P} \rightarrow 4; \mathbf{Q} \rightarrow 6, \mathbf{R} \rightarrow 2; \mathbf{S} \rightarrow 1$	(B) $\mathbf{P} \rightarrow 1; \mathbf{Q} \rightarrow 4; \mathbf{R} \rightarrow 2; \mathbf{S} \rightarrow 3$
(C) $\mathbf{P} \rightarrow 4; \mathbf{Q} \rightarrow 6, \mathbf{R} \rightarrow 5; \mathbf{S} \rightarrow 2$	(D) $\mathbf{P} \rightarrow 4; \mathbf{Q} \rightarrow 2; \mathbf{R} \rightarrow 3; \mathbf{S} \rightarrow 1$
	[JEE (Advanced)- 2018 , 3 (–1)]
•	Ē

node 06\B0AH:A1\Kota\LEE[Advanced]\Nurture\Waths\Sheet\Permutation & Combination\Eng.pd5

ANSWER KEY

EXERCISE (O-1)

1. C	2. C	3. A	4. A	5. C	6. B	7. D	8. C
9. A	10. C	11. D	12. A	13. D	14. C	15. A	16. C
17. A	18. A	19. B	20. D	21. B	22. B	23. B	24. D
25. B	26. C	27. B	28. B	29. C	30. B	31. A	32. C
33. A	34. B	35. C	36. C	37. C	38. C	39. C	40. A
41. D	42. A	43. D	44. C	45. B	46. D	47. C	48. C
49. D	50. (A) R	; (B) S; (C) Q	; (D) P				

EXERCISE (O-2)

1. A	2. D	3. A	4. B	5. A	6. A	7. D	8. A
9. B	10. B	11. 240, 24	0, 255, 480	12. C	13. C	14. A	15. D
16. (a) C ;	(b) B; (c) B	17. A	18. C	19. D	20. A,B	21. A,B,D	22. B,C
23. A,B,C	,D 24	C,D 25	B,D 26	A,B,D 27	• A,C,D		
28. (A) T:	(B) R; (C) P;	(D) O; (E) S					

EXERCISE (S-1)

120		2. (i) 2	24;(ii) 576;	(iii) 3	60												
(i) 840; ((ii) 12	20; (iii) 40	00;(i	v) 240; (v	/) 48	0; (vi) 40;	(vii)) 60;	(viii)) 240							
(i) 120 ;	(ii) 4	40;(iii)4	0;(iv) 80 ; (v	v) 20		5.	20		6.	47		7.	(a)	3 ⁴ ; (t	o) 24		
36																		= 3
13, 156																		
												-	5					
$\frac{52!}{(12)^4};$	52	$\frac{2!}{1}$	21.	5400	22.	315	0	23.	1568	8		24.	1728	800		25.	${}^{8}C_{4}$	• 4
(13!)	3!(17	/!) ³															т	
528	27.	n = 8	28.	(i) 3359	; (ii)) 59;	(iii)	359		29.	120	, 216	, 210)	30.	240,	155	552
30	32.	719	33.	2500		34.	С			35.	С		36.	309	80			
(a) 72; 7	/8120	0; (b) 23	; (c)	32 ; (d) 4	435		39.	56		40.	128	70		41.	3003	3	42.	6
$^{m+n+k}C_{3} \\$	-(^m	$C_3 + {}^{n}C_3$	+ ^k (C ₃)	2.	(a)	744;	(b) ′	7704		3.	2210)0, 5	52		4.	40	
С	6.	А	7.	576	8.	60		9.	64		10.	244			11.	24		
(i) 15, (ii) 126	6, (iii) 60,	(iv)	105	13.	440			14.	311	9976)	15.	(a)	1680;	(b)	114	40
					EX	ER	CIS	SE	(JN	(1)								
2	2.	4	3.	3							6.	3		7.	2		8.	2
												-			-			-
2	100			1														
														7.	5		8.	С
5	10		11	5	12	n		12	625		1/	C						
5	10.	A	11.	3	14.	D		13.	025		14.	C						
	(i) 840; ((i) 120; 36 13, 156 $\frac{52!}{(13!)^4}$; 528 30 (a) 72; 7 ^{m+n+k} C ₃ C (i) 15, (ii 2 3 C	(i) 840; (ii) 12 (i) 120; (ii) 4 36 9. 13, 156 $\frac{52!}{(13!)^4}$; $\frac{52}{3!(12)^4}$; 528 27. 30 32. (a) 72; 7812 m+n+kC ₃ - (m) C 6. (i) 15, (ii) 120 2 2. 3 10. C 2.	(i) 840; (ii) 120; (iii) 40 (i) 120; (ii) 40; (iii) 4 36 9. 720 13, 156 15. 432 $\frac{52!}{(13!)^4}$; $\frac{52!}{3!(17!)^3}$ 528 27. n = 8 30 32. 719 (a) 72; 78120; (b) 23 ^{m+n+k} C ₃ - (^m C ₃ + ⁿ C ₃ C 6. A (i) 15, (ii) 126, (iii) 60, 2 2. 4 3 10. 4 C 2. D	(i) 840; (ii) 120; (iii) 400; (i (i) 120; (ii) 40; (iii) 40; (i 36 9. 720 10. 13, 156 15. 43200 $\frac{52!}{(13!)^4}$; $\frac{52!}{3!(17!)^3}$ 21. 528 27. n = 8 28. 30 32. 719 33. (a) 72; 78120; (b) 23; (c) m+n+kC ₃ - (mC ₃ + nC ₃ + kC C 6. A 7. (i) 15, (ii) 126, (iii) 60, (iv) 2 2. 4 3. 3 10. 4 11. C 2. D 3.	(i) 840; (ii) 120; (iii) 400; (iv) 240; (v (i) 120; (ii) 40; (iii) 40; (iv) 80; (v 36 9. 720 10. 576 13, 156 15. 43200 16. $\frac{52!}{(13!)^4}$; $\frac{52!}{3!(17!)^3}$ 21. 5400 528 27. n = 8 28. (i) 3359 30 32. 719 33. 2500 (a) 72; 78120; (b) 23; (c) 32; (d) 4 m+n+kC ₃ - (mC ₃ + nC ₃ + kC ₃) C 6. A 7. 576 (i) 15, (ii) 126, (iii) 60, (iv) 105 2 2. 4 3. 3 3 10. 4 11. 1 C 2. D 3. B	(i) 840; (ii) 120; (iii) 400; (iv) 240; (v) 480 (i) 120; (ii) 40; (iii) 40; (iv) 80; (v) 20 36 9. 720 10. 576 13, 156 15. 43200 16. 420 $\frac{52!}{(13!)^4}$; $\frac{52!}{3!(17!)^3}$ 21. 5400 22. 528 27. n = 8 28. (i) 3359; (ii) 30 32. 719 33. 2500 (a) 72; 78120; (b) 23; (c) 32; (d) 435 EX ^{m+n+k} C ₃ - (^m C ₃ + ⁿ C ₃ + ^k C ₃) 2. C 6. A 7. 576 8. (i) 15, (ii) 126, (iii) 60, (iv) 105 13. EX 2 2. 4 3. 3 4. 3 10. 4 11. 1 12. EX C 2. D 3. B 4.	(i) 120 ; (ii) 40 ; (iii) 40 ; (iv) 80 ; (v) 20 36 9. 720 10. 576 11. 13, 156 15. 43200 16. 420 $\frac{52!}{(13!)^4}; \frac{52!}{3!(17!)^3}$ 21. 5400 22. 3150 528 27. n = 8 28. (i) 3359; (ii) 59; 30 32. 719 33. 2500 34. (a) 72; 78120; (b) 23; (c) 32 ; (d) 435 EXER $^{m+n+k}C_3 - (^mC_3 + ^nC_3 + ^kC_3)$ 2. (a) C 6. A 7. 576 8. 60 (i) 15, (ii) 126, (iii) 60, (iv) 105 13. 440 EXER 2 2. 4 3. 3 4. 2 3 10. 4 11. 1 12. 2 EXER C 2. D 3. B 4. B	(i) 840; (ii) 120; (iii) 400; (iv) 240; (v) 480; (vi) 40; (i) 120; (ii) 40; (iii) 40; (iv) 80; (v) 20 5. 36 9. 720 10. 576 11. 999 13, 156 15. 43200 16. 420 17. $\frac{52!}{(13!)^4}; \frac{52!}{3!(17!)^3}$ 21. 5400 22. 3150 528 27. n = 8 28. (i) 3359; (ii) 59; (iii) 30 32. 719 33. 2500 34. C (a) 72; 78120; (b) 23; (c) 32; (d) 435 39. EXERCIS $m^{+n+k}C_3 - (mC_3 + nC_3 + kC_3)$ 2. (a) 744; C 6. A 7. 576 8. 60 (i) 15, (ii) 126, (iii) 60, (iv) 105 13. 440 EXERCIS 2 2. 4 3. 3 4. 2 3 10. 4 11. 1 12. 2 EXERCIS C 2. D 3. B 4. B	(i) 840; (ii) 120; (iii) 400; (iv) 240; (v) 480; (vi) 40; (vii) (i) 120; (ii) 40; (iii) 40; (iv) 80; (v) 20 5. 20 36 9. 720 10. 576 11. 999 13, 156 15. 43200 16. 420 17. 960 $\frac{52!}{(13!)^4}$; $\frac{52!}{3!(17!)^3}$ 21. 5400 22. 3150 23. 528 27. n = 8 28. (i) 3359; (ii) 59; (iii) 359 30 32. 719 33. 2500 34. C (a) 72; 78120; (b) 23; (c) 32; (d) 435 39. 56 EXERCISE m+n+kC ₃ - (mC ₃ + nC ₃ + kC ₃) 2. (a) 744; (b) 7 C 6. A 7. 576 8. 60 9. (i) 15, (ii) 126, (iii) 60, (iv) 105 13. 440 EXERCISE 2 2. 4 3. 3 4. 2 5. 3 10. 4 11. 1 12. 2 13. EXERCISE C 2. D 3. B 4. B 5.	(i) 840; (ii) 120; (iii) 400; (iv) 240; (v) 480; (vi) 40; (vii) 60; (i) 120; (ii) 40; (iii) 40; (iv) 80; (v) 20 5. 20 36 9. 720 10. 576 11. 999 12. 13, 156 15. 43200 16. 420 17. 960 $\frac{52!}{(13!)^4}$; $\frac{52!}{3!(17!)^3}$ 21. 5400 22. 3150 23. 1560 528 27. n = 8 28. (i) 3359; (ii) 59; (iii) 359 30 32. 719 33. 2500 34. C (a) 72; 78120; (b) 23; (c) 32; (d) 435 39. 56 EXERCISE (S-2) m+n+kC ₃ - (mC ₃ + nC ₃ + kC ₃) 2. (a) 744; (b) 7704 C 6. A 7. 576 8. 60 9. 64 (i) 15, (ii) 126, (iii) 60, (iv) 105 13. 440 14. EXERCISE (JM 2 2. 4 3. 3 4. 2 5. 1 3 10. 4 11. 1 12. 2 13. 4 EXERCISE (JA C 2. D 3. B 4. B 5. A	(i) 840; (ii) 120; (iii) 400; (iv) 240; (v) 480; (vi) 40; (vii) 60; (viii) (i) 120; (ii) 40; (iii) 40; (iv) 80; (v) 20 5. 20 6. 36 9. 720 10. 576 11. 999 12. 967 13, 156 15. 43200 16. 420 17. 960 18. $\frac{52!}{(13!)^4}$; $\frac{52!}{3!(17!)^3}$ 21. 5400 22. 3150 23. 1568 528 27. n = 8 28. (i) 3359; (ii) 59; (iii) 359 29. 30 32. 719 33. 2500 34. C 35. (a) 72; 78120; (b) 23; (c) 32; (d) 435 39. 56 40. EXERCISE (S-2) m+n+kC ₃ - (mC ₃ + nC ₃ + kC ₃) 2. (a) 744; (b) 7704 C 6. A 7. 576 8. 60 9. 64 (i) 15, (ii) 126, (iii) 60, (iv) 105 13. 440 14. 311 EXERCISE (JM) 2 2. 4 3. 3 4. 2 5. 1 3 10. 4 11. 1 12. 2 13. 4 EXERCISE (JA) C 2. D 3. B 4. B 5. A	(i) 840; (ii) 120; (iii) 400; (iv) 240; (v) 480; (vi) 40; (vii) 60; (viii) 240 (i) 120; (ii) 40; (iii) 40; (iv) 80; (v) 20 5. 20 6. 4 ⁷ 36 9. 720 10. 576 11. 999 12. 967680 13, 156 15. 43200 16. 420 17. 960 18. ²⁴ C $\frac{52!}{(13!)^4}$; $\frac{52!}{3!(17!)^3}$ 21. 5400 22. 3150 23. 1568 528 27. n = 8 28. (i) 3359; (ii) 59; (iii) 359 29. 120 30 32. 719 33. 2500 34. C 35. C (a) 72; 78120; (b) 23; (c) 32; (d) 435 39. 56 40. 128 EXERCISE (S-2) m ^{+n+k} C ₃ - (^m C ₃ + ⁿ C ₃ + ^k C ₃) 2. (a) 744; (b) 7704 3. C 6. A 7. 576 8. 60 9. 64 10. (i) 15, (ii) 126, (iii) 60, (iv) 105 13. 440 14. 3119976 EXERCISE (JM) 2 2. 4 3. 3 4. 2 5. 1 6. 3 10. 4 11. 1 12. 2 13. 4 EXERCISE (JA) C 2. D 3. B 4. B 5. A 6.	(i) 840; (ii) 120; (iii) 400; (iv) 240; (v) 480; (vi) 40; (vii) 60; (viii) 240 (i) 120; (ii) 40; (iii) 40; (iv) 80; (v) 20 5. 20 6. 4 ⁷ 36 9. 720 10. 576 11. 999 12. 967680 13, 156 15. 43200 16. 420 17. 960 18. ${}^{24}C_{2}$. ${}^{15}C_{2}$ $\frac{52!}{(13!)^{4}}$; $\frac{52!}{3!(17!)^{3}}$ 21. 5400 22. 3150 23. 1568 24. 528 27. n = 8 28. (i) 3359; (ii) 59; (iii) 359 29. 120, 216 30 32. 719 33. 2500 34. C 35. C (a) 72; 78120; (b) 23; (c) 32; (d) 435 39. 56 40. 12870 EXERCISE (S-2) $^{m+n+k}C_{3} - ({}^{m}C_{3} + {}^{n}C_{3} + {}^{k}C_{3})$ 2. (a) 744; (b) 7704 3. 2210 C 6. A 7. 576 8. 60 9. 64 10. 244 (i) 15, (ii) 126, (iii) 60, (iv) 105 13. 440 14. 3119976 EXERCISE (JM) 2 2. 4 3. 3 4. 2 5. 1 6. 3 3 10. 4 11. 1 12. 2 13. 4 EXERCISE (JA) C 2. D 3. B 4. B 5. A 6. 7	(i) 840; (ii) 120; (iii) 400; (iv) 240; (v) 480; (vi) 40; (vii) 60; (viii) 240 (i) 120; (ii) 40; (iii) 40; (iv) 80; (v) 20 5. 20 6. 4^7 7. 36 9. 720 10. 576 11. 999 12. 967680 13. 13, 156 15. 43200 16. 420 17. 960 18. ${}^{24}C_2$. ${}^{15}C_3$ $\frac{52!}{(13!)^4}$; $\frac{52!}{3!(17!)^3}$ 21. 5400 22. 3150 23. 1568 24. 1723 528 27. n = 8 28. (i) 3359; (ii) 59; (iii) 359 29. 120, 216, 210 30 32. 719 33. 2500 34. C 35. C 36. (a) 72; 78120; (b) 23; (c) 32; (d) 435 39. 56 40. 12870 EXERCISE (S-2) m+n+kC ₃ - (mC ₃ + nC ₃ + kC ₃) 2. (a) 744; (b) 7704 3. 22100, 5 C 6. A 7. 576 8. 60 9. 64 10. 244 (i) 15, (ii) 126, (iii) 60, (iv) 105 13. 440 14. 3119976 15. EXERCISE (JM) 2 2. 4 3. 3 4. 2 5. 1 6. 3 3 10. 4 11. 1 12. 2 13. 4 EXERCISE (JA) C 2. D 3. B 4. B 5. A 6. 7	(i) 840; (ii) 120; (iii) 400; (iv) 240; (v) 480; (vi) 40; (vii) 60; (viii) 240 (i) 120; (ii) 40; (iii) 40; (iv) 80; (v) 20 5. 20 6. 4^7 7. (a) 36 9. 720 10. 576 11. 999 12. 967680 13. (ii) 13, 156 15. 43200 16. 420 17. 960 18. ${}^{24}C_2 . {}^{15}C_3$ $\frac{52!}{(13!)^4}$; $\frac{52!}{3!(17!)^3}$ 21. 5400 22. 3150 23. 1568 24. 172800 528 27. n = 8 28. (i) 3359; (ii) 59; (iii) 359 29. 120, 216, 210 30 32. 719 33. 2500 34. C 35. C 36. 309 (a) 72; 78120; (b) 23; (c) 32; (d) 435 39. 56 40. 12870 41. EXERCISE (S-2) $^{m+n+k}C_3 - ({}^mC_3 + {}^nC_3 + {}^kC_3)$ 2. (a) 744; (b) 7704 3. 22100, 52 C 6. A 7. 576 8. 60 9. 64 10. 244 (i) 15, (ii) 126, (iii) 60, (iv) 105 13. 440 14. 3119976 15. (a) EXERCISE (JM) 2 2. 4 3. 3 4. 2 5. 1 6. 3 7. 3 10. 4 11. 1 12. 2 13. 4 EXERCISE (JA) C 2. D 3. B 4. B 5. A 6. 7 7.	(i) 840; (ii) 120; (iii) 400; (iv) 240; (v) 480; (vi) 40; (vii) 60; (viii) 240 (i) 120; (ii) 40; (iii) 40; (iv) 80; (v) 20 5. 20 6. 4^7 7. (a) 3^4 ; (b) 36 9. 720 10. 576 11. 999 12. 967680 13. (ii) 792; 13, 156 15. 43200 16. 420 17. 960 18. ${}^{24}C_2$. ${}^{15}C_3$ 19. $\frac{52!}{(13!)^4}$; $\frac{52!}{3!(17!)^3}$ 21. 5400 22. 3150 23. 1568 24. 172800 528 27. n = 8 28. (i) 3359; (ii) 59; (iii) 359 29. 120, 216, 210 30. 30 32. 719 33. 2500 34. C 35. C 36. 30980 (a) 72; 78120; (b) 23; (c) 32; (d) 435 39. 56 40. 12870 41. 3003 EXERCISE (S-2) m ^{+n+k} C ₃ - (^m C ₃ + ⁿ C ₃ + ^k C ₃) 2. (a) 744; (b) 7704 3. 22100, 52 C 6. A 7. 576 8. 60 9. 64 10. 244 11. (i) 15, (ii) 126, (iii) 60, (iv) 105 13. 440 14. 3119976 15. (a) 1680; EXERCISE (JM) 2 2. 4 3. 3 4. 2 5. 1 6. 3 7. 2 3 10. 4 11. 1 12. 2 13. 4 EXERCISE (JA) C 2. D 3. B 4. B 5. A 6. 7 7. 5	(i) 840; (ii) 120; (iii) 400; (iv) 240; (v) 480; (vi) 40; (vii) 60; (viii) 240 (i) 120; (ii) 40; (iii) 40; (iv) 80; (v) 20 5. 20 6. 4^7 7. (a) 3^4 ; (b) 24 36 9. 720 10. 576 11. 999 12. 967680 13. (ii) 792; (iv) 13, 156 15. 43200 16. 420 17. 960 18. ${}^{24}C_2$. ${}^{15}C_3$ 19. 1106 $\frac{52!}{(13!)^4}$; $\frac{52!}{3!(17!)^3}$ 21. 5400 22. 3150 23. 1568 24. 172800 25. 528 27. n = 8 28. (i) 3359; (ii) 59; (iii) 359 29. 120, 216, 210 30. 240, 30 32. 719 33. 2500 34. C 35. C 36. 30980 (a) 72; 78120; (b) 23; (c) 32; (d) 435 39. 56 40. 12870 41. 3003 EXERCISE (S-2) ^{m+n+k} C ₃ - (^m C ₃ + ⁿ C ₃ + ^k C ₃) 2. (a) 744; (b) 7704 3. 22100, 52 4. (i) 15, (ii) 126, (iii) 60, (iv) 105 13. 440 14. 3119976 15. (a) 1680; (b) EXERCISE (JM) 2 2. 4 3. 3 4. 2 5. 1 6. 3 7. 2 3 10. 4 11. 1 12. 2 13. 4 EXERCISE (JA) C 2. D 3. B 4. B 5. A 6. 7 7. 5	(i) 840; (ii) 120; (iii) 400; (iv) 240; (v) 480; (vi) 40; (vii) 60; (viii) 240 (i) 120; (ii) 40; (iii) 40; (iv) 80; (v) 20 5. 20 6. 4^7 7. (a) 3^4 ; (b) 24 36 9. 720 10. 576 11. 999 12. 967680 13. (ii) 792; (iv) r = 13, 156 15. 43200 16. 420 17. 960 18. ${}^{24}C_2 \cdot {}^{15}C_3$ 19. 1106 $\frac{52!}{(13!)^4}$; $\frac{52!}{3!(17!)^3}$ 21. 5400 22. 3150 23. 1568 24. 172800 25. ${}^{8}C_4$ 528 27. n = 8 28. (i) 3359; (ii) 59; (iii) 359 29. 120, 216, 210 30. 240, 153 30 32. 719 33. 2500 34. C 35. C 36. 30980 (a) 72; 78120; (b) 23; (c) 32; (d) 435 39. 56 40. 12870 41. 3003 42. EXERCISE (S-2) $^{m+n+k}C_3 - ({}^{m}C_3 + {}^{n}C_3 + {}^{k}C_3)$ 2. (a) 744; (b) 7704 3. 22100, 52 4. 40 C 6. A 7. 576 8. 60 9. 64 10. 244 11. 24 (i) 15, (ii) 126, (iii) 60, (iv) 105 13. 440 14. 3119976 15. (a) 1680; (b) 113 EXERCISE (JM) 2 2. 4 3. 3 4. 2 5. 1 6. 3 7. 2 8. 3 10. 4 11. 1 12. 2 13. 4 EXERCISE (JA) C 2. D 3. B 4. B 5. A 6. 7 7. 5 8.