Chapter 9

Coordination Compounds

Solutions

SECTION - A

	SECTION - A								
	Objective Type Questions								
(Cla	(Classification of Ligands and Nomenclature of Coordination Compounds)								
1.	IUPAC name of H ₂ [PtCl ₆] i (1) Dihydrogen hexachlorid		tinum (IV)	(2)	Hexachloridoplatinic	: (IV)	acid		
	(3) Dihydrogen hexachlorid	dopla	itinic (IV) acid	(4)	Hexachloridoplatinu	m (IV) acid		
Sol.	Answer (2)			4,	100	ilin.	301		
	IUPAC name of H ₂ [PtCl ₆] =	⇒ He	exachloridoplatinate (IV) acid	L COLLINGS	S LIII.			
2.	Naming of ligand in [M(en)	₂] ⁿ⁺ s	starts with		5817				
	(1) Di	(2)	Bi	(3)	Bis	(4)	Any of these		
Sol.	Answer (3)			7.	Mcgr				
	en is ethylene diamine \Rightarrow an organic compound. Here it is used as a ligand so 'bis' will be used.								
3.	Which of the following has	prim	ary valency "2"?	S. P.	A.C.				
	(1) [Co(NH ₃) ₅ Cl]Cl	(2)	[Co(NH ₃) ₄ Cl ₂]Cl	(3)	[Co(NH ₃) ₃ Cl ₃]	(4)	[Co(H ₂ O) ₄ Cl ₂]Cl		
Sol.	Answer (1)		16 Divisi						
	$[Co(NH_3)_5CI]CI \Rightarrow [Co(NH_3)_5CI]CI$	l ₃) ₅ Cl	$]Cl^+ \Rightarrow Co^{2+}$						
4.	Ligand to form a complex	which	n is used to treat hard	water					
	(1) NH ₃	(2)	ОХ	(3)	en	(4)	EDTA		
Sol.	Answer (4)								
	EDTA is used to treat hard water. Because EDTA is a chelating ligand and forms stable complexes with Ca ²⁺ and Mg ²⁺ present in the hard water.								
5.	Which of the following is n	ot bio	dentate ligand?						
	(1) acac	(2)	ОХ	(3)	en	(4)	dien		
Sol.	Answer (4)								
	Dien is not a bidentate ligand.								
	-								

- 6. Which of the following is flexidentate?
 - (1) CO

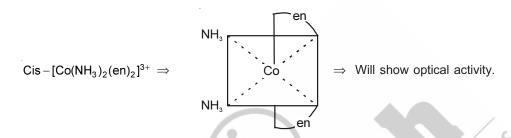
(2) en

- (3) EDTA
- (4) CI⁻

Sol. Answer (3)

EDTA is a flexidentate because it has 6 binding sites.

(Isomerism in coordination compounds)


- 7. Which of the following will show optical activity?
 - (1) $Cis [Co(NH_3)_2(en)_2]^{3+}$

(2) $Trans - [Co(NH_3)_2(en)_2]^{3+}$

(3) $[Co(NH_3)_6]^{3+}$

(4) Trans – [Co(H₂O)₄Cl₂]⁺

Sol. Answer (1)

- 8. How many optical isomers are possible for [MABCD]?
 - (1) 1

(2) 2

(3) 3

(4) Zero

Sol. Answer (4)

$$[MABCD] \Rightarrow D \cap M \cap B$$

$$\Rightarrow \text{No any optical isomers.}$$

- 9. Number of geometrical isomers possible for [MABCDEF] is
 - (1) 6

(2) 10

- 3) 15
- (4) 12

Sol. Answer (3)

[MABCDEF] ⇒ 6 different ligands

Possbile geometrical isomers = ${}^{6}C_{4} = \frac{6!}{4!2!} = 15$

- 10. [Ni(gly)₂] shows two stereoisomers. Those are
 - (1) Geometrical

(2) Optical

(3) Does not show isomerism

(4) Both (1) & (2)

Sol. Answer (2)

- 11. Which octahedral coordination compound will show maximum conductivity in aqueous solution if all NH₃ act as ligands?
 - (1) CoCl₃.6NH₃
 - (2) CoCl₃.5NH₃
 - (3) CoCl₃.4NH₃
 - (4) All will have same conductivity as every compound has got 3Cl

If all NH_3 acts as ligand, then in case of $CaCl_3 \cdot 6NH_3$, 3 Cl^- ions will be outside the co-ordination sphere and participate in the enhancement of conductivity.

(Bonding in coordination compounds)

- 12. Which is a diamagnetic complex?
 - (1) $[Fe(H_2O)_6]^{3+}$
- (2) $[Fe(H_2O)_6]^{2+}$
- (3) $[Fe(CN)_6]^{3-}$
- (4) [Fe(CN)₆]⁴⁻

Sol. Answer (4)

- (∵ CN⁻ is a strong field ligand)
- ⇒ Magnetic moment is zero
- ⇒ Diamagnetic.
- 13. The hybridization of 'Cr' in the complex $[Cr(NO_2)_4(NH_3)_2]^-$ is
 - (1) sp^3d^2
- (2) $sp^{3}d$
- (3) d^2sp^3
- (4) sp^3

Sol. Answer (3)

$$[\operatorname{Cr}(\operatorname{NO}_2)_4(\operatorname{NH}_3)_2]^- \Rightarrow \operatorname{Cr}^{3+} \Rightarrow 3d^3$$

$$\Rightarrow \boxed{1 \ 1 \ 1}$$

$$\Rightarrow d^2sp^3.$$

- 14. The geometry of [Ni(CO)₄] and [PdCl₄]²⁻ respectively are
 - (1) Both are tetrahedral

(2) Both are square planar

(3) Square planar and tetrahedral

(4) Tetrahedral and square planar

Sol. Answer (4)

$$[\mathrm{Ni}(\mathrm{CO})_4] \Rightarrow \mathit{sp}^3 \Rightarrow \mathrm{Tetrahedral}$$
 $[\mathrm{PdCl}_4]^{2-} \Rightarrow \mathit{dsp}^2 \Rightarrow \mathrm{Square\ planar}$

- 15. Write the increasing order of the value is CFSES (Δ_0) for the following species
 - I. $[Co(NH_3)_6]^{3+}$
 - II. $[Rh(NH_3)_6]^{3+}$
 - III. $[Ir(NH_3)_6]^{3+}$
 - (1) ||| < || < |
- (2) | 1 < | 1 < | 1 |
- (3) || < | < ||
- (4) | < ||| < ||

Sol. Answer (2)

With the increase of the size of central metal ion, *d-d* splitting increases.

- ⇒ CFSE increases
- ⇒ The correct order should be

- 16. Which of the following is correct statement?
 - (1) [Ti(H₂O)₆]³⁺ is coloured complex
 - (2) [Si(H₂O)₆]⁴⁺ is colourless complex
 - (3) d d transition is not possible in $[Si(H_2O)_6]^{4+}$ complex
 - (4) All of these

 $[Ti(H_2O)_6]^{3+} \Rightarrow Purple coloured complex$

 $[Si(H_2O)_6]^{4+} \Rightarrow Colourless$, because no any transition

 \Rightarrow All the statements are correct.

17. Which of the following will have greatest molar conductance at infinite dilution?

- (1) $[Pt(NH_3)_5Cl]Cl_3$
- (2) $[Pt(NH_3)_4Cl_2]Cl_2$
- (3) $[Pt(NH_3)_2CI_4]$
- (4) $[Pt(NH_3)_6]CI_4$

Sol. Answer (4)

[Pt(NH₂)₆]Cl₄ has highest conductance because there are 4 Cl⁻ ions in the primary valency and they are responsible for the enhanced molar conductance.

18. Which of the following is the high spin complex?

- (1) $[Cr(gly)_3]$
- (2) $[CoBr_2Cl_2(SCN)_2]^{3-}$ (3) $[Fe(CN)_6]^{3-}$
- (4) Na[PtBrCl(NO₂)₂(NH₃)₂]

Sol. Answer (2)

[CoBr,Cl₂(SCN)₂]³⁻ will form spin complex because Br⁻ and Cl⁻ are weak field ligands and they will not compell the d-electrons to be paired.

19. The coordination number and magnetic moment of the complex [Cr(C2O4)2(NH3)2] respectively is

- (1) 6, 3.87 BM
- (2) 4, 3.87 BM
- (3) 6, 3.46 BM
- (4) 4, 1.73 BM

Sol. Answer (1)

$$[Cr(C_2O_4)_2(NH_3)_2]^- \Rightarrow Cr^{3+} \Rightarrow 3d^3$$

Octahedral complex ⇒ Co-ordination number = 6

Magnetic moment = $\sqrt{3(3+2)}$ BM

$$=\sqrt{3\times5}$$
 BM

$$=\sqrt{15}$$
 BM = 3.87 BM

20. If the value of C.F.S.E. for "Ni" is Δ_0 then it is for Pd should be

- (1) 1.1 Δ_0
- (2) $0.5 \Delta_0$
- $1.5 \Delta_0$
- (4) $2 \Delta_0$

Sol. Answer (3)

21. The value of 'spin only' magnetic moment, follows the correct order?

- (1) $[Fe(CN)_a]^{4-} > [CoCl_A]^{2-} > [MnCl_A]^{2-}$
- (2) $[MnCl_A]^{2-} > [Fe(CN)_6]^{4-} > [CoCl_A]^{2-}$
- (3) $[Fe(CN)_6]^{4-} > [MnCl_4]^{2-} > [CoCl_4]^{2-}$
- (4) $[MnCl_A]^{2-} > [CoCl_A]^{2-} > [Fe(CN)_G]^{4-}$

Sol. Answer (4)

$$[\mathsf{MnCl_4}]^{2-} \Rightarrow \; \mathsf{Mn^{2+}} \Rightarrow \; 3\mathsf{d^5} \Rightarrow \boxed{1\ 1\ 1\ 1\ 1} \Rightarrow \; \mathsf{Five} \; \mathsf{unpaired} \; \mathsf{electrons}$$

$$\Rightarrow$$
 $\mu = \sqrt{5(5+2)} = \sqrt{35}$ BM = 5.92 BM

$$[\mathsf{COCl_4}]^{2-} \Rightarrow \mathsf{Co^{2+}} \Rightarrow \; \mathsf{3d^7} \Rightarrow \boxed{1 \quad 1 \quad 1 \quad 1} \Rightarrow \mathsf{Three} \; \mathsf{unpaired} \; \mathsf{electrons}$$

$$\Rightarrow \mu = \sqrt{3(3+2)} = \sqrt{15} \text{ BM} = 3.87 \text{ BM}$$

$$[\text{Fe(CN)}_6]^{4-} \ \Rightarrow \ \text{Fe}^{2+} \ \Rightarrow \ 3\text{d}^6 \ \Rightarrow \ \boxed{1 \ 1 \ 1 \ 1} \ \Rightarrow \ \mu = 0$$

The correct order is $[MnCl_A]^{2-} > [CoCl_A]^{2-} > [Fe(CN)_E]^{4-}$

22.	How many hydrogen bonded water molecules are present in blue vitriol?						
	(1) Zero	(2)	One	(3)	Four	(4)	Five
Sol.	Answer (2)						
	$Blue\;vitriol \Rightarrow CuSO_4 \cdot$	5H ₂ O					
	In this structure, there	e is 1 hydr	ogen bonded wate	er molecu	ile (fact).		
23.	If Δ_{0} is the crystal field then ligand is called w			d and P is	the energy requi	red for elec	ctron pairing in an orbital,
	(1) $\Delta_0 > P$	(2)	$\Delta_0 \le P$	(3)	$\Delta_0 = P$	(4)	Unpredictable
Sol.	Answer (2)						
	If pairing energy (p) is of metal ion and the				e ligand would r	not be able	e to pair the d-electrons
24.	The complex compour	nd bearing	square planar geo	metry is			
	(1) Ni(CO) ₄	(2)	$[Ni(CN)_4]^{2-}$	(3)	[Mn(CN) ₆] ³⁻	(4)	[MnCl ₄] ²⁻
Sol.	Answer (2)						
	$[Ni(CN)_4]^{2-} \Rightarrow 3d^8 =$	→ 1 1	11 11				,
	=	⇒ dsp²	()				5
	=	⇒ Square	planar			1:0	
25.	The complex compou	nd having	maximum magneti	c moment	tis	130	16
	(1) [CoF ₆] ³⁻	(2)	[Cr(NH ₃) ₆] ³⁺	(3)	[FeF ₆] ³⁻	(4)	[Mn(CN) ₆] ^{4–}
Sol.	Answer (3)				1/600	(4)	
	$[{\sf FeF}_6]^{3-} \Rightarrow {\sf Fe}^{3+} \Rightarrow$	$3d^5 \Rightarrow $	1 1 1 1	1 (1	⁵⁻ is a weak field		
	\Rightarrow Five unpaired elec	ctrons	A 9/73		, Jugalilo		
	$\Rightarrow \mu = \sqrt{5(5+2)} BM$	$=\sqrt{35} BM$	/I = 5.92 BM		KashEde		
26.	$CFSE(\Delta_0) \text{ for metal io}$	n in <i>d</i> 7 con	figuration in prese	nce of str	ong ligand field is	3	
	(1) $-0.6 \Delta_0$	(2)	$-0.8 \Delta_0$	(3)	$-1.6 \Delta_0$	(4)	$-1.8\Delta_0$
Sol.	Answer (4)		The O	nce of stro (3)			
	d ⁷ configuration in str	ong field li	gand,				
	1 1 1 1	$ \Rightarrow \boxed{1}$	$\begin{array}{ c c c }\hline 1 & 1 & 1 \\\hline t_{2g} & e_g \end{array}$				
	CFSE = (-0.4 × 6 +	0.6)Δ _o	-2g G g				
	= (-2.4 + 0.6)/	. 0					
	$= -1.8 \Delta_0$	•					

27. In case of high spin situation

- (1) $\Delta_0 = P$

- (2) $\Delta_0 > P$ (3) $\Delta_0 < P$ (4) $\Delta_0 . P = 1$

Sol. Answer (3)

In case of high spin complexes $\Delta_{\mathbf{0}}$ < P.

- 28. The EAN of Fe in $[Fe(CN)_6]^{3-}$ is
 - (1) 26

(2) 35

(3) 38

(4) 29

Sol. Answer (2)

$$EAN = 26 - 3 + 6 \times 2 = 35$$

- 29. Which of the following is not π -acid ligand?
 - (1) CO

(2) F⁻

(3) C₂H₄

(4) NO+

Sol. Answer (2)

 F^- is not π -acid ligand.

- 30. The complex compound in which metal is not present in zero oxidation state?
 - (1) $Mn_2(CO)_{10}$

(2) [Ni(CO)₄]

(3) $[Cr(C_6H_6)_2]$

(4) $K[PtCl_3(C_2H_4)]$

Sol. Answer (4)

In K[PtCl₃(C_2H_4)], Cl⁻ is in -1 oxidation state and here Pt is in +4 state.

SECTION - B

Previous Years Questions

1. What is the correct electronic configuration of the central atom in $K_4[Fe(CN)_6]$ based on crystal field theory?

[NEET-2019]

- (1) $t_{2q}^4 e_q^2$
- (2) $t_{2q}^6 e_q^0$
- (3) $e^3 t_2^3$
- (4) $e^4 t^2$

Sol. Answer (2)

K₄[Fe(CN)₆]

Fe ground state: [Ar]3d64s2

Fe²⁺: 3d⁶4s⁰

2. Iron carbonyl, Fe(CO)₅ is

[NEET-2018]

- (1) Tetranuclear
- (2) Mononuclear
- (3) Dinuclear
- (4) Trinuclear

Sol. Answer (2)

Based on the number of metal atoms present in a complex, they are classified into mononuclear, dinuclear, trinuclear and so on.

eg: Fe(CO)₅: mononuclear

Co₂(CO)₈: dinuclear Fe₃(CO)₁₂: trinuclear

Hence, option (2) should be the right answer.

The type of isomerism shown by the complex [CoCl₂(en)₂] is

[NEET-2018]

(1) Geometrical isomerism

Coordination isomerism

(3) Linkage isomerism

Ionization isomerism

Sol. Answer (1)

In [CoCl₂(en)₂], Coordination number of Co is 6 and this compound has octahedral geometry.

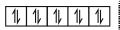
Trans-form (optically inactive)

cis-form (optically active)

- As per given option, type of isomerism is geometrical isomerism.
- The geometry and magnetic behaviour of the complex [Ni(CO)₄] are

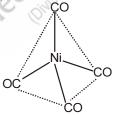
[NEET-2018]

- (1) Square planar geometry and diamagnetic
- (3) Tetrahedral geometry and paramagnetic
- Tetrahedral geometry and diamagnetic
- Square planar geometry and paramagnetic


Sol. Answer (2)

Ni(28): [Ar]3d8 4s2

· CO is a strong field ligand


Configuration would be:

For, four 'CO'-ligands hybridisation would be sp3 and thus the complex would be diamagnetic and of tetrahedral geometry.

5. Match the metal ions given in Column I with the spin magnetic moments of the ions given in Column II and assign the correct code. [NEET-2018]

Column I Column II Co³⁺ $\sqrt{8}$ BM Cr3+ ii. $\sqrt{35}$ BM Fe³⁺ iii. $\sqrt{3}$ BM

d.
$$Ni^{2+}$$
 iv. $\sqrt{24}$ BM v. $\sqrt{15}$ BM e c d (1) iv v ii ii iv (2) i ii iii iii iv (4) iv i ii iii iii iii iii

$$Co^{3+} = [Ar] 3d^6$$
, Unpaired $e^-(n) = 4$

Spin magnetic moment =
$$\sqrt{4(4+2)} = \sqrt{24}$$
 BM

$$Cr^{3+} = [Ar] 3d^3$$
, Unpaired e⁻(n) = 3

Spin magnetic moment =
$$\sqrt{3(3+2)} = \sqrt{15}$$
 BM

$$Fe^{3+} = [Ar] 3d^5$$
, Unpaired $e^-(n) = 5$

Spin magnetic moment =
$$\sqrt{5(5+2)} = \sqrt{35}$$
 BM

$$Ni^{2+} = [Ar] 3d^8$$
, Unpaired e⁻(n) = 2

Spin magnetic moment =
$$\sqrt{2(2+2)} = \sqrt{8}$$
 BM

- 6. Correct increasing order for the wavelengths of absorption in the visible region for the complexes of Co³⁺ is **[NEET-2017]**
 - (1) $[Co(en)_3]^{3+}$, $[Co(NH_3)_6]^{3+}$, $[Co(H_2O)_6]^{3+}$
- (2) $[Co(H_2O)_6]^{3+}$, $[Co(en)_3]^{3+}$, $[Co(NH_3)_6]^{3+}$
- (3) $[Co(H_2O)_6]^{3+}$, $[Co(NH_3)_6]^{3+}$, $[Co(en)_3]^{3+}$
- (4) $[Co(NH_3)_6]^{3+}$, $[Co(en)_3]^{3+}$, $[Co(H_2O)_6]^{3+}$

Sol. Answer (1)

The order of the ligand in the spectrochemical series $\rm H_2O < NH_3 < en$

Hence, the wavelength of the light observed will be in the order $[Co(H_2O)_6]^{3+} < [Co(NH_3)_6]^{3+} < [Co(en)_3]^{3+}$

Thus, wavelength absorbed will be in the opposite order i.e., $[Co(en)_3]^{3+}$, $[Co(NH_3)_6]^{3+}$, $[Co(H_2O)_6]^{3+}$

- 7. The correct order of the stoichiometries of AgCl formed when $AgNO_3$ in excess is treated with the complexes : $CoCl_3 \cdot 6NH_3$, $CoCl_3 \cdot 5NH_3$, $CoCl_3 \cdot 4NH_3$ respectively is **[NEET-2017]**
 - (1) 1 AgCl, 3 AgCl, 2 AgCl

(2) 3 AgCl, 1 AgCl, 2 AgCl

(3) 3 AgCl, 2 AgCl, 1 AgCl

(4) 2 AgCl, 3 AgCl, 1 AgCl

Sol. Answer (3)

Complexes are respectively $[\mathrm{Co(NH_3)_6}]\mathrm{Cl_3}$, $[\mathrm{Co(NH_3)_5}\mathrm{Cl}]\mathrm{Cl_2}$ and $[\mathrm{Co(NH_3)_4}\mathrm{Cl_2}]\mathrm{Cl_3}$

8. An example of a sigma bonded organometallic compound is

[NEET-2017]

- (1) Ruthenocene
- (2) Grignard's reagent
- (3) Ferrocene
- (4) Cobaltocene

Sol. Answer (2)

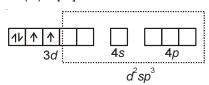
Grignard's reagent *i.e.*, RMgX is σ-bonded organometallic compound.

9. Pick out the correct statement with respect [Mn(CN)₆]³⁻

[NEET-2017]

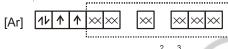
- (1) It is sp^3d^2 hybridised and octahedral
- (2) It is sp^3d^2 hybridised and tetrahedral
- (3) It is d^2sp^3 hybridised and octahedral
- (4) It is dsp² hybridised and square planar

Sol	. Answer	(3)


[Mn(CN)₆]³⁻

 $Mn(III) = [Ar]3d^4$

CN- being strong field ligand forces pairing of electrons


This gives $t_{2g}^4 e_g^0$

∴ Mn(III) = [Ar]

- : Coordination number of Mn = 6
- :. Structure = octahedral

 $[Mn(CN)_6]^{3-} =$

 d^2sp^3

10. The correct increasing order of trans-effect of the following species is

[NEET(Phase-2)-2016]

(1) $NH_3 > CN^- > Br^- > C_6H_5^-$

(2) $CN^- > C_6H_5^- > Br^- > NH_3$

(3) $Br^- > CN^- > NH_3 > C_6H_5^-$

(4) $CN^- > Br^- > C_6H_5^- > NH_3$

Sol. Answer (2)

Fact.

- 11. Which of the following has longest C O bond length? (Free C O bond length CO is 1.128 Å) [NEET-2016]
 - (1) $[Mn(CO)_6]^+$

(2) Ni(CO)₄

(3) [Co(CO)₄][⊖]

(4) [Fe(CO)₄]²⁻

Sol. Answer (4)

Due to increase in -ve charge on metal atom bond length of C - O bond increases.

12. The name of complex ion, $[Fe(CN)_{e}]^{3-}$ is

[Re-AIPMT-2015]

(1) Tricyanoferrate (III) ion

(2) Hexacyanidoferrate (III) ion

(3) Hexacyanoiron (III) ion

(4) Hexacyanitoferrate (III) ion

Sol. Answer (2)

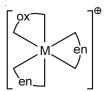
[Fe(CN)₆]³⁻: Hexacyanidoferrate(III) ion.

13. The hybridization involved in complex $[Ni(CN)_{a}]^{2-}$ is (At. No. Ni = 28)

[Re-AIPMT-2015]

- (1) d^2sp^2
- (2) d^2sp^3
- (3) dsp^2
- (4) sp^3

Sol. Answer (3)


The shape of $[Ni(CN)_4]^{2-}$ is square planar, where CN^- is a strong ligand and the hybridisation of Ni is dsp^2 .

- 14. The sum of coordination number and oxidation number of the metal M in the complex $[M(en)_2(C_2O_4)]Cl$ (where en is ethylenediamine) is [Re-AlPMT-2015]
 - (1) 7

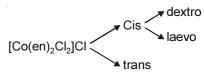
(2) 8

(3) 9

(4) 6

Coordination number of M is 6.

Oxidation state of M is 3.

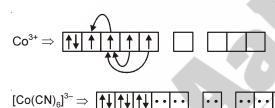

- .: Sum of coordination number and oxidation number of the metal M is 9.
- 15. Number of possible isomers for the complex [Co(en)₂Cl₂]Cl will be (en = ethylenediamine) [Re-AIPMT-2015]
 - (1) 3

(2) 4

(3) 2

(4)

Sol. Answer (1)



16. Which of these statements about [Co(CN)₆]³⁻ is true?

[AIPMT-2015]

- (1) [Co(CN)₆]³⁻ has no unpaired electrons and will be in a high-spin configuration
- (2) [Co(CN)₆]³⁻ has no unpaired electrons and will be in a low-spin configuration
- (3) [Co(CN)₆]³⁻ has four unpaired electrons and will be in a low-spin configuration
- (4) [Co(CN)₆]³⁻ has four unpaired electrons and will be in a high-spin configuration

Sol. Answer (2)

- 17. Cobalt(III) chloride forms several octahedral complexes with ammonia. Which of the following will not give test for chloride ions with silver nitrate at 25°C?

 [AIPMT-2015]
 - (1) CoCl₃.6NH₃
- (2) CoCl₃.3NH₃
- (3) CoCl₃.4NH₃
- (4) $CoCl_3.5NH_3$

Sol. Answer (2)

The compound will be [Co(NH₃)₃Cl₃]

- 18. Magnetic moment 2.84 B.M. is given by (At. nos, Ni = 28, Ti = 22, Cr = 24, Co = 27) [AIPMT-2015]
 - (1) Co²⁺

(2) Ni²⁺

- (3) Ti^{3+}
- (4) Cr²

Sol. Answer (2)

Magnetic moment $\mu = \sqrt{n(n+2)}$ B.M.

It has two unpaired electrons.

Oolu	tions of 7tosigninent (Level	11)				Occidi	riation compounds 23		
19.	Among the following complexes the one which shows zero crystal field stabilization energy (CFSE) is								
							[AIPMT-2014]		
	(1) $[Mn(H_2O)_6]^{3+}$	(2)	[Fe(H ₂ O) ₆] ³⁺	(3)	$[Co(H_2O)_6]^{2+}$	(4)	[Co(H ₂ O) ₆] ³⁺		
Sol.	Answer (2)								
	$Fe^{+3} = d^5 = t_{2g}^3 e_g^2$, CFSE	= 0.							
20.	Which of the following cor	nplexes	s is used to be as an	antica	ncer agent?		[AIPMT-2014]		
	(1) mer - $[Co(NH_3)_3CI_3]$	(2)	cis - $[PtCl_2(NH_3)_2]$	(3)	cis - K ₂ [PtCl ₂ Br ₂]	(4)	Na ₂ CoCl ₄		
Sol.	Answer (2)								
	Fact.								
21.	A magnetic moment of 1.7	73 BM v	vill be shown by one	among	the following		[NEET-2013]		
	(1) [Ni(CN) ₄] ²⁻	(2)	TiCl ₄	(3)	[CoCl ₆] ⁴⁻	(4)	$[Cu(NH_3)_4]^{2+}$		
Sol.	Answer (4)								
	Magnetic moment $\mu = \sqrt{r}$	n(n + 2)	[n = number of ur	npaired	electrons]				
	$\Rightarrow \sqrt{n(n+2)} = 1.732$				46		/		
	⇒ n = 1		(15		
	In case of $[Cu(NH_3)_4]^{2+} \Rightarrow 0$	Cu ²⁺ ⇒	$3d^9 \Rightarrow \boxed{1 1 1 1}$	1 1	\Rightarrow One unpaired	electron	\Rightarrow n = 1 \Rightarrow μ = 1.73 BM		
22.	An excess of AgNO ₃ is a number of moles of AgCl p			solution	on of dichlorotetra	aquachi	romium(III) chloride. The [NEET-2013]		
	(1) 0.002	(2)	0.003	(3)	0.01	(4)	0.001		
Sol.	Answer (4)		. 6.		L. P. zijonia.				
23.	Which one of the following	j is an c	outer orbital complex	and ex	hibits paramagneti	c behav	viour ?		
					Kasir		[AIPMT (Prelims)-2012]		
	(1) $[Cr(NH_3)_6]^{3+}$	(2)	[Co(NH ₃) ₆] ³⁺	(3)	[Ni(NH ₃) ₆] ²⁺	(4)	$[Zn(NH_3)_6]^{2+}$		
Sol.	Answer (3)		A COLINISI	Ollis					
	$[{\rm Ni}({\rm NH_3})_6]^{2^+} \Rightarrow \ {\rm Ni}^{2^+} \ \Rightarrow$	3d ⁸ ⇒	1 1 1 1	1 fo	rms outer orbital c	omplex			
	\Rightarrow Two unpaired electron	ns ⇒ Pa	aramagnetic behavio	our					
24.	Red precipitate is obtained when ethanol solution of dimethylglyoxime is added to ammoniacal Ni(II). Which of the following statements is not true ? [AIPMT (Mains)-2012]								
	(1) Red complex has a so	quare pl	anar geometry	(2)	Complex has sym	metrica	al H-bonding		
	(3) Red complex has a te	trahedr	al geometry	(4)	Dimethylglyoxime	functio	ns as bidentate ligand		
					dimethylglyoxime	e = H ₃ C H ₃ C	C-C = N OH		

In this process [Ni(DMG)₂] complex is formed and the structure of this complex is square planar due to dsp² hybridization

- ⇒ Statement (3) is incorrect.
- 25. Low spin complex of d6-cation in an octahedal field will have the following energy

 $(\Delta_0 = \text{crystal field splitting energy in an octahedral field, P = electron pairing energy)}$

[AIPMT (Mains)-2012]

(1)
$$\frac{-12}{5}\Delta_0 + P$$

(2)
$$\frac{-12}{5}\Delta_0 + 3P$$
 (3) $\frac{-2}{5}\Delta_0 + 2P$ (4) $\frac{-2}{5}\Delta_0 + P$

(3)
$$\frac{-2}{5}\Delta_0 + 2P$$

$$(4) \qquad \frac{-2}{5} \Delta_o + P$$

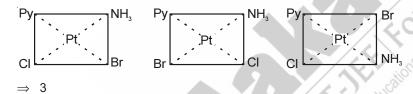
Sol. Answer (2)

$$\text{Low spin d}^6 \Rightarrow \begin{array}{|c|c|c|} \hline & & & & & & \\ \hline \downarrow \downarrow & & & & \downarrow \\ \hline \downarrow \downarrow & & & \downarrow \downarrow \\ \hline \end{array}$$

There are 3 pairs ⇒ Pairing energy = 3P

$$CFSE = -\frac{2}{5} \times 6 = -\frac{12}{5} \Delta_0$$

$$\therefore \text{ Total energy} = -\frac{12}{5}\Delta_0 + 3P$$


26. The complex, [Pt (Py) (NH₃) Br Cl] will have how many geometrical isomers?

(AIPMT (Prelims)-2011]

(2)

Sol. Answer (2)

Geometrical isomers, possible for the complex, [Pt (Py) (NH3) Br Cl]

- 27. The complexes $[Co(NH_3)_6][Cr(CN)_6]$ and $[Cr(NH_3)_6][Co(CN)_6]$ are the examples of which type of isomerism? [AIPMT (Prelims)-2011]
 - Geometrical isomerism

Linkage isomerism

(3) Ionization isomerism

Coordination isomerism

Sol. Answer (4)

The given species have co-ordination isomerism.

28. The d-electron configurations of Cr²⁺, Mn²⁺, Fe²⁺ and Co²⁺ are d⁴, d⁵, d⁶ and d⁷ respectively. Which one of the following will exhibit minimum paramagnetic behaviour? (At. Nos. Cr = 24, Mn = 25, Fe = 26, Co = 27)

[AIPMT (Prelims)-2011]

(1)
$$[Cr(H_2O)_6]^{2+}$$

(2)
$$[Mn (H_2O)_6]^{2}$$

$$(2) \quad [\mathsf{Mn} \; (\mathsf{H}_2\mathsf{O})_6]^{2^+} \qquad \qquad (3) \quad [\mathsf{Fe} \; (\mathsf{H}_2\mathsf{O})_6]^{2^+} \qquad \qquad (4) \quad [\mathsf{Co}(\mathsf{H}_2\mathsf{O})_6]^{2^+}$$

(4)
$$[Co(H_2O)_6]^{2}$$

Sol. Answer (4)

H₂O is a moderate field ligand

$$Cr^{2^+} \Rightarrow 3d^4 \Rightarrow \boxed{1 \ 1 \ 1 \ 1} \Rightarrow \text{Four unpaired electrons}$$
 $Mn^{2^+} \Rightarrow 3d^5 \Rightarrow \boxed{1 \ 1 \ 1 \ 1} \Rightarrow \text{Five unpaired electrons}$

 \Rightarrow Will not absorb visible light

(1) $-1.8 \Delta_0$

33. Crystal field stabilization energy for high spin d4 octahedral complex is

(2) $-1.6 \Delta_0 + P$

[AIPMT (Prelims)-2010]

(4) $-0.6 \Delta_0$

Solu	tions of Assignment (Level-II)	Coord	ination Compounds	27
	$\text{Fe}^{2+} \Rightarrow 3\text{d}^6 \Rightarrow \fbox{1 1 1 1 1} \Rightarrow \text{Four unpaired electrons}$			
	$Co^{2+} \Rightarrow 3d^7 \Rightarrow 1 1 1 1 1 \Rightarrow \text{Three unpaired electrons}$			
	More magnetic moment more paramagnetic behaviour			
	⇒ Co ²⁺ state will exhibit minimum paramagnetic behaviour.			
29.	Of the following complex ions, which is diamagnetic in nature?		[AIPMT (Prelims)-	2011]
	(1) $[\text{Co F}_6]^{3-}$ (2) $[\text{Ni Cl}_4]^{2-}$ (3) $[\text{Ni (CN)}_4]^{2-}$	(4)	[Cu Cl ₄] ²⁻	
Sol.	Answer (3)			
	$[\mathrm{Ni}(\mathrm{CN})_4]^{2^-} \Rightarrow \mathrm{Ni}^{2^+} \Rightarrow 3\mathrm{d}^8 \Rightarrow \boxed{\boxed{1 \ \ 1 \ \ 1} \ \boxed{1}}$			
	⇒ Completely paired			
	⇒ Diamagnetic in nature.			
30.	Which of the following complex compounds will exhibit highest paramagnetic bell Co = 27, Zn = 30)	naviour	? (At. no. Ti = 22, Cr [AIPMT (Mains)-	
	(1) $[Co(NH_3)_6]^{3+}$ (2) $[Zn(NH_3)_6]^{2+}$ (3) $[Ti(NH_3)_6]^{3+}$	(4)	[Cr(NH ₃) ₆] ³⁺	
Sol.	Answer (4)	/	11/2	
	$Co^{3+} \Rightarrow 3d^6 \Rightarrow $	Bill	ed)	
	$Zn^{2+} \Rightarrow 3d^{10} \Rightarrow$ completely paired \Rightarrow Zero unpaired electrons	Elin		
	$Co^{3+} \Rightarrow 3d^6 \Rightarrow \begin{array}{ c c c c }\hline 1 & 1 & 1 & 0 & 0 \\ \hline Zn^{2+} \Rightarrow 3d^{10} \Rightarrow completely \ paired \Rightarrow Zero \ unpaired \ electrons \\ \hline Ti^{3+} \Rightarrow 3d^1 \Rightarrow \begin{array}{ c c c c }\hline 1 & 1 & 1 & 0 \\ \hline \end{array}$	Con		
	$Cr^{3+} \Rightarrow 3d^3 \Rightarrow \boxed{1 \ 1} \qquad \qquad \Rightarrow Three \text{ unpaired electron} \Rightarrow Highest parts of the second s$	arama	gnetic behaviour.	
31.	Which of the following carbonyls will have the strongest $\mathbf{C}-\mathbf{O}$ bond ?		[AIPMT (Mains)-	2011]
	Which of the following carbonyls will have the strongest C – O bond ? $ (1) \ [\ V(CO)_6]^- \qquad \qquad (2) \ [\ Fe(CO)\]_5 \qquad \qquad (3) \ [\ Mn(CO)_6]^+ $ Answer (3)	(4)	$[Cr(CO)_6]$	
Sol.	Answer (3)			
	$Mn(CO)_6^+$ will have the strongest C-O bond because in this case C-O bond have			
32.	Which of the following complex ion is not expected to absorb visible light?		[AIPMT (Prelims)-	2010]
	(1) $[Ni(CN)_4]^{2-}$ (2) $[Cr(NH_3)_6]^{+3}$ (3) $[Fe(H_2O)_6]^{2+}$	(4)	[Ni(H ₂ O) ₆] ²⁺	
Sol.	Answer (1)		2 10	
	In $[Ni(CN)_4]^{2-}$, the scenario is like $Ni^{2+} \Rightarrow 3d^8 \Rightarrow \boxed{1 \ 1 \ 1 \ 1}$			
	\Rightarrow No possibility of transition			

Aakash Educational Services Limited - Regd. Office: Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph. 011-47623456

(3) $-1.2 \Delta_0$

Sol.	Answer	(4

High spin d⁴ configuration ⇒

 \therefore CFSE = 3 × (-0.4) + 1 × 0.6 Δ_0 $= -1.2 + 0.6 \Delta_0$ $= -0.6 \Delta_{0}$

34. The existence of two different coloured complexes with the composition of [Co(NH₂)₄Cl₂] * is due to

[AIPMT (Prelims)-2010]

Linkage isomerism

Geometrical isomerism

(3) Coordination isomerism

Ionization isomerism

Sol. Answer (2)

35. Which one of the following complexes is not expected to exhibit isomerism?

[AIPMT (Mains)-2010]

- (1) $[Ni(NH_3)_4 (H_2O)_3]^{2+}$
- (2) [Pt (NH₂)₂ Cl₂]
- (3) [Ni (NH₂)₂Cl₂]
- (4) $[Ni(en)_3]^{2+}$

Sol. Answer (3)

36. Out of TiF_6^{2-} , COF_6^{3-} , Cu_2Cl_2 and $NiCl_4^{2-}$ (Z of Ti = 22, Co = 27, Cu = 29, Ni = 28) the colourless species are

[AIPMT (Prelims)-2009]

- (1) Cu_2Cl_2 and NiCl_4^{2-} (2) TiF_6^{2-} and Cu_2Cl_2 (3) CoF_6^{3-} and NiCl_4^{2-} (4) TiF_6^{2-} and CoF_6^{3-}

Sol. Answer (2)

37. Which of the following does not show optical isomeism?

[AIPMT (Prelims)-2009]

(1) [Co(NH₃)₃Cl₃]⁰

[Co(en)Cl₂(NH₂)₂]+

(3) [Co(en)₃]³⁺

[Co(en)₂Cl₂]⁺ (en=ethylenediamine)

Sol. Answer (1)

[MA₂B₂] type complexes do not show optical isomerism.

38. Which of the following complex ions is expected to absorb visible light? (At. No. Zn=30, SC=21, Ti = 22, Cr = 24)

[AIPMT (Prelims)-2009]

- (1) $[Ti(en)_2(NH_3)_2]^{4+}$
- (2) $[Cr(NH_3)_6]^{3+}$ (3) $[Zn(NH_3)_6]^{2+}$
- (4) [Sc(H₂O)₃(NH₃)₃]³⁺

Sol. Answer (2)

In Zn²⁺, the t_{2a} and e_a orbitals are completely filled \Rightarrow no transition \Rightarrow no absorption of visible light while in

 $Cr^{3+} \Rightarrow 3d^3 \Rightarrow transition will take place.$

39. Which of the following complexes exhibits the highest paramagnetic behaviour ? (Where gly = glycine, en = ethylenediamine and bpy = bipyridyl moities). (At. number Ti = 22, V = 23, Fe = 26, Co = 27)

[AIPMT (Prelims)-2008]

- (1) $[Ti(NH_2)_a]^{3+}$
- (2) $[V(gly)_2(OH)_2(NH_3)_2]^+$ (3) $[Fe(en)(bpy)(NH_3)_2]^{2+}$ (4) $[Co(OX)_2(OH)_2]^-$

Sol. Answer (4)

 In which of the following coordination entities the magnitude of Δ_o(CFSE in octahedral field) will be maximum (at. no. Co = 27)? [AIPMT (Prelims)-2008]

- (1) $[Co(C_2O_4)_3]^{3-}$
- (2) [Co(H₂O)₆]³⁺
- (3) $[Co(NH_3)_6]^{3+}$
- (4) [Co(CN)_c]³-

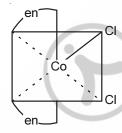
$$\begin{split} [\text{Co(CN)}_6]^{3-} &\Rightarrow \text{Co}^{3+} \ \Rightarrow 3\text{d}^6 \ \Rightarrow \boxed{1 \ 1 \ 1} \boxed{1} \\ \text{CFSE} &= -0.4 \times 6 \ \Delta_0 \\ &= -2.4 \ \Delta_0 \end{split}$$

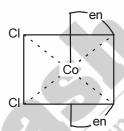
- 41. Which one of the following aqua complexes will exhibit the minimum paramagnetic behaviour? Atomic number. Cr = 24, Mn = 25, Fe = 26, Ni = 28) [AIPMT (Prelims)-2007]
 - (1) $[Cr(H_2O)_6]^{2+}$
- (2) $[Mn(H_2O)_6]^{2+}$
- (3) [Fe(H₂O)₆]²⁺
- (4) $[Ni(H_2O)_6]^{2+}$

Sol. Answer (4)

42. Which of the following will give a pair of enantiomorphs?

[AIPMT (Prelims)-2007]


(1) [Pt(NH₃)₄][PtCl₆]


 $(2) \quad [Co(NH_3)_4Cl_2]NO_2$

(3) $[Cr(NH_3)_6][Co(CN)_6]$

(4) $[Co(en)_2 Cl_2]Cl$ (en = NH₂CH₂CH₂NH₂)

Sol. Answer (4)

43. [Co(NH₃)₄(NO₂)₂]Cl exhibits

[AIPMT (Prelims)-2006]

- (1) Linkage isomerism, ionization isomerism and optical isomerism
- (2) Linkage isomerism, ionization isomerism and geometrical isomerism
- (3) Ionization isomerism, geometrical isomerism and optical isomerism
- (4) Linkage isomerism, geometrical isomerism and optical isomerism

Sol. Answer (2)

[Co(NH₃)₄(NO₂)₂]Cl can show linkage, ionization and geometrical isomerism.

- 44. [Cr(H₂O)₆]Cl₃ (at. no of Cr = 24) has a magnetic moment of 3.83 BM, the correct distribution of 3d electrons in the chromium of the complex is [AIPMT (Prelims)-2006]
 - (1) $3d_{x^2-v^2}^1 3d_{z^2}^1, 3d_{xz}^1$

(2) $3d_{xy}^{1}, 3d_{x^{2}-y^{2}}^{1}, 3d_{yz}^{1}$

(3) $3d_{xy}^{1}, 3d_{zy}^{1}, 3d_{xz}^{1}$

(4) $3d_{xy}^{1}, 3d_{yz}^{1}, 3d_{z^{2}}^{1}$

Sol. Answer (3)

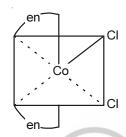
 μ = 3.83 BM \Rightarrow Number of unpaired electrons = 3

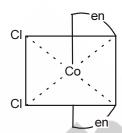
- 45. Which one of the following is an inner orbital complex as well as diamagnetic in behaviour? (Atomic No. : Zn = 30, Cr = 24, Co = 27, Ni = 28) [AIPMT (Prelims)-2005]
 - (1) $[Zn(NH_a)_a]^{2+}$
- (2) $[Cr(NH_3)_6]^{3+}$
- (3) [Co(NH₂)₆]³⁺
- (4) $[Ni(NH_3)_6]^{2+}$

$$[\operatorname{Co}(\operatorname{NH_3})_6]^{3^+} \Rightarrow \operatorname{Co}^{3^+} \Rightarrow \operatorname{3d^6} \Rightarrow \boxed{1 \quad 1 \quad 1 \quad 0 \quad 0} \qquad \boxed{O} \qquad \boxed{$$

- \Rightarrow Zero unpaired electrons \Rightarrow Diamagnetic
 - ⇒ Low spin inner-orbital complex
- 46. Which one of the following is expected to exhibit optical isomerism? (en = ethylenediamine)

[AIPMT (Prelims)-2005]


(1) cis -[Pt $(NH_3)_2CI_2$]


(2) trans -[Co (en), Cl,]+

(3) trans -[Pt (NH₂)₂ Cl₂]

(4) cis -[Co(en), Cl₂]+

Sol. Answer (4)

- 47. A co-ordination complex compound of cobalt has the molecular formula containing five ammonia molecules, one nitro group and two chlorine atoms for one cobalt atom. One mole of this compound produces three mole ions in an aqueous solution. On reacting this solution with excess of AgNO₃ solution, we get two moles of AgCl as precipitate. The ionic formula for this complex would be
 - (1) $[Co(NH_3)_5(NO_2)] Cl_2$

(2) $[Co(NH_3)_5Cl][Cl(NO_2)]$

(3) $[Co(NH_3)_4(NO_2)CI](NH_2)CI$

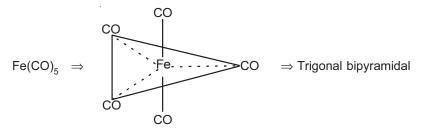
(4) $[Co(NH_3)_5][(NO_2)_2Cl_2]$

Sol. Answer (1)

- 2 moles of AgCI means there are 2CI⁻ ions in the primary valency.
- S, $[Co(NH_3)_5(NO_2)]Cl_2$.
- 48. IUPAC name of $[Pt(NH_3)_3 (Br) (NO_2)CI] CI$ is
 - (1) Triamminebromochloronitroplatinum (IV) chloride (2) Triamminebromonitrochloroplatinum (IV) chloride
 - (3) Triamminechlorobromonitroplatinum (IV) chloride
- 1) Triamminenitrochlorobromoplatinum (IV) chloride

Sol. Answer (1)

IUPAC name of [Pt(NH₃)₃ (Br) (NO₂)Cl] Cl = Triamminebromochloronitroplatinum (IV) chloride.


- 49. Shape of Fe(CO)₅ is
 - (1) Octahedral

(2) Square planar

(3) Trigonal bipyramidal

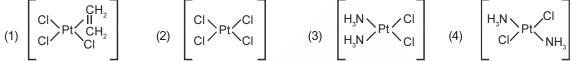
(4) Square pyramidal

Sol. Answer (3)

50.	0. Which of the following will give maximum number of isomers?						
	(1) $[Co(NH_3)_4Cl_2]$	(2) [N	Ni(en) (NH ₃) ₄] ²⁺	(3)	[Ni (C ₂ O ₄) (en) ₂] ²⁻	(4)	[Cr (SCN) ₂ (NH ₃) ₄] ⁺
Sol.	Answer (4)						
	$ [\mathrm{Cr} \; (\mathrm{SCN})_2 \; (\mathrm{NH_3})_4]^+ \; \mathrm{is} \; [\mathrm{Maximum \; number \; of \; isomethic \; }]_4 $		ype complex and he	ere S	CN ⁻ is an ambide	ntate I	igand. So, this will give
51.	Coordination number of Ni	in [Ni (C ₂ O ₄) ₃] ^{4–} is				
	(1) 3	(2) 6		(3)	4	(4)	2
Sol.	Answer (2)						
	[Ni $(C_2O_4)_3$] ^{4-,} $C_2O_4^{2-}$ is a	bidenta	ate ligand. So, it forn	ns oc	tahedral complex w	ith co-	ordination number 6.
52.	Which of the following orga	anometa	allic compounds is σ	and a	π bonded?		
	(1) $[Fe(\eta^5 - C_5H_5)_2]$	(2) K	$[PtCl_3(n^2 - C_2H_4)]$	(3)	[Co(CO) ₅ NH ₃] ²⁺	(4)	Fe(CH ₃) ₃
Sol.	Answer (3)		·				
	[Co(CO) ₅ NH ₃] ²⁺ forms σ ar	nd π bor	nded complexes (str	ucture	e).		
53.	 (1) Ni(CO)₄ - tetrahedral, p (2) Ni(CN)₄⁻² - square plar (3) Ni(CO)₄ - tetrahedral, p 	oaramag nar, diar diamagi	nagnetic netic			il	ins
	(4) $[Ni(Cl)_4]^{-2}$ – tetrahedral	l, param	nagnetic				168
501.	Answer (1)	a a tura				Lim	
54	Ni(CO) ₄ is diamagnetic in r Atomic number of Cr and F		rosportivoly 24 and 1	26 w/	nich of the following	် ic nar	ramagnotic?
54.	(1) $[Cr(CO)_6]$		espectively 24 and 2 [[] e(CO) ₅]	(3)	/ / A CO.	(4)	[Cr(NH ₃) ₆] ³⁺
Sol.	Answer (4)	(-) [i	0(00)51	(0)	[1 0(011)6]	(4)	[01(14113)6]
	$[\operatorname{Cr}(\operatorname{NH}_3)_6]^{3+} \Rightarrow \operatorname{Cr}^{3+} \Rightarrow 3d^3$	⇒ Thre	ee unpaired electrons	$s\RightarrowF$	Paramagnetic.		
55.	The hypothetical complex of			_	V.	preser	nted as
	(1) [CoCl(NH ₃) ₃ (H ₂ O) ₂]Cl ₂			(2)	[Co(NH ₃) ₃ (H ₂ O)Cl ₃		
	(3) $[Co(NH_2)_3(H_2O)_2CI]$		1:00	(4)	[Co(NH ₃) ₃ (H ₂ O) ₃]C	3	
Sol.	Answer (1)		O inigio				
	Chloro diaquatriammine co	balt (III)	$chloride \Rightarrow [CoCl(N$	H ₃) ₃ (F	$H_2O)_2$] CI_2		
56.	According to IUPAC nome	nclature	sodium nitroprussion	de is ı	named as		
	(1) Sodium nitroferricyanid	е		(2)	Sodium nitroferroc	yanide	
	(3) Sodium pentacyanonitr	osyl fer	rate (II)	(4)	Sodium pentancya	nonitro	osyl ferrate (III)
Sol.	Answer (3)						
	Sodium nitroprusside \Rightarrow N						
57.	The number of unpaired el		in the complex ion		_		
	(1) 2	(2) 3		(3)	4	(4)	Zero
Sol.	Answer (3)						
	$[CoF_6]^{3-} \Rightarrow Co^{3+} \Rightarrow 3d^6$	\Rightarrow 1	1 1 1 1				
	⇒ Four unpaired electron	S					

- 58. The anion of acetylacetone (acac) forms Co(acac)₃ chelate with Co³⁺. The rings of the chelate are
 - (1) Three membered
- (2) Five membered
- (3) Four membered
- (4) Six membered

(acac) forms six membered complex (structure).

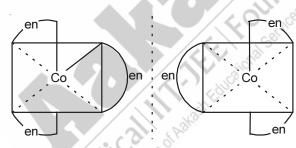

- 59. Which one of the following octahedral complexes will not show geometric isomerism? (A and B are monodentate ligands)
 - (1) [MA₂B₄]
- (2) [MA₂B₂]
- $(3) [MA_4B_3]$
- $[MA_5B]$

Sol. Answer (4)

[MA₅B] will not show geometrical isomerism.

60. Which of the following is considered to be an anticancer species?

$$(1) \begin{bmatrix} CI \\ CI \end{bmatrix} Pt \begin{bmatrix} CH_2 \\ CH_2 \\ CI \end{bmatrix}$$



Sol. Answer (3)

Cis-platin is considered to be an anticancer species.

- 61. Which of the following coordination compounds would exhibit optical isomerism?
 - (1) Pentaamminenitrocobalt (III) iodide
 - (2) Diamminedichloroplatinum (II)
 - (3) Trans dicyanobis (ethylenediamine) chromium (III) chloride
 - (4) Tris-(ethylenediamine) cobalt (III) bromide

Sol. Answer (4)

- 62. Among $[Ni(CO)_4]$, $[Ni(CN)_4]^{2-}$, $[NiCl_4]^{2-}$ species, the hybridization states at the Ni atom are, respectively [Atomic number of Ni = 281
 - (1) sp^3 , dsp^2 , dsp^2
- (2) sp^3 , dsp^2 , sp^3
 - (3) sp^3 , sp^3 , dsp^2 (4) dsp^2 , sp^3 , sp^3

Sol. Answer (2)

[Ni(CO)₄]

[Ni(CN)₄]²⁻ dsp²

[NiCl₄]²⁻ sp^3

- 63. Considering H_2O as a weak field ligand, the number of unpaired electrons in $[Mn(H_2O)_e]^{2+}$ will be (atomic number of Mn = 25)
 - (1) Three
- (2) Five

- Two (3)
- (4) Four

Sol. Answer (2)

$$[\mathsf{Mn}(\mathsf{H_2O})_6]^{2^+} \Rightarrow \mathsf{Mn}^{2^+} \Rightarrow 3\mathsf{d}^5 \Rightarrow \boxed{\begin{array}{c|c} 1 & 1 & 1 & 1 \\ \hline \end{array}}$$

⇒ Five unpaired electrons.

- 64. Which of the following does not have a metal carbon bond?
 - (1) $AI(OC_2H_5)_3$

(2) C_2H_5MgBr

(3) $K[Pt(C_2H_4)CI_3]$

(4) Ni(CO)₄

Sol. Answer (1)

$$Al(OC_2H_5)_3 \Rightarrow H_5C_2 - O O O C_2H_5$$

- 65. The d electron configuration of Cr^{2+} , Mn^{2+} , Fe^{2+} and Ni^{2+} are $3d^4$, $3d^5$, $3d^6$ and $3d^8$ respectively. Which one of the following aqua complexes will exhibit the maximum paramagnetic behaviour? (At. No. Cr = 24, Mn = 25, Fe = 26, Ni = 28)
 - (1) [Fe(H₂O)_e]²⁺
- (2) $[Ni(H_2O)_6]^{2+}$
- (3) $[Cr(H_2O)_6]^{2+}$
- (4) $[Mn(H_2O)_6]^{2+}$

Sol. Answer (4)

 H_2O is a weak field ligand and Mn^{2+} has maximum numbers of unpaired electrons *i.e.*, 5. So, $[Mn(H_2O)_6]^{2+}$ will exhibit the maximum paramagnetic behaviour.

SECTION - C

Assertion - Reason Type Questions

- 1. A: The complex [Co(NH₃)₃Cl₃] gives white ppt. with AgNO₃ solution.
 - R: Chlorine always gives white ppt with AgNO₃ solution.
- Sol. Answer (4)

 $[Co(NH_3)_3Cl_3]$ will not give while ppt. with $AgNO_3$ solution. Because there is no any Cl^- in the primary valency i.e. outside the co-ordination sphere.

Chlorine does not give white ppt. with AgNO₃ always.

- 2. A: Glycinate ion is an unsymmetrical bidentate ligand.
 - R: Glycinate ion is a conjugate base of glycine.
- Sol. Answer (2)

Glycinate ion ⇒ NH₂–CH₂–COO⁻ ⇒ unsymmetrical

$$NH_2$$
- CH_2 - $COOH$ $\xrightarrow{-H^+}$ NH_2 - CH_2 - COO^- Glycine Conjugate base

But the reason is not any explanation.

- 3. A: $K_4[Fe(CN)_6]$ is less stable than $K_3[Fe(CN)_6]$.
 - R: In $K_4[Fe(CN)_6]$, the EAN of Fe is 36.
- Sol. Answer (2)

$${
m K_4[Fe(CN)_6]} \Rightarrow {
m Fe^{2+}} \Rightarrow {
m 3d^6}$$

$$\Rightarrow$$
 CFSE = $-2.4 \Delta_0$

$$K_4[Fe(CN)_6] \Rightarrow Fe^{3+} \Rightarrow 3d^5$$

$$\Rightarrow$$
 CFSE = $-2.0 \Delta_0$

- \Rightarrow K₃[Fe(CN)₆] is less stable then K₄[Fe(CN)₆] K₄[Fe(CN)₆] \Rightarrow Fe²⁺ \Rightarrow 24 electrons
- \therefore EAN = 24 + 2 × 6 = 36 \Rightarrow But not the correct explanation.
- 4. A: All square planar complexes can exhibit geometrical isomerism.
 - R: In square planar complexes metal assumes sp³ hybridisation.
- Sol. Answer (4)

Square planar complexes of type [MA₄] and [MA₂B] can not exhibit geometrical isomerism.

In square planar complexes, metal is dsp^2 hybridized.

- 5. A: $K_A[Fe(CN_e)]$ and $K_3[Fe(CN_e)]$ have different magnetic moment.
 - R: Magnetic moment is decided by the number of unpaired electron and both have different number of unpaired electrons.
- Sol. Answer (1)

$$\begin{split} \mathsf{K}_4[\mathsf{Fe}(\mathsf{CN}_6)] \Rightarrow \mathsf{Fe}^{2^+} \Rightarrow 3\mathsf{d}^6 \Rightarrow \boxed{1 \quad 1 \quad 1} \qquad \Rightarrow \mu = 0 \; \mathsf{BM} \\ \\ \mathsf{K}_3[\mathsf{Fe}(\mathsf{CN}_6)] \Rightarrow \mathsf{Fe}^{3^+} \Rightarrow 3\mathsf{d}^5 \Rightarrow \boxed{1 \quad 1 \quad 1} \qquad \Rightarrow \mu = 1.73 \; \mathsf{BM} \end{split}$$

- 6. A: The degeneracy of d-orbitals is lost under strong field ligand.
 - R: The degeneracy of d-orbitals does not get lost under chelated ligand field.
- Sol. Answer (3)

In strong field, the d-orbital splits into t_{2g} and e_g orbitals. t_{2g} and e_g have different energies.

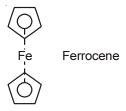
Chelated ligand fields are generally strong

- \Rightarrow Statement (2) is false.
- 7. A: Transition metal ion forming octahedral complex having d^2sp^3 or sp^3d^2 hybridisation.
 - R: Under the influence of strong field ligand inner d-orbitals take part in the hybridisation.
- Sol. Answer (2)

Octahedral
$$\Rightarrow d^2sp^3$$
 or sp^3d^2

Under strong field, electrons of d-orbital get paired and the orbital takes part in hybridization. But it is not the correct explanation for hybridization.

- 8. A: Higher the charge density on the central ion, greater will be stability of the complex.
 - R: Hard acid show a greater tendency for forming complexes with hard ligands such as F-.
- Sol. Answer (2)


Both the statements are facts. But 2nd one is not giving the reason, why charge density on metal ion is responsible for stability.

- 9. A: Al₂(CH₃)₆ is a dimeric compound and has similar structure to diborane.
 - R: Al₂(CH₃)₆ in a sigma bonded complex.
- Sol. Answer (2)

Both are true as per the structure of $Al_2(CH_3)_6$ but not the correct explanation.

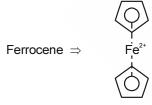
- 10. A: Ferrocene may prepared by the reaction of Grignard reagent ferrous chloride.
 - R : Ferrocene is a σ and π -bonded complex.

Assertion is correct (fact). But reason is wrong, because Ferrocen forms π -bonded complex.

- 11. A: dien is bidentate ligand.
 - R: dien donates two pairs of electron.

Sol. Answer (4)

Dien is not a bidentate ligand and does not donate two pairs of electrons.


- 12. A: CN- is an acid ligand.
 - R: CN⁻ accepts electron pair also.

Sol. Answer (4)

CN- donates electron to the metal ion.

- 13. A: Coordination number of Fe²⁺ in ferrocene is 10.
 - R : Ferrocene is π bonded complex.

Sol. Answer (2)

- \Rightarrow Co-ordination number of Fe²⁺ is 10
- \Rightarrow π -bonded complex But not the correct explanation.

14. A: [MA₃B₃]ⁿ⁺ shows optical isomerism.

R: [MA₃B₃]ⁿ⁺ deviates plane polarized light.

Sol. Answer (4)

[MA₃B₃] type complexes do not show optical isomerism.

- 15. A: [Fe(CN)₆]⁴⁻ follows EAN rule.
 - R: Number of electrons in Fe in this complex ion is 36.

Sol. Answer (1)

$$[Fe(CN)_6]^{4-} \Rightarrow Fe^{2+} \Rightarrow 24 \text{ electrons}$$

6 CN⁻ ligands
$$\Rightarrow$$
 6 \times 2 = 12 electrons

 \Rightarrow Total 24 + 12 = 36 electrons in the complex ion.

- 16. A: According to C.F.T. complex compound contain point charges.
 - R: The bonding between central metal ion and ligand is electrostatic.
- Sol. Answer (2)

Both the statements are true. But not the correct explanation.

- 17. A: $[Cr(H_2O)_6]^{3+}$ is inner orbital complex.
 - R: H₂O is strong ligand generally.
- Sol. Answer (4)

H₂O is a moderate field ligand.

 $[Cr(H_2O)_6]^{3+} \Rightarrow Cr^{3+} \Rightarrow 3d^3 \Rightarrow \text{forms outer orbital complex}.$

- 18. A: [Ni(CO)₄] is organometallic compound.
 - R : CO is not a π -acid ligand.
- Sol. Answer (3)
- 19. A: CH₃COONa is an organometallic compound.
 - R: CH₃COOH is organic compound and Na is transition metal.
- Sol. Answer (4)

Na is a metal. CH₃COONa is a salt.

- 20. A: The energy gap $\Delta_0 = \frac{4}{9} \Delta_t$.
 - R : $\boldsymbol{\Delta_0}$ is always greater than $\boldsymbol{\Delta_t}$ for same metal ion and ligand.
- Sol. Answer (2)

Both the statements are true. But not the correct explanation.