Mathematics

Chapterwise Practise Problems (CPP) for JEE (Main & Advanced)

Chapter - Inverse Trigonometry Function

Level-1

SECTION - A

Straight Objective Type

This section contains multiple choice questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which ONLY ONE is correct.

- The number of solution(s) of the equation $\sin^{-1} x$ + 1. $\sin^{-1} 2x = \frac{\pi}{3} \text{ is}$
 - (A) 0
- (B) 1
- (C) 2
- (D) 3
- 2. The sum of all the solutions of the equation

$$\tan^{-1}\left(\frac{2x}{x^2-1}\right) + \cot^{-1}\left(\frac{x^2-1}{2x}\right) = \frac{2\pi}{3}$$
 is

- (A) $\frac{2}{\sqrt{3}}$
- (B) $-\frac{2}{\sqrt{3}}$
- (C) $\frac{-1}{\sqrt{3}}$
- (D) $\frac{-4}{\sqrt{3}}$
- Let $y = f(x) = \sin^{-1}([x] 1)$, where [.] represents greatest integral function. It should be noted that $\sin^{-1} x$ is defined for $-1 \le x \le 1$. The domain of function is
 - (A) (1, 3]
- (B) [0, 3)
- (C) (2, 3)
- (D) (-1, 3)
- 4. If $\sum_{k=1}^{100} \sin^{-1} x_k = 50 \pi$, $k \in N$, then $\sum_{k=1}^{100} k x_k^3$ equals
 - (A) 5050
- $(C) 10^6$
- (D) $(5050)^2$
- The solution of $tan^{-1} 2x + tan^{-1} 3x = \frac{\pi}{4}$ is/are
 - (A) -1
- (C) $\frac{1}{6}$
- (D) $\frac{1}{6}$ and -1

The value of x which satisfies equation $2 \tan^{-1} 2x =$

$$\sin^{-1} \frac{4x}{1+4x^2}$$
 is

- (A) $\left[\frac{1}{2},\infty\right]$ (B) $\left(-\infty,-\frac{1}{2}\right]$
- (C) [-1,1]
- (D) $\left[-\frac{1}{2}, \frac{1}{2} \right]$
- 7. The sum $\sum_{n=1}^{\infty} \tan^{-1} \left(\frac{4n}{n^4 2n^2 + 2} \right)$ is equal to
 - (A) $\tan^{-1} \frac{1}{2} + \tan^{-1} \frac{2}{3}$ (B) $4 \tan^{-1} 1$
 - (C) $\frac{\pi}{2}$
- (D) $\sec^{-1}\left(-\sqrt{2}\right)$

SECTION - B

Multiple Correct Answer Type

This section contains multiple choice questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which ONE OR MORE is/are correct.

- $\tan \left| \frac{1}{2} \cos^{-1} \frac{\sqrt{5}}{3} \right|$ does not equal to
 - (A) $\frac{3+\sqrt{5}}{2}$
- (B) $\frac{\sqrt{5+3}}{4}$
- (C) $\frac{3-\sqrt{5}}{2}$
- (D) $\frac{\sqrt{5-3}}{4}$
- The value of $\sin^{-1}(\cos(\sin^{-1}x)) + \cos^{-1}(\sin(\cos^{-1}x))$ is not equal to
 - (A) π
- (B) $\frac{\pi}{2}$
- (C) $\frac{\pi}{4}$
- (D) 0

10. If the equations

$$\sin^{-1} x + \cos^{-1} y = \frac{3\pi}{2}$$
 ...(i)

$$2 \sin^{-1} x = \sin^{-1} (2x \sqrt{1-x^2})$$
 ...(ii)

$$3 \sin^{-1} x = \sin^{-1} (3x - 4x^3)$$
 ...(iii)

hold simultaneously, then the number of values of y is not equal to

- (A) 2
- (B) 1
- (C) 0
- (D) 3
- 11. If $tan^{-1}(x) + tan^{-1}(1-x) = cot^{-1}\left(\frac{5}{6}\right)$ then x may

be

- (A) $\frac{1}{3}$
- (B) $\frac{2}{3}$
- (D) $\frac{3}{4}$
- 12. Identify the pair(s) of functions which are identical?

(A)
$$f(x) = \tan(\arccos x), \ f(x) = \frac{\sqrt{1 - x^2}}{x}$$

(B)
$$f(x) = \tan(\operatorname{arc} \cot x), \ f(x) = \frac{1}{x}$$

(C)
$$f(x) = \sin(\arctan x), \ f(x) = \frac{x}{\sqrt{1+x^2}}$$

- (D) $f(x) = \cos(\arctan x)$, $f(x) = \sin(\arctan x)$
- 13. If $\cos (2 \sin^{-1} x) = \frac{1}{9}$, then x can attain value(s)
 - $(A) \frac{2}{3}$
- (B) $\frac{2}{3}$
- (C) $-\frac{3}{2}$
- 14. If $\alpha = \tan^{-1} (\tan 4)$, $\beta = \tan^{-1} (\tan(-6))$, $\gamma = \sin^{-1}$ (sin 10), then
 - (A) $\alpha < \beta < \gamma$
- (B) $\alpha > \beta > \gamma$
- (C) α , $\frac{\beta}{2}$, γ are in AP (D) $\beta \alpha = \gamma$
- 15. The value of λ for which the equation

$$\lambda x^2 + \sin^{-1} (x^2 - 2x + 2) + \cos^{-1} (x^2 - 2x + 2) = 0$$
 has not a real solution is

- (A) $-\frac{\pi}{3}$
- (B) $-\frac{\pi}{2}$
- (C) $\frac{\pi}{3}$
- (D) $\frac{\pi}{2}$
- 16. Let $f(x) = e^{\cos^{-1}\sin\left(x + \frac{\pi}{3}\right)}$. then

 - (A) $f\left(\frac{8\pi}{9}\right) = e^{\frac{5\pi}{18}}$ (B) $f\left(\frac{8\pi}{9}\right) = e^{\frac{13\pi}{18}}$

 - (C) $f\left(-\frac{7\pi}{4}\right) = e^{\frac{\pi}{12}}$ (D) $f\left(-\frac{7\pi}{4}\right) = e^{\frac{11\pi}{12}}$
- 17. Let $f(x) = \tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)$ then which of the fol-
 - (A) f(x) is increasing in its domain
 - (B) f(x) has neither a maxima nor minima
 - (C) Range of f(x) is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \{0\}$
 - (D) f(x) has two asymptotes

SECTION - C

Linked Comprehension Type

This section contains paragraph. Based upon this paragraph, 2 multiple choice questions have to be answered. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which ONLY ONE is correct.

Paragraph for Question No. 18

One of the most widely used method of summation is "method of difference". It consists in writting the general terms as a difference of two terms in such a way that when we add all the terms of the series, the term cancel in pairs and we are left with one or two terms.

- 18. $\sin^{-1} \frac{1}{\sqrt{2}} + \sin^{-1} \frac{\sqrt{2}-1}{\sqrt{6}} + \sin^{-1} \frac{\sqrt{3}-\sqrt{2}}{\sqrt{12}} +$ upto ∞ equals
 - $(A) \frac{\pi}{2}$
- (C) $-\frac{\pi}{4}$

Paragraph for Question Nos. 19 and 20

Let us consider $\cot^{-1} y = \frac{\pi}{2} - 4 \tan^{-1} x$

- 19. In the above expression, y is defined if x belongs
 - (A) $(-\infty, \infty)$
- (B) (-1, 1)
- (C) $(1-\sqrt{2}, \sqrt{2}-1)$ (D) $[1-\sqrt{2}, \sqrt{2}-1]$
- 20. y as algebraic function of x, is given by
 - (A) $\frac{4x(1-x^2)}{x^4-6x^2+1}$ (B) $\frac{x(1-x^2)}{x^4-x^2-6}$
 - (C) $\frac{4x(1-x^2)}{x^2-6x+1}$ (D) $\frac{x(1-x^2)}{x^2-x-6}$

SECTION-D

Single-Match Type

This section contains Single match questions. Each question contains statements given in two columns which have to be matched. The statements in Column I are labelled A, B, C and D, while the statements in Column II are labelled p,q,r,s. Four options A,B,C and D are given below. Out of which, only one shows the right matching

Match the following

Column I

Column II

- (A) $\cos^{-1}\lambda + \cos^{-1}\mu + \cos^{-1}\nu = 3\pi$, (p) 2n then $\lambda\mu + \mu\nu + \nu\lambda$ is
- (B) $\sum_{i=0}^{10} \cos^{-1} x_i = 0$, then $\sum_{i=0}^{10} X_i$ is, (q) $\sin^{-1} x \pi/6$
- (C) $\sum_{i=1}^{2n} \sin^{-1} x_i = n\pi$, then $\sum_{i=1}^{2n} X_i$ is (r) 10
- (D) $f(x) = \sin^{-1} \left\{ \frac{\sqrt{3}}{2} x \frac{1}{2} \sqrt{1 x^2} \right\}$, (s) 3

$$-\frac{1}{2} \le x \le 1$$
, is

в с

- (A) q
- (B) p
- (C) s
- (D) q r

22. Match the following

Column I

Column II

- (A) $\sin^{-1} \frac{4}{5} + 2 \tan^{-1} \frac{1}{3} =$
- (p) $\frac{\pi}{6}$
- (B) $\sin^{-1}\frac{12}{13} + \cos^{-1}\frac{4}{5} + \tan^{-1}\frac{63}{16} =$
- (C) If A = $\tan^{-1} \left(\frac{x\sqrt{3}}{2\lambda x} \right)$,
- (r) π_{4}
- B = $\tan^{-1}\left(\frac{2x \lambda}{\lambda\sqrt{3}}\right)$ then A-B =
- (D) $tan^{-1} \frac{1}{7} + 2 tan^{-1} \frac{1}{3} =$

 $(s)\pi$

A B C D

- (A) q
- q r
- (C) s r p
- (D) q
- 23. Match the following:

Column - I

Column - II

- (A) The number of solution of
- (p) 1

$$\frac{x}{2} + \frac{\sin x}{\cos x} = \frac{\pi}{4} \text{ in } [-\pi, \ \pi]$$

(B) The number of solution of equation (q) 0

$$\sin^{-1}(|x^2-1|) + \cos^{-1}(|2x^2-5|) = \frac{\pi}{2}$$

- (C) The number of solution of
- (r) 3

(s) 2

$$x^4 - 2x^2 \sin^2\left(\frac{\pi}{2}x\right) + 1 = 0$$

(D) The number of solution of x2 +

 $2x + 2 \sec^2 x\pi + \tan^2 x\pi = 0$

(3)

SECTION-E

Integer Answer Type

This section contains Integer type questions. The answer to each of the questions is a single digit integer, ranging from 0 to 9. The appropriate bubbles below the respective question numbers in the ORS have to be darkened. For example, if the correct answers to question numbers X, Y and Z(say) are 6, 0 and 9, respectively, then the correct darkening of bubbles will look like the following:

X	Υ	Z
(0)	0	0
		$\widetilde{\bigcirc}$
10	(2)	<u>S</u>
	(3))(a
		9
$ $	(5)	9
	6	9
	(7)	(7)
(8)	(8)	(8)
9	9	9

- 24. Number of solution(s) of the equation \tan^{-1} $\left(\frac{x-1}{x-2}\right) + \tan^{-1}\left(\frac{x+1}{x+2}\right) = \frac{\pi}{4}$ is
- 25. Number of solution(s) of equation \sin^{-1} $\left(x \frac{x^2}{2} + \frac{x^3}{4} \dots\right) + \cos^{-1}\left(x^2 \frac{x^4}{2} + \frac{x^6}{4} \dots\right) = \frac{\pi}{2} \text{ is}$

- 26. If $\cot^{-1}\left(\frac{n}{\pi}\right) > \cos^{-1}\cos\left(\frac{13\pi}{6}\right)$, $n \in N$, then the maximum value of n is
- 27. If $\sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \frac{3\pi}{2}$ and f(1) = 2, f(h + k) = f(h). $f(k) \forall h, k \in N$, then $x^{f(2008)} + y^{f(2009)} + z^{f(2010)}$

$$\frac{X+Y+Z}{X^{f(2008)}+V^{f(2009)}+Z^{f(2010)}}$$
 equals

- 28. If $f(x) = x^{13} x^{11} + x^9 + x^3 + x + 2$ and $f(\sin^{-1}(\sin 8)) = \lambda$, where λ is constant and $f(\tan^{-1}(\tan 8)) = K \lambda$ then K is equal to
- 29. The least value of n for which $(n-2)x^2+8x+n+4 > \sin^{-1}(\sin 12) + \cos^{-1}(\cos 12), \ \forall x \in R$, where n \in N, is ____
- 30. If x_1 , x_2 , x_3 , x_4 are the roots of the equation $x^4 x^3 \sin 2\beta + x^2 \cos 2\beta x \cos \beta \sin \beta = 0$ such that $\tan^{-1}x_1 + \tan^{-1}x_2 + \tan^{-1}x_3 + \tan^{-1}x_4 = n\pi + \frac{\pi}{\lambda} + \mu\beta$. Then $|\lambda\mu|$ is _____
- 31. Number of solutions of the equation \sin^{-1} $\left(\left|\log_6^2\left(\cos x\right)-1\right|\right)+\cos^{-1}\left(\left|3\log_6^2\left(\cos x\right)-7\right|\right)=\frac{\pi}{2}\text{ , if }$ $x\in[0,4\pi]$ is
- 32. The number of solution of the equation $\cos^{-1}(1-x) + \cos^{-1}x = \frac{n\pi}{2}$, where m >0, n \le 0 is

SECTION - A

Straight Objective Type

This section contains multiple choice questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which ONLY ONE is correct.

If $\cos^{-1} x_1 - \cos^{-1} x_2$ 1.

$$+\cos^{-1}(x_1x_2+\sqrt{1-x_1^2}\sqrt{1-x_2^2})=0,$$

then which of the following is true?

- (A) $x_1 + x_2 \le 1$ (B) $x_1 + x_2 \ge -1$
- (C) $X_1 \leq X_2$
- (D) $x_1 \ge x_2$

2. If $\sin^{-1} \left(\sin \left(\frac{2x^2 + 4}{1 + x^2} \right) \right) < \pi - 3$, then

- (A) |x| > 1
- (B) |x| < 1
- (C) |x| = 1
- (D) $|x| \le 1$

3. Number of solutions of $[\sin^{-1}x] + [\cos^{-1}x] = 4$ is (where [.] denotes the greatest integer function)

- (A) 1
- (B) 0
- (C) 2
- (D) 3

4. The value of $\sum_{r=1}^{\infty} \tan^{-1} \left(\frac{1}{2r^2} \right)$ is

- (A) $\frac{\pi}{2}$
- (B) $\frac{\pi}{4}$
- (C) π
- (D) 2π

The range of the function $f(x) = \sec^{-1}(x) + \tan^{-1}(x)$, 5.

- (A) $(0, \pi)$
- (B) $\left(\frac{-\pi}{2}, \frac{3\pi}{2}\right)$
- (C) $\left(0, \frac{3\pi}{4}\right)$
- (D) none

6. Which one of the following can best represent the graph of the function,

 $f(x) = \cos^{-1}(2x^2 - 1)$?

7. $\cot^{-1} 3 + \cot^{-1} \frac{9}{2} + \cot^{-1} \frac{33}{4} + \cot^{-1} \frac{129}{8}$ upto ∞ equals

- (A) $\frac{\pi}{4}$
- (B) 0
- (C) $\frac{-\pi}{4}$

SECTION - B

Multiple Correct Answer Type

This section contains multiple choice questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which ONE OR MORE is/are correct.

The least value of $(\sin^{-1}x)^3 + (\cos^{-1}x)^3$, $-1 \le x \le 1$,

- (C) $\frac{7\pi^3}{9}$ (D) $\frac{7\pi^3}{16}$

9. Let $t_k = \tan^{-1}\left(\frac{2}{\kappa^2}\right)$ then

(A)
$$\sum_{k=1}^{n} t_k = \tan^{-1} \left(\frac{n^2 + 3n}{2 + n - n^2} \right), n > 2$$

(B) $\sum_{k=1}^{\infty} t_k = \frac{3\pi}{4}$

(C)
$$\sum_{k=1}^{n} t_k = \tan^{-1} \left(\frac{n^2}{n+2} \right), n > 2$$

(D)
$$\sum_{k=1}^{\infty} t_k = \frac{\pi}{4}$$

SECTION - C

Linked Comprehension Type

This section contains paragraph. Based upon this paragraph, 2 multiple choice questions have to be answered. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which ONLY ONE is correct.

Paragraph for question nos. 10 and 11

Consider a real-valued function

$$f(x) = \sqrt{\sin^{-1} x + 2} + \sqrt{1 - \sin^{-1} x}$$

- 10. The domain of definition of f(x) is
 - (A) [-1,1]
- (B) [sin 1, 1]
- (C) $[-1, \sin 1]$
- (D) [-1, 0]
- 11. The range of f(x) is
 - (A) $\left[0,\sqrt{3}\right]$
- (B) [1,√3]
- (C) $\left[1,\sqrt{6}\right]$
- (D) $\left[\sqrt{3},\sqrt{6}\right]$

SECTION-D

Single-Match Type

This section contains Single match questions. Each question contains statements given in two columns which have to be matched. The statements in Column I are labelled A, B, C and D, while the statements in **Column II** are labelled p,q,r,s. Four options A,B,C and D are given below. Out of which, only one shows the right matching

Column I contains functions and Column II contains their range. Match the entries of Column I with the entries of Column II.

Column - I

Column - II

(A)
$$f(x) = \sin^{-1}\left(\frac{x}{1+|x|}\right)$$

(P)
$$(0, \pi)$$

(B)
$$g(x) = cos^{-1}\left(\frac{x}{1+|x|}\right)$$

(Q)
$$\left(\frac{\pi}{4}, \frac{3\pi}{4}\right)$$

(C)
$$h(x) = tan^{-1} \left(\frac{x}{1+|x|} \right)$$

$$\left(-\frac{\pi}{4},\frac{\pi}{4}\right)$$

(D)
$$k(x) = \cot^{-1}\left(\frac{x}{1+|x|}\right)$$
 (S) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

(S)
$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

13. Let
$$t_1 = (\sin^{-1}x)^{\sin^{-1}x}$$
, $t_2 = (\sin^{-1}x)^{\cos^{-1}x}$, $t_3 = (\cos^{-1}x)^{\sin^{-1}x}$, $t_4 = (\cos^{-1}x)^{\cos^{-1}x}$ then,

Column I

Column II

- (A) for $x \in (0, \cos 1)$
- (p) $t_1 > t_2 > t_4 > t_3$

(B) for
$$x \in \left(\cos 1, \frac{1}{\sqrt{2}}\right)$$
 (q) $t_4 > t_3 > t_1 > t_2$

(q)
$$t_4 > t_3 > t_1 > t_2$$

(C) for
$$x \in \left(\frac{1}{\sqrt{2}}, \sin 1\right)$$
 (r) $t_2 > t_1 > t_4 > t_3$

(r)
$$t_2 > t_1 > t_4 > t_3$$

(D) for
$$x \in (\sin 1, 1)$$

(s)
$$t_3 > t_4 > t_1 > t_2$$

D

r

Α

C

(6)

ANSWERS

CPP-02 SS JEE(M) & ADVANCED

LEVEL-1

1. (B) 2. (D) 3. (B) 4. (A) 5. (C) 6. (D)

7. (D) 8. (A,B,D) 9. (A,C,D) 10. (A,B,D) 11. (A,B) 12. (A,B,C,D)

13. (A,B) 14. (B,C,D) 15. (A,C,D) 16. (B,C) 17. (A,B,D) 18. (B)

19. (C) 20.(A) 21. (C) 22. (D) 23. (A-r B-s C-s D-q)

24.(2) 25. (2) 26. (5) 27. (2) 28. (4) 29. (5)

30. (2) 31. (4) 32. (0)

LEVEL-2

1. (D) 2. (B) 3. (B) 4. (B) 5. (A) 6. (B)

7. (A) 8. (B,C,D) 9. (A,B) 10. (C) 11. (D)

12. (A-S B-P C-R D-Q) 13. (A)