

S.No.	CONTENTS	Page
	THERMODYNAMICS	
1.	Introduction	193
2.	Some important terms	193
3.	Types of thermodynamic processes	195
4.	Work and Heat	196
5.	Internal energy	198
6.	Laws of thermodynamics	199
7.	Enthalpy	203
8.	Heat capacity	206
9.	Work done in different process	207
10.	Spontaneous and non-spontaneous process	211
11.	Entropy	211
12.	Gibbs energy	216
	ENERGETICS	
13.	Introduction	221
14.	Heat of reaction	223
15.	Types of heat of reaction	224
16.	Laws of thermochemistry	233
17.	Exercise-I (Conceptual Questions)	236
18.	Exercise-II (Previous Years Questions)	249
19.	Exercise-III (Analytical Questions)	254
20.	Exercise-IV (Assertion & Reason)	257

CHEMICAL THERMODYNAMICS AND ENERGETICS E

NEET SYLLABUS

CHEMICAL THERMODYNAMICS : First law of thermodynamics-internal energy and enthalpy, heat capacity and specific heat, measurement of ΔU and ΔH , Hess's law of constant heat summation, enthalpy of : bond dissociation, combustion, formation, atomization, sublimation, phase transition, ionization, solution and dilution. Introduction of entropy as state function, Second law of thermodynamics, Gibbs energy change for spontaneous and non-spontaneous process, criteria for equilibrium and spontaneity. Third law of thermodynamics- Brief introduction.

OBJECTIVES

After studying this unit, we will be able to :

- explain the terms : system and surroundings;
- discriminate between close, open and isolated systems;
- explain internal energy, work and heat;
- state first law of thermodynamics and express it mathematically;
- calculate energy changes as work and heat contributions in chemical systems;
- explain state functions: U, H.
- correlate ΔU and ΔH ;
- define standard states for ΔH ;
- calculate enthalpy changes for various types of reactions;
- state and apply Hess's law of constant heat summation;
- differentiate between extensive and intensive properties;
- *define spontaneous and nonspontaneous processes;*
- explain entropy as a thermodynamic state function and apply it for spontaneity;
- explain Gibbs energy change (ΔG);
- establish relationship between ΔG and spontaneity, ΔG and equilibrium constant.

"Thermodynamics cannot be fathomed in all its profundity in a single pass"

Joseph Kestin

Allen

CHEMICAL THERMODYNAMICS

5.0 INTRODUCTION :

Thermo (Heat/energy) + Dynamics (Flow/motion)

Thermodynamics is the branch of science which deals with the energy changes taking place in all physical and chemical processes but **Chemical thermodynamics** is the branch of thermodynamics which deals with the study of energy changes taking place in chemical processes.

Advantages of thermodynamics :

- (i) It gives information about various thermodynamic laws.
- (ii) It helps us to predict whether a given **chemical reaction will take place or not** under the given set of conditions.
- (iii) It gives information about various energy changes.

Limitations of thermodynamics :

(i) Thermodynamics deals with the properties like temperature, pressure, volume, etc of matter in bulk but doesn't tell us anything about the individual properties of atoms or molecules.

or

Thermodynamics deals with macroscopic system but not with microscopic system.

(ii) It tells us whether a given chemical reaction will take place or not under the given set of conditions but doesn't tell us anything about the **rate of reaction**.

5.1 SOME IMPORTANT TERMS :

- **System** : A system is defined as a specific part of universe or specified portion of the matter which is under experimental investigation
- **Surrounding** : The rest part of the universe excluding the system is called surrounding.

Universe = System + Surrounding

• **Boundary** : Anything which separates system and surrounding is called boundary.

Types of boundary :

- (i) Boundary can be conducting or non-conducting.
- (ii) Boundary can be rigid or non-rigid.
- (iii) Boundary can be real or imaginary.

For example :

A reaction is carried out in a beaker. The contents of beaker constitute the system, beaker serves as boundary and anything which is outside the beaker is called surroundings.

5.2 TYPES OF SYSTEM :

System are of 3 types :

Open system : This type of system can exchange energy as well as matter with the surrounding. The boundary is neither sealed nor insulated. Total mass will not remain constant.

 $\label{eq:Eg.1} Eg.1 \ \mbox{Coffee in open glass.} \ \ \mbox{Hot water in open glass.}$

- Eg.2 All living systems. human being, plants, animals.
- Eg.3 Classroom, earth.

ALLEN

Closed system : This type of systems can exchange energy, (in the form of heat, work or radiations) but not matter with its surroundings. The boundary is sealed but not insulated. Amount of the system will remain constant.

Eg.1 Coffee in closed vessel. Hot water in closed vessel.

Eg.2 Glowing bulb, tube light.

Eg.3 A satellite in orbit.

Isolated system : This type of system are perfectly insulated systems and cannot interact in any way with its surrounding i.e. neither matter nor energy can be exchanged with the surrounding. The boundary is sealed and insulated. Universe can be considered as an isolated system.

Eg.1 Coffee in thermosflask.

5.3 STATE OF THE SYSTEM :

- Properties which define state of any system are called its state variables or thermodynamic variables or thermodynamic quantities.
- The state of the system is defined by their measurable properties like temperature, pressure, volume etc.
- If any of these properties change, state of the system is said to be changed.

State Function :

- Those state variables which depend only upon initial and final state of the system but doesn't depend upon the path or mechanism followed by the system to achieve final state are called state function.
- State functions are denoted by capital letters.

Ex. E, H, S, G, T, P, V etc.

Path function :

- Properties of the system which depend upon the initial and final state of the system as well as the path or mechanism followed by the system to achieve final state are called path function.
- Path functions are denoted by small letters.
- Eg. Work done (w), heat (q)

Thermodynamic properties :

- (i) **Intensive properties** : The properties of the system which are independent of matter (size and mass) present in system are called intensive properties.
- (ii) **Extensive properties** : The properties of the system which are dependent on matter (size and mass) present in system are called extensive properties

Extensive Properties	Intensive Properties
Volume (V)	Molar volume (V _m)
Number of moles (n)	Density (d)
Mass (m)	Gibb's energy per mole (G _m)
Gibb's Energy (G)	Specific heat
Entropy (S)	Pressure (P)
Enthalpy (H)	Temperature (T)
Internal energy (E or U)	All concentration terms (M,N)
Heat capacity (C)	Boiling point, freezing point (T_{b}, T_{f})
Force (F)	Cell potential (E _{cell})
Surface Area (A)	Specific conductance (κ)
	Refractive index
	Surface tension, Viscosity
	pH value
	Vapour pressure

Special Points :

ALLEN -

- (i) The ratio of two extensive properties indicates the intensive property Eg. $d = \frac{\text{mass}}{\text{volume}}$
- (ii) An extensive property can be converted into intensive property when it is defined for unit amount of the substance.

Eg. Mass per unit volume = density;
$$\left(d = \frac{m}{V}\right)$$

(iii) Intensive properties of a substance are non-additive in nature while extensive properties are additive in nature.

	H ₂ O	H ₂ O	On adding
Vessel	Α	В	
Mass	m ₁	m ₂	$m_1 + m_2$ (Total mass)
Moles	n ₁	n ₂	$n_1 + n_2$ (Total moles) Extensive
Volume	V ₁	V_2	$V_1 + V_2$ (Total volume)
Density	d	d	Remains same (d)
Boiling point	Т	Т	Remains same (T)

5.4 TYPES OF THERMODYNAMIC PROCESSES :

When a system changes from one state to another, the operation is called a thermodynamic process.

Thermodynamic processes may be in form of expansion or compression.

(a) Isothermal Process (n,T = constant)

Isothermal processes are those processes in which

(a) Temperature of system during entire process remains constant i.e. $\Delta T = 0$

(b) Heat is exchanged with surroundings

(c) Volume and pressure are variable

- For ideal gas in Isothermal process $\Delta E = 0$ and $\Delta H = 0$
- All phase transitions are isothermal process but $\Delta E \neq 0$ and $\Delta H \neq 0$

(b) Isobaric Process (n,P=constant) :

Isobaric processes are those processes in which

- (a) Pressure of system during entire process remains const i.e. $\Delta P=0$
- (b) Volume and temperature are variable.
- (c) Process in open system is isobaric in nature.

(c) Isochoric Process (n,V = constant) :

Isochoric processes are those processes in which

- (a) Volume remains constant i.e. $\Delta V = 0$
- (b) Pressure and temperature are variable
- (c) Work, $w = -P\Delta V$, $\therefore \Delta V = 0$, $\therefore w = 0$ (Zero)
- (d) Process in closed system is isochoric in nature.

(d) Adiabatic Process (n = constant, q = 0)

Adiabatic processes are those processes in which

- (a) No exchange of heat between system and surrounding takes place durint entire process i.e. q = 0
- (b) The temperature pressure, volume of the system varies.
- (c) The system is thermally insulated by keeping the system in an insulated container.

(e) Cyclic Process :

When a system undergoes a number of different processes and finally returns to its initial state, it is termed as cyclic process.

In cyclic process change in all state function will be zero. i.e. $\Delta E = 0$, $\Delta H = 0$, $\Delta P = 0$, $\Delta T = 0$

(f) Reversible Process (quasi-static) :

- (1) Process in which all changes occuring at any part of the system are exactly reversed when small changes in variables are carried out in opposite direction.
- (2) Driving force should be infinitesimally greater than opposing force.
- (3) Process takes place in infinitesimal small steps or in many steps and takes infinite time to complete the process.
- (4) It is an ideal process.
- (5) Work obtained in expansion is maximum.
- (6) System is in virtual equilibrium at any state.
- (7) $P_{ext} = P_{int} \pm dP$; P_{ext} is variable.

Irreversible Process :

- (1) Process in which direction of change cannot be reversed by small changes in variables.
- (2) Driving force is much greater than opposing force.
- (3) It takes finite time and finite/usually single step.
- (4) Process takes place in short time
- (5) All natural processes are irreversible
- (6) System is in equilibrium only at initial and final state
- (7) $P_{ext} = P_{int} \pm \Delta P$; P_{ext} is constant.

5.5 WORK AND HEAT :

(A) Work : Product of force and displacement is known as work.

work (w) = force (F) × displacement (ℓ)

Consider a gas enclosed in a cylinder fitted with a frictionless piston.

Suppose area of cross section of cylinder = A and pressure on the piston = P

Initial volume of the gas = V_1 and final volume of the gas = V_2

(By expansion) displacement of piston = ℓ

work done by the gas (in expansion) = w = $F.\ell$

$$\therefore P = \frac{F}{A} \qquad \therefore F = P \times A$$

 $w = P \times A \times \ell \text{ (change in volume = } A \times \ell = V_2 - V_1\text{)}$ $w = P \times (V_2 - V_1)$

 $w = P\Delta V$ (According to Physics)

In general $w = -P_{\text{external}} DV$ (According to Chemistry)

SIGN CONVENSIONS :

ALLEN

- According to latest sign conventions
 - (a) Work done is taken negative if it is done by the system since energy of system is decreased.

Eg. Expansion of gas.

 $:: V_2 > V_1$; $\Delta V = \text{positive};$ w = negative

(b) Work done is taken positive if it is done on the system, since energy of system is increased.

Eg. Compression work.

 $\because V_1 > V_2 \quad ; \Delta V = negative \; ; \quad w = positive$

(B) Heat exchange (q) :

Heat is defined as the energy that flow in or out of a system because of a difference in temprature between the thermodynamic system and its surrounding. It is a path function.

According to IUPAC convention, heat given by the system is expressed with negative sign and heat given to the system is expressed with positive sign.

- Heat always flows from high temperature to low temprature.
- Heat flowing into the system q = positive
- Heat flowing out of the system q = negative

Units of heat & work :

Calorie : It is defined as the quantity of heat required to raise the temperature of 1 g of water by 1°C (14.5 to 15.5°C)

 $1 \text{ cal} = 4.184 \text{ J} \simeq 4.2 \text{ J}$

1 L-atm = 101.3 J = 24.206 cal = 101.3×10^7 erg

1 L-atm > 1 Cal > 1 J > 1 erg

GOLDEN KEY POINTS

- Molar properties like ΔH_m , ΔG_m , ΔS_m , ΔU_m are intensive properties.
- In cyclic process change in all state function will be equal to zero.

 $\Delta E = 0$; $\Delta H = 0 \Delta P = 0$, $\Delta T = 0$ etc.

- For ideal gases $\Delta E = 0$ (For isothermal process)
- All natural process are irreversible in nature.
- Both q and w are (+) **to** system.
- Both q and w are (-) **by** the system.

Illustrations -

Illustration 1.	Find the work done in each case :
	(a) When one mol of ideal gas in 10 litre container at 1 atm is allowed to enter a vacuum bulb of capacity 100 litre.
	(b) When $1 \mod 6$ gas expands from 1 litre to 5 litre against constant atmospheric pressure.
Solution	(a) $W = -P\Delta V$ but since gas enters the vacuum bulb and pressure in vacuum is zero. This type of expansion is called free expansion and work done is zero.
	Note :- Work done in free expansion is always zero.
	(b) $W = -P\Delta V = -1(5-1) = -4$ L-atm.

ALLEN

Illustration 2. A 5 litre cylinder contained 10 mol of oxygen gas at 27°C. Due to sudden leakage the hole, all the gas escapped into the atmosphere and the cylinder got empty. If the atm pressure is 1.0 atm. Calculate the work done by the gas ? ($R = 0.083$ lit atm mol ⁻¹					the to sudden leakage through the ler got empty. If the atmosphere R = 0.083 lit atm mol ⁻¹ K ⁻¹)
Solu	ition	$V_{initial} = 5$	L		
		T = 27°C	= 27 + 273 = 300 K		
		$V_{\text{final}} = \frac{nR}{P}$	$\frac{T}{1} = \frac{10 \times 0.083 \times 300}{1} =$	= 249 L	
		$\Delta V = V_{\text{final}}$	$_{al} - V_{initial} = 249 - 5 = 2$	244 L	
		$W_{exp} = -F$	$P\Delta V = -1 \times 244$ L-atm.	= -244 L-atm.	
			BEGINNE	R'S BOX_1	
			DEGINIL		
1.	Which of th	ne following o	open system		
	(1) Animals	and plants	(2) A fridge	(3) A solar cooker	(4) None of these
2.	One mole of gas occupying 3 litre volume is expanded against a constant external pressure of one atm to a volume of 15 litre. The work done by the system is :-				external pressure of one atm to
	(1) –1.215	$\times 10^3 J$	(2) +12.15 $\times 10^3$ J	(3) $+121.5 \times 10^3 \text{ J}$	(4) $+1.215 \times 10^3 \text{ J}$
3.	• The work done during the expansion of a gas from a volume of 4 dm ³ to 6 dm ³ against a constant external pressure of 3 atm is :-				
	(1) –608 J		(2) +304 J	(3) –304 J	(4) –6 J
4.	The work d pressure of	one during th 2 atm is :-	ne expansion of a gas fror	m a volume of $14 dm^3$ to 1	6 dm³ against a constant external
	(1) -405.2	J	(2) +304 J	(3) –304 J	(4) –6 J

5.6 INTERNAL ENERGY (E/U) :

Internal energy of a system is defined as the sum of different energies associated with its atoms and molecules like Potential energy, Kinetic energy (due to translatory, rotatory and vibratory motion), electronic energy, nuclear energy etc.

 $E = E_{PE} + E_{T} + E_{R} + E_{V} + E_{e} + E_{N}$

- (i) Internal energy is an **extensive property**.
- (ii) We can **never find out the absolute value** of internal energy (E) of system.

We can only calculate the change in internal energy of the system (ΔE) by using an instrument which is called as Bomb calorimeter. In Bomb calorimeter reactions are carried out at constant volume.

(iii) Internal energy is a **state function**.

$$\begin{split} \Delta E \ = \ E_{_{\rm f}} - \ E_{_{\rm i}} \end{split}$$
 (In reaction) $\Delta E \ = \ E_{_{\rm P}} - \ E_{_{\rm R}} \\ \Delta E \ \text{is} \ + \ \text{ve} \ \text{if} \ E_{_{\rm f}} > \ E_{_{\rm i}} \\ \Delta E \ \text{is} \ - \ \text{ve} \ \text{if} \ E_{_{\rm f}} < \ E_{_{\rm i}} \end{split}$

5.7 LAWS OF THERMODYNAMICS :

GENERAL POINT :

ALLEN _

Laws of thermodynamics are based on human experiences there is no formal proof for them.

FIRST LAW OF THERMODYNAMICS (FLOT) :

- This law is based on law of conservation of energy and was given by **Robert Mayer and Helmholtz.**
- Energy can neither be created nor destroyed but can be transformed from one form to another.
- The total energy of the universe is always constant. i.e. total energy of an isolated system is always conserved.
- The mathematical form of first law of thermodynamics can be expressed as follows

 $\Delta E = q + w$: where q, w are path function and E is state function.

Here q is the energy given to the system and w is the work done on the system ; ΔE is change in internal energy.

Note :- Put the value of q and w with proper sign.

CONCLUSIONS FROM THE FIRST LAW OF THERMODYNAMICS :

(a) During isothermal process of an ideal gas :

During an isothermal process the temperature of the system remains constant and hence

 $\Delta E = 0$

Therefore $FLOT : \Delta E = q + w$

$$\therefore$$
 $+q = -w$ or $-q = +w$

In isothermal process -

(I) Heat absorbed by the system is equal to work done by the system.

OR

(II) Heat evolved by the system is equal to work done on the system.

(b) During isochoric process :

At constant volume $V_1 = V_2$ i.e. $\Delta V = 0$

Hence $W = -P\Delta V = 0$ No work done at constant volume therefore,

FLOT: $\Delta E = q + w$ $\Delta E = q_v$

(i) In isochoric process

• At constant volume, heat absorbed by the system is equal to increase in internal energy of the system.

OR

- At constant volume, heat evolved by the system is equal to decrease in internal energy of the system.
- (ii) Heat at constant volume $(q_v) = \Delta E$
- (iii) In isochoric process heat is idependent of path.

(c) During adiabatic process :

During adiabatic process the system acts an isolated system and hence $\mathbf{q} = \mathbf{0}$ in such cases. Therefore

 $FLOT: \Delta E = q + w \qquad \because q = 0$

(i) Work done on the system is equal to increase in internal energy of the system i.e., when a gas is compressed adiabatically its internal energy increases.

OR

Work done by the system is equal to decrease in internal energy of the system, i.e., when a gas is expanded adiabatically its internal energy decreases.

 $\Delta E = w$

+q = -w

(ii) In adiabatic process work is independent of path.

 $\Delta E = 0$ FLOT ; $\Delta E = q + w$

In cyclic process.

(I) Work done by the system is equal to heat absorbed by the system.

OR

(II) Work done on the system is equal to heat evolved by the system.

(e) During Isobaric process :

P – constant

FLOT :
$$\Delta E = q + W$$
$$\Delta E = q + (-P\Delta V)$$
$$q_{p} = \Delta E + P\Delta V$$
$$q_{p} = (E_{2} - E_{1}) + P(V_{2} - V_{1})$$
$$q_{p} = (E_{2} + PV_{2}) - (E_{1} + PV_{1})$$

 \therefore Enthalpy H = E + PV

 $\therefore \qquad \mathbf{q}_{\mathrm{P}} = \mathbf{H}_2 - \mathbf{H}_1 \qquad \qquad \mathbf{q}_{\mathrm{P}} = \Delta \mathbf{H}$

(i) In isobaric process :

• At constant pressure, heat absorbed by the system is equal to increase in enthalpy of the system.

OR

• At constant pressure, heat evolved by the system is equal to decrease in enthalpy of the system.

(ii) Heat at constant pressure $(q_n) = \Delta H$

(iii) In isobaric process heat is idependent of path.

	Illustrations		
Illustration 3.	1g of water changes from liquid to vapour phase at constant pressure of 1 atmosphere, the volume increases from 1 mL to 1671 mL. The heat of vaporisation at this pressure is 540 Cal g Find the increase in internal energy of water. (1 L atm = 101 J)		
Solution	Work done $w = -P\Delta V = -P(V_2 - V_1)$		
	$= -1(1671 - 1) \times \frac{1}{1000} = \frac{-1670}{1000} \text{L-atm}$		
	$= \frac{-1670}{1000} \times 101 \text{J} = -168.67 \text{J}$		
	given that $q = 540$ Cal = 540 × 4.2 J = 2268 J		
	$\therefore \Delta E = q + w = 2268 - 168.67 = 2099.33 \text{ J}$		
Illustration 4.	A gas occupies 2 L at STP. It is provided 300 J heat so that its volume becomes 2.5 L at 1 atm. Calculate change in its internal energy.		
Solution	$w = -P\Delta V = -1 \times (2.5 - 2) = -0.5$ L-atm or $w = -0.5 \times 101.3 = -50.65$ J.		
	$\Delta E = q + w = 300 + (-50.65)$		
	$\Delta E = 249.35 \text{ J}$		
Illustration 5.	A sample of gas present in a cylinder fitted with a frictionless piston expands against a constant pressure of 1 atm from a volume of 2L to 12L. During the process, it absorbs 600 J of heat from the surroundings. Calculate the change in internal energy of the system.		
Solution	During the process,		
	q = 600 J, ΔV = 12 - 2 = 10 L, P = 1 atm		
	$w = -P\Delta V$		
	$= -1 \times 10 = -10 \text{ L atm}$		
	Now, 1 L atm = 101.5 J $w = -10 \times 101.3 = -1013.1$		
	According to first law of thermodynamics,		
	$\Delta E = q + w = 600 - 1013 = -413 \text{ J}$		
Illustration 6.	Two moles of an ideal gas at 2 atm and 27°C is compressed isothermally to one half of its volume by a constant external pressure of 4 atm. Calculate q, w & ΔE . (R = 0.082 L atm mol ⁻¹ K ⁻¹)		
Solution	Work done on the system,		
	$w = -P_{ext}\Delta V = -P_{ext}(V_{f} - V_{j})$		
	$V_i = \frac{nRT}{P}$		
	n = 2 mol and R = 0.082 atm L mol ⁻¹ K ⁻¹ , T = 273 + 27 = 300 K, P = 2 atm		
	$V_i = \frac{2 \times 0.082 \times 300}{2} = 24.6 \text{ L}$ and $V_f = \frac{V_i}{2} = \frac{24.6}{2} = 12.3 \text{ L}$		
	• 201		

	$w = -4 \text{ atm} \times (12.3 - 24.6)L$	$= 49.2 \text{ L} \text{ atm} = 49.2 \times 101.3 \text{ J}$			
		= 4984 J.			
	Since, it is isothermal compression, $\Delta E = 0$				
	Now , $\Delta E = q + w$				
	0 = q + 4984 J or q = -4984 J				
Illustration 7	A system is provided with 100 J of heat. Work in internal energy.	done on the system is 20 J. What is the change			
Solution	q = 100 J and $w = +20 J$				
	$\Delta E = q + w = 100 + 20 J = 120 J$				
Illustration 8.	An insulated container is divided into two equat pressure P and temperature T, while the opened between the two portions, Calculate	ual portions. One portion contains an ideal gas other portion is a perfect Vacuum. If a hole is e the –			
	(i) Change in internal energy of the gas (ii)	Change in temperature of the gas			
Solution	For insulated system, $q = 0$				
	The gas is allowed to expand against vacuum	, the process of free expansion and thus			
	$w = -P\Delta V = 0$ (for vacuum = $P_{ext} = 0$)				
	Thus from I law of thermodynamics, $\Delta E =$	$q + w$ or $\Delta E = 0$			
	i.e. internal energy change is zero or internal energy change is zero or internal energy Also E α T and thus temperature of the gas α	rgy of gas remains constant during free expansion. will also remains constant.			
	BEGINNER'S BO	X-2			

ALLEN

Z:\NODE02\B0AI-B0\TARGET\CHEM\ENG\WODULE-1\5.THERWODYNAWCS\01-THERWO.P65

Е

1. A system absorb 300 cal of heat with the result of that, the volume of the system becomes double of its initial volume and temperature changes from 273K to 546K. The work done by the system on the surroundings is 200.0 Cal Calculate ΔE :-

(1) 273 kCal (2) 500 Cal (3) 100 Cal (4) -500 Cal

- 2. One mol of an ideal gas at 300 K is expanded isothermally from an initial volume of 1 litre to 10 litre. The ΔE for the process is :- (R = 2 Cal K⁻¹ mol⁻¹)
 - (1) 163.7 Cal (2) 1381.1 Cal (3) 9 L-atm (4) Zero
- **3.** In an adiabatic process which of the following is true :-

(1) $q = +w$	$(2) -\Delta E = -w$	$(3) P\Delta V = 0$	(4) $q = \Delta E$
--------------	----------------------	---------------------	--------------------

- - (1) Equal to the heat absorbed (2) Equal to the heat evolved
 - (3) Equal to the work done (4) Equal to zero

5.8 ENTHALPY (H) :

Mathematically it is heat contained in the system measured at constant pressure.

The sum of internal energy and pressure volume (PV) energy is known as enthalpy.

$$H = E + PV$$

- It is impossible to determine absolute value of enthalpy so we determine change in enthalpy (Δ H). $\Delta H = H_{\text{final}} - H_{\text{initial}}$
- Enthalpy is an extensive property because E and V are extensive properties.
- It is a state function because E, P and V are state functions.

 \therefore H = E + PV

$$\Delta H = \Delta E + \Delta (PV) \quad \dots (i)$$

(when P, V and T are variables)

At constant pressure : $\Delta H = \Delta E + P \cdot \Delta V \dots$ (ii)

At constant volume :

For chemical reactions at constant temprature and pressure $\therefore P.\Delta V = \Delta n_q RT$

 $\Delta H = \Delta E + V \Delta P \dots (iii)$

So from equation (i) $\Delta H = \Delta E + \Delta n_g RT$...(iv)

where $\Delta H = q_p$; at constant P; $\Delta E = q_v$; at constant V

So equation (iv) can be also written as $q_p = q_v + \Delta n_g RT$...(v)

GOLDEN KEY POINTS

•	If,	$\Delta n_{g} = 0 \rightarrow \Delta H = \Delta E$	eg.	$H_2(g) + I_2(g) \rightarrow 2HI(g)$
•	If,	$\Delta n_{g} > 0 \rightarrow \Delta H > \Delta E$	eg.	$PCl_{5}(g) \rightarrow PCl_{3}(g) + Cl_{2}(g)$
•	If,	$\Delta n_{g} < 0 \rightarrow \Delta H < \Delta E$	eg.	$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$
		I	llustra	tions
Illustrati	on 9.	9. The heat of reaction for $C_{10}H_8(s) + 12O_2(g) \longrightarrow 10CO_2(g) + 4H_2O(\ell)$ at constant volume is -1228.2 kCal at 25°C. Calculate the heat of reaction at constant pressure and at 25°C.		
Solution		$\Delta n_{g} = [10] - [12] = -2$		
		$\Delta H = \Delta E + \Delta n_{g} RT$		
		$= -1228.2 \times 10^3 + (-$	2) (2) ×	298
		= - 1229392 Cal		
		$\Delta H = -1229.392 \text{ kCal}$		
				000

Z:\NODE02\B0AI-B0\TARGET\CHEM\ENG\WODULE-1\5.THERMODMNAMCS\01-THERMO.P65

Ε

Solution

Illustration 10. For the reaction at 25°C

$$\begin{split} \mathrm{NH}_3(\mathrm{g}) &\longrightarrow \frac{1}{2} \, \mathrm{N}_2(\mathrm{g}) \, + \, \frac{3}{2} \, \mathrm{H}_2(\mathrm{g}) \, ; \, \Delta\mathrm{H}^\circ = \, 11.04 \, \, \mathrm{kCal.} \\ \mathrm{Calculate} \, \Delta\mathrm{E}^\circ \, \mathrm{of} \, \mathrm{the} \, \mathrm{reaction} \, \mathrm{at} \, \mathrm{the} \, \mathrm{given} \, \mathrm{temperature.} \\ \Delta\mathrm{H}^\circ &= \, \Delta\mathrm{E}^\circ \, + \, \Delta\mathrm{n_g}\mathrm{RT} \\ \Delta\mathrm{n_g} \, = \, 2 \, - \, 1 = \, 1 \, \, \mathrm{mol} \\ \Delta\mathrm{E}^\circ \, = \, \Delta\mathrm{H}^\circ \, - \, \Delta\mathrm{n_g}\mathrm{RT} \\ &= \, 11.04 \, \, \mathrm{Kcal} \, - \, 1 \, \, \mathrm{mol} \, \times \, \frac{2}{1000} \, \, \mathrm{kCal} \, \, \mathrm{mol}^{-1}\mathrm{K}^{-1} \, \times \, 298\mathrm{K} \\ &= \, 11.04 \, \, \mathrm{Kcal} \, - \, 1 \, \, \mathrm{mol} \, \times \, \frac{2}{1000} \, \, \mathrm{kCal} \, \, \mathrm{mol}^{-1}\mathrm{K}^{-1} \, \times \, 298\mathrm{K} \\ &= \, 11.04 \, - \, 0.596 \, = \, 10.44 \, \, \mathrm{kCal} \end{split}$$

Illustration \longrightarrow 2HCl(g) is 2Cal. What is

$\Delta H = \Delta E + \Delta n_g RT$ Solution

 $\Delta H = \Delta E + 0 \times RT$

 $\Delta H = \Delta E$

 $\Delta H = 2Cal$

Illustration 12 The heat of combustion of gaseous methane (CH_d) at constant volume is measured in bomb calorimeter at 298K is found to be -885.4 kJ mol⁻¹. Find the value of enthalpy change at the same temperature.

Solution Combustion of methane gives $CO_2(g)$ and $H_2O(\ell)$ as

$$CH_{4}(g) + 2O_{2}(g) \longrightarrow CO_{2}(g) + 2H_{2}O(\ell)$$

$$\Delta E = -885.4 \text{ kJ mol}^{-1} = -885400 \text{ J mol}^{-1}$$

$$\Delta n_{g} = 1-(1 + 2) = -2 \text{ mol}$$

$$T = 298K, R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$$
Now, $\Delta H = \Delta E + \Delta n_{g} RT$

$$= -885400 + (-2 \text{ mol}) \times (8.314 \text{ J mol}^{-1} \text{ K}^{-1}) \times (298\text{K})$$

$$= -885400 - 4955$$

$$= -890355 = -890.355 \text{ kJ}$$
13. The enthalpy change (Δ H) for the reaction : N₂(g) + 3H₂(g) $\rightarrow 2NH_{3}(g)$ is - 92.38 kJ at 298 K. What is ΔE at 298 K?

Solution ΔH and ΔE are related as $\Delta H = \Delta E + \Delta n_{q}RT$ for the reaction, $N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$

$$\Delta n_{q} = 2 - (1 + 3) = -2 \text{ mol}, T = 298 \text{ K}$$

$$\Delta H \,=\, - \,\, 92.38 \,\, kJ \,=\, - \,\, 92380 \,\, J, \quad R \,=\, 8.314 \,\, JK^{-1} \,\, mol^{-1}$$

$$-92380 = \Delta E + (-2 \text{ mol}) \times (8.314 \text{ J mol}^{-1} \text{ K}^{-1}) \times (298 \text{ K})$$

- $-92380 = \Delta E 4955$
- $\Delta E = -92380 + 4955$

$$= -87425 \text{ J} = -87.425 \text{ kJ}$$

204

Illustration

Illus	tration 14	The enthalpy change for 1 176 kJ mol ⁻¹ . Calculate the	the reaction CaCO ₃ (s) – change in internal energy.	\rightarrow CaO(s) + CO ₂ (g) at 1000)K is
Solu	ition	$\Delta H = \Delta E + \Delta n_{g} RT$			
		$176 = \Delta E + (+1) \times 8.314 \times$	10 ⁻³ × 1000		
		$\Delta E = 167.686 \text{ kJ}$			
		BEC	GINNER'S BOX-3		
1.	When a so	lid melts, there is :-			
	(1) No incr	ease in enthalpy	(2) Increase in er	ithalpy	
	(3) Decreas	e in enthalpy	(4) Anything can	happen	
2.	For the rea	action $N_2(g) + 3H_2(g) \longrightarrow 2N$	$H_3(g)$ which of the followi	ng is valid :-	
	(1) $\Delta H = \Delta$	E	(2) $\Delta H < \Delta E$		
	(3) ΔH > Δ	E	(4) None of thes	2	
3.	Heat excha	nged in a chemical reaction a	t constant pressure is calle	ed :-	
	(1) Internal	energy	(2) Enthalpy		
	(3) Enthrop	У	(4) Free energy		
4.	Latent heat change in i	of vaporisation of a liquid at a network of a liquid at a network of 3 mol of liq	500 K and 1 atm pressure uid at same temperature a	e is 10.0 kCal mol ⁻¹ . What will be and pressure	e the
	(1) 13.0 kC	Cal	(2) –13.0 kCal		
	(3) 27.0 kC	Cal	(4) –27.0 kCal		
5.	What is the are at 298	value of $\Delta n_{_g}$ if we consider the K :-	e combustion of 1 mol of li	quid ethanol if reactants and pro-	ducts
	(1) -1	(2) -2	(3) +1	(4) +2	
6.	If a reaction	n involves only solids and liqui	ds, which of the following	is true	
	(1) $\Delta H < \Delta$	E	(2) $\Delta H = \Delta E$		
	(3) ΔH > Δ	E	(4) $\Delta H = \Delta E + H$	RT∆n _g	
7.	The value of	of $\Delta H - \Delta E$ for the following :	reaction at 27°C will be, 2	$2NH_3(g) \longrightarrow N_2(g) + 3H_2(g) :$	-
	(1) 8.314 >	< 273 × (-2) J			
	(2) 8.314 >	< 300 × (-2) J			
	(3) 8.314 >	< 27 (+2) J			
	(4) 8.314 >	< 300 (+2) J			
8.	At constant	t temperature for the reaction	$C_{3}H_{8}(g) + 5O_{2}(g) \longrightarrow$	$3CO_2(g) + 4H_2O(\ell), \Delta E - \Delta H =$	is :-
	(1) +RT	(2) –3RT	(3) +3RT	(4) –RT	
					۵ <i>۵ و</i>
					2UD

5.9 HEAT CAPACITY / MOLAR HEAT CAPACITY / SPECIFIC HEAT CAPACITY :

(i) Heat capacity (C) : Amount of heat required to raise the temperature of given amount of a substance by 1°C or 1K is called heat capacity.

Heat capacity = $\frac{\text{Heat required}}{\text{rise in temp.}}$

Units :- JK⁻¹, Cal K⁻¹, J $^{\circ}$ C⁻¹, Cal $^{\circ}$ C⁻¹

- Heat capacity is extensive property.
- (ii) Molar heat capacity (C_m): Amount of heat required to raise the temperature of 1 mole of substance by 1°C or 1 K is called as molar heat capacity.

Molar heat capacity =
$$\frac{\text{Heat capacity}}{\text{mole of substance}} \Rightarrow C_m = \frac{C}{n}$$

Units :- Jmol⁻¹ K⁻¹, Cal mol⁻¹ K⁻¹, J mol⁻¹ $^{\circ}C^{-1}$, Cal mol⁻¹ $^{\circ}C^{-1}$

- Molar heat capacity is an intensive property.
- (iii) Spcific heat capacity (c) : Amount of heat required to raise the temperature of 1 g of substance by 1°C or 1K is called as specific heat capacity.

<u> </u>	C _m
с —	molecular weight

Units :- Jg⁻¹ K⁻¹, Cal g⁻¹ K⁻¹, J g⁻¹ $^{\circ}C^{-1}$, Cal g⁻¹ $^{\circ}C^{-1}$

• Specific heat capacity is an intensive property.

• If heat is suppplied at constant pressure, then

• If heat is supplied at cosntatn volume, then

$$C_{\rm p} = \left(\frac{\mathrm{dq}}{\mathrm{dT}}\right)_{\rm P} = \frac{\mathrm{dH}}{\mathrm{dT}}\dots(\mathrm{i})$$

$$C_v = \left(\frac{dq}{dT}\right)_v = \frac{dE}{dT}$$
 ...(ii)

From equation (i) and (ii) :

From equation (i)	Unit	From equation (ii)
• $\Delta H = C_p dT$	JK^{-1}	$\Delta E = C_{v} dT$
[Here C _p is heat capacity at constant P]		[Here C_v is heat capacity at constant V]
• For n moles		
$\Delta H = nC_p dT$	J mol ⁻¹ K ⁻¹	$\Delta E = nC_{v}dT$
[Here C_p is molar heat capacity at constant P]		[Here $C_{\!\scriptscriptstyle V}$ is molar heat capacity at constant V]
• For m gram		
$\Delta H=mC_{p}dT$	$J \ g^{-1} \ K^{-1}$	$\Delta E = mC_v dT$
[Here $C_{\rm p}$ is gram specific heat (specific heat capacity)		[Here $C_{\!_{\rm V}}$ is gram specific heat (specific heat capacity)
at constant P]		at constant V]
•		

ALLEN

Relation between $C_{_{\!P}}$ and $C_{_{\!V}}$ for 1 mole of an ideal gas :

H = E + PVfor ideal gas, PV = nRT $PV = RT \quad \text{for 1 mole}$ $H = E + RT \quad \text{differentiate w.r.t. temperature}$ $\left(\frac{dH}{dT}\right) = \left(\frac{dE}{dT}\right) + R$ $C_{P} = C_{V} + R$ (i) $C_{P} - C_{V} = R$ Mayer's formula

(ii)
$$\left| \frac{C_{\rm P}}{C_{\rm V}} = \gamma \right|$$
, γ = Poisson's ratio

5.10 WORK DONE IN DIFFERENT PROCESS :

Here $P_{2(q)}$ = Pressure of gas outside piston.

 $P_{(q)}$ = Pressure of gas inside piston.

(a) Work done in reversible isothermal process :

$$P_{external} = Variable$$

For reversible process

$$P_{ext} = P_{gas} \pm dP$$

$$w_{rev.} = -\int_{V_1}^{V_2} P_{ext.} dV$$

$$w_{rev.} = -\int_{V_1}^{V_2} (P_{gas} \pm dP).dV$$

Both dP and dV are very small so, (dP.dV) is negligible.

$$w_{rev.} = -\int_{V_1}^{V_2} P_{gas}.dV$$
$$w_{rev.} = -\int_{V_1}^{V_2} \frac{nRT}{V}.dV$$

$$\begin{split} w_{rev.} &= -nRT \int_{V_1}^{V_2} \frac{dV}{V} \\ w_{rev.} &= -nRT \ell n \left(\frac{V_2}{V_1} \right) \\ \text{or,} \qquad \boxed{w_{rev.} = -2.303 nRT \log_{10} \left(\frac{V_2}{V_1} \right)} \qquad \dots \text{(i)} \end{split}$$

according to Boyle's law at constant temperature $P \propto \frac{1}{V}$ or PV = constant

$$\therefore \qquad \mathsf{P}_1\mathsf{V}_1 = \mathsf{P}_2\mathsf{V}_2 \Rightarrow \frac{\mathsf{V}_2}{\mathsf{V}_1} = \frac{\mathsf{P}_1}{\mathsf{P}_2}$$

$$w_{rev.} = -2.303nRT \log\left(\frac{P_1}{P_2}\right)$$
 ...(ii)

Work done in reversible adiabatic process : (b) In adiabatic process q = 0**FLOT** : $\Delta E = q + w$ $\Rightarrow w = AF \Rightarrow w = nC.AT$

From equation (i) and (ii)
$$w = \frac{nR}{\gamma - 1} \left(T_2 - T_1 \right) = w = \frac{P_2 V_2 - P_1 V_1}{\left(\gamma - 1 \right)}$$

State equations of reversible adiabatic processes are :

 $PV^{\gamma} = constant$ $TV^{\gamma-1}$ = constant $T^{\gamma}P^{1-\gamma}$ = constant

GOLDEN KEY POINTS Work in closed vessel is zero because volume remains constant. Work during free expansion of an ideal gas in vacuum is zero, because P_{ext} is zero. Work in a chemical reaction $w = -P\Delta V = -\Delta n_{g}$.RT Illustrations 5 moles of oxygen are heated at constant volume from 10° C to 20° C. What will be the change Illustration 15 in the internal energy of gas? The molar heat capacity of oxygen at constant pressure, Cp = 7.03 $\frac{\text{Cal}}{\text{mol}K}$ and R=2 Cal mol⁻¹ K⁻¹ Solution We know mayer's relation is $C_p - C_u = R$ $C_v = C_n - R = 7.03 - 2 = 5.03$ Cal mol⁻¹ K⁻¹ As we know $\Delta E = nC_v dT = 5 \times 5.03 \times 10 = 251.5$ Cal At 27°C, one mole of an ideal gas compressed isothermally and reversibly from a pressure Illustration 16 of 2 atm to 10 atm. Calculate ΔE and q in calorie. For isothermal process $\Delta E = 0$ and w = -2.303 nRT $\log_{10} \frac{P_1}{P_2}$ **Solution** $w = -2.303 \times 1 \times 2 \times 300 \times \log \frac{2}{10}$ $w = +2.303 \times 600 \times \log 5$ $w = +2.303 \times 600 \times 0.699$ w = + 965.87 Cal $\therefore w = -q$ For isothermal process ∴ g = - 965.87 Cal **Illustration 17** A gas expands from 3dm³ to 5 dm³ against a constant pressure of 3 atm. The work done during expansion is used to heat 10 mol of water of temperature 290 K. Calculate final temperature of water (if specific heat of water is $4.184 \text{ Jg}^{-1}\text{K}^{-1}$) Solution Since work is done aganist constant P and thus, irreversible $\Delta V = 5 - 3 = 2 dm^3 = 2 L, P = 3 atm$ $w = -P\Delta V = -3 \times 2 L$ atm $= -6 \times 101.3 J = -607.8$ Joule Now this work is used up in heating water $w = n \times C \times \Delta T$ $607.8 = 10 \times (4.184 \times 18) \times \Delta T$ $\Delta T = 0.81 = T_2 - T_1$

: Final temperature = $T_1 + \Delta T = 290 + 0.81 = 290.81$ K

Pre-Medical : Chemistry

Illustration 18 A sample of 3 mol of an ideal gas at 200K and 2 atm is compressed reversibly and until the temperature reaches 250K, given that molar heat capacity is 27.5 Jk ⁻¹ mol ⁻ volume, calculate w.			
Solution		$C_v = 27.5 \ Jk^{-1}mol^{-1}$	
		During reversible adiabatic process	
		$w = nC_v (T_2 - T_1) = 3 \times 27.5 \times 50 = 4125$ Joule	
Illustration	n 19	$10~{\rm moles}$ of an ideal gas at $27^{\circ}{\rm C}$ and $10~{\rm atm.},$ pressure occupying a volume of $24.6~{\rm L}$ undergoes the following changes.	
		(i) Isothermal & reversible expansion to 246 L	
		(ii) Isothermal and irreversible expansion to 246 L. (iii) Isochoric heating to 177℃.	
		Calculate the work done in each transformation in kJ.	
Solution		(i) Work done in isothermal reversible expansion	
		w = -2.303 × nRT log $\frac{v_2}{v_1}$ = -2.303 × 10 × 8.31 × 300 × log $\frac{246}{24.6}$	
		= -57413.79 J = -57.41 kJ	
	(ii)	Work done in isothermal irreversible expansion	
		w = -P ($V_2 - V_1$) = -1 (246 - 24.6) = -221.4 L-atm = -221.4 × 101.3 J = -22.43 kJ	
	(iii)	Work done in isochoric change	
		Since $\Delta V = 0$ \therefore $w = 0$	
Illustratio	n 20	Find the work done when 2 mol of a gas expands isothermally from 5dm ³ to 40dm ³ against	
		a constant external pressure of 2 atm at 298K. Also calculate w_{rev} for the change.	
Solution	(i)	$w = -P\Delta V$	
		$w = -2 \times (40 - 5)$	
		$w = -70 \ell \text{ atm} = -70 \times 101.3 \text{ J}$	
		w = -7091 J	
	(ii)	w = -2.303 nRT log $\frac{V_2}{V_1}$	
		$w = -2.303 \times 2 \times 8.314 \times 298 \log \frac{40}{5}$	
		$w = -10.3 \times 10^3 \text{ J}$	
		BEGINNER'S BOX-4	

- Calculate w for the isothermal reversible expansion of 1mol of an ideal gas from an initial pressure of 1.0 bar to a final pressure of 0.1 bar at a constant temperature of 273 K :
 (1) -5227.2 J
 (2) +5227.2 J
 (3) -2257 J
 (4) +2257 J
- When 229 J of energy is supplied as heat at constant pressure to 3 mol Ar(g), the temperature of the sample is increased by 2.55K. Calculate the molar heat capacity at constant volume :(1) 30 kJ K⁻¹ mol⁻¹
 (2) 30 J K⁻¹ mol⁻¹
 (3) 21.7 J K⁻¹ mol⁻¹
 (4) 21.7 kJ K⁻¹ mol⁻¹

Z:\NODE02\B04-B0\TaRGET\CHEM\ENG\WODULE-1\5.THERWODYNAMCS\01-THERWO.P65

5.11 SPONTANEOUS PROCESS AND NON-SPONTANEOUS PROCESS :

(i) Spontaneous process :

- The process which has a natural tendency to occur in a particular direction either of its own or after proper initiation under the given set of conditions.
- All natural processes are ir-reversible and spontaneous processes. The natural processes take place of their own in one direction only.

(ii) Non-spontaneous process :

- The process which does not occur of its own in a particular direction i.e. a process which does not have a natural tendency to occur in a particular direction either of its own or after initiation is called as non-spontaneous process.
- Non-spontaneous process may be made to occur when energy from some external source is supplied continuously throughout the process.

Examples of spontaneous process that need no initiation :

- **Ex.1** Flow of water from high level to low level.
 - Flow of heat from hot body to cold body.
 - Flow of charge from high potential to low potential.
 - Flow of gas from high pressure to low pressure.
- **Ex.2** Melting of ice at 25° C
 - Evapouration of water at 25° C
 - Dissolution of common salt in water.
- Ex.3 Mixing of different non reacting gases

Examples of spontaneous process that need initiation :

Ex.1 Burning of fuel (coal, petrol)

$$C(s) + O_2 \longrightarrow CO_2$$

$$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$$

Ex.2 Lighting of candle

Criteria for a process to be spontaneous :

- (i) Tendency to attain minimum energy or maximum stability (Energy Factor).
- (ii) Tendency to attain maximum randomness (Entropy Factor)

5.12 ENTROPY (S) :

(i) The thermodynamic quantity, which is used to measure **degree of randomness** or **disorderness** of the system is called as entropy.

Entropy (s) \propto Randomness or disorderness

- (ii) More is the disorderness, higher is the entropy.
- (iii) The ratio of heat absorbed by the system in isothermal and reversible manner to the temperature at which heat is absorbed is equals to the change in entropy.

$\Delta S =$	$\frac{q_{_{rev}}}{T}$	

Where $q_{_{rev}}{}=$ heat absorbed by the system in a reversible manner at the temperature T Unit : J $K^{_{-1}}$ or Cal $K^{_{-1}}$

- (iv) $\Delta S = S_{\text{final}} S_{\text{inital}}$ If $S_{\text{final}} > S_{\text{initial}}$: Then ΔS = positive If $S_{\text{final}} < S_{\text{initial}}$: Then ΔS = negative
- (v) Entropy is an extensive property and state function.
- (vi) Entropy change in a chemical reaction

$$\Delta S = \Sigma S_{\text{product}} - \Sigma S_{\text{reactant}}$$

(vii) Entropy change for a process : $\Delta S = \frac{q_{rev}}{T} \left[\Delta S = nC_V \ell n \frac{T_2}{T_1} + nRln \frac{V_2}{V_1} \right] \text{ or } \Delta S = nC_P \ell n \frac{T_2}{T_1} + nRln \frac{P_1}{P_2}$

Case I : For an ideal gas reversible isothermal process; : $T_2 = T_1$

$$\Delta S = nR \ln \frac{V_2}{V_1} = nR \ln \frac{P_1}{P_2}$$

$$\Delta S = 2.303 nR \log \frac{V_2}{V_1} = 2.303 nR \log \frac{P_1}{P_2}$$

Case II : For an isochoric process $V_2 = V_1$

(viii) For reversible adiabatic process :

Entropy remains constant so process is also known as isoentropic process.

Factors affecting entropy of system :

- (I) If $\Delta n_g > 0$ then $\Delta S > 0$ If $\Delta n_g < 0$ then $\Delta S < 0$
- (II) Physical state : $S_{solid} < S_{liquid} < S_{qas}$
- (III) On increasing gaseous moles entropy increases.
- (IV) On increasing temperature, S will increase.

Ex. $Fe(s) \rightarrow Fe(s): \Delta S=positive$ 300K 400K

(V) On decreasing pressure, S increases.

Ex. $N_2(g) \rightarrow N_2(g) : \Delta S = positive$ 5atm 2 atm

(VI) Mixture : Solid + solid liquid + liquid gas + gas $S \uparrow$

Entropy change during phase transition :

(I) Entropy of fusion $[(\Delta S)_{f}]$ mole :

The entropy change, when 1 mol solid changes into liquid at its melting point temperature.

solid
$$\rightleftharpoons$$
 liquid

$$\left(\Delta S\right)_{f}=\frac{\Delta H_{fusion}}{T}$$

(II) Entropy of vapourisation $[(\Delta S)_{van}]$ mole :

The entropy change, when 1 mol liquid changes into vapour at its boiling point temperature.

liquid
$$\xleftarrow{}$$
 vapour

$$(\Delta S)_{vap} = \frac{\Delta H_{vap}}{T}$$

(III) Entropy of sublimation $[(\Delta S)_{sub}]$ mole :

The entropy change, when 1 mol solid changes into vapour at a particular temperature.

solid
$$\longleftrightarrow$$
 vapour

$$(\Delta S)_{sub} = \frac{\Delta H_{sub}}{T}$$

Some famous or extra ordinary examples of entropy change :

- (i) Entropy of graphite > Entropy of diamond.
- (ii) In rusting of iron entropy increases.
- (iii) $NH_4Cl(s) + aq \longrightarrow NH_4^+(aq) + Cl^-(aq)$

In this process NH_4^+ and Cl^- ions are free to move in solution where as they are not free to move in solid NH_4Cl . Hence ΔS is positive for this type of dissolution process.

- (iv) On addition of HCl in the aqueous solution of Ag^+ ions entropy decreases due to precipitation of AgCl.
- (v) **On boiling of egg :** Denaturation of proteins occur. Thus entropy increases.
- (vi) Stretching of rubber : During stretching of rubber band its long flexible macromolecules get uncoiled.
 The uncoiled form has more specific geometry and more ordered arrangement. Thus entropy decreases.

Total entropy change in reversible process :

In reversible process, at every step system and surroundings remain in thermal equilibrium with each other. Let a system, releases q heat to the surroundings at temperature T.

$$\Delta S_{system} = \frac{-q}{T} \, ; \qquad \Delta S_{surroundings} = \frac{+q}{T} \label{eq:system}$$

$$\therefore \qquad \Delta S_{\text{total}} = \Delta S_{\text{system}} + \Delta S_{\text{surroundings}}$$

$$\Delta S_{\text{total}} = \frac{-q}{T} + \frac{q}{T} \implies \Delta S_{\text{total}} = 0$$

Total entropy change in irreversible process :

Let a system is at high temperature T_1 and surroundings are at low temperature T_2 .

Let q amount of heat is released by the system.

$$\Delta S_{\text{system}} = \frac{-q}{T_1}, \qquad \Delta S_{\text{surroundings}} = \frac{+q}{T_2}$$

$$\therefore \qquad \Delta S_{\text{total}} = \Delta S_{\text{system}} + \Delta S_{\text{surroundings}} = \frac{-q}{T_1} + \frac{q}{T_2}$$

$$\therefore \quad \Delta S_{\text{total}} = +ve \qquad (:: T_1 > T_2)$$

Total entropy change for irreversible spontaneous process is always greater than zero.

Spontaneity of a process in terms of total entropy change :

- If, $\Delta S_{total} = +ve \Rightarrow$ spontaneous process
- If, $\Delta S_{total} = -ve \implies$ non spontaneous process
- If, $\Delta S_{total} = 0 \implies$ process is at equilibrium

Illustrations —

- **Illustration 21** The enthalpy change for transition of liquid water to steam is 40.8 kJ mol⁻¹ at 373K. Calculate Δ S for the process.
- **Solution** The entropy change for the vapourization of water is given by $\Delta S = \frac{\Delta H_{Vap.}}{T}$

Given Δ H $_{_{\rm Vab.}}$ = 40.8 kJ mol $^{-1}$ = 40.8 $\times 1000$ J mol $^{-1}$ and T = 373 K

$$\Delta S = \frac{40.8 \times 1000 \text{ Jmol}^{-1}}{373 \text{K}} = 109.38 \text{ JK}^{-1} \text{ mol}^{-1}$$

Illustration 22 Calculate the change in entropy for the fusion of 1 mol of ice. The melting point of ice is 273K and molar enthalpy of fusion of ice = 6 kJ mol^{-1}

Solution $\Delta S_{f} = \frac{\Delta H_{f}}{T} = \frac{6 \times 10^{3}}{273} = 21.97 \text{ JK}^{-1} \text{ mol}^{-1}$

Illustration 23 The enthalpy of vapourisation of liquid diethyl ether $(C_2H_5)_2O$, is 26.0 kJ mol⁻¹ at its boiling point (35.0°C). Calculate ΔS for conversion of :-

(i) Liquid to vapour and (ii) Vapour to liquid at $35^\circ\!C$

Solution (i)
$$\Delta S_{vap.} = \frac{\Delta H_{vap.}}{T} = \frac{26 \times 10^3}{308} = 84.41 \text{ JK}^{-1}\text{mol}^{-1}$$

(ii)
$$\Delta S_{\text{cond.}} = \frac{\Delta H_{\text{cond.}}}{T} = \frac{-26 \times 10^3}{308} = -84.41 \text{ JK}^{-1}\text{mol}^{-1}$$

EN		Pre-Medical : Chem	
ration 24	Which of the following processes a	are accompanied by increase of entropy :	
	(i) Dissolution of iodine in a solver	$\text{tt} [I_2(s) \longrightarrow I_2(\text{aq.})]$	
	(ii) HCl is added to AgNO_{3} and a	precipitate of AgCl is obtained.	
	(iii) A partition is removed to allow	v two gases to mix.	
ion	Increase of entropy : (i) and (iii)		
	DEGUN		
	BEGINN	ER'S BUX-5	
In any nati	ural process, occuring in the universe	e :-	
(1) Entropy is conserved (2) Entropy increase		(2) Entropy increases	
(3) Entropy decreases		(4) Entropy remains unchanged	
The most a	random state of H_2O system is :-		
(1) Ice		(2) $H_2O(\ell)$ at 80°C ; 1 atm	
(3) Steam		(4) $\rm H_2O$ (ℓ) at 25°C ; 1 atm	
Change in	entropy is negative for :-		
(1) $\operatorname{Br}_2(\ell) \longrightarrow \operatorname{Br}_2(g)$		(2) C(s) + $H_2O(g) \longrightarrow CO(g) + H_2(g)$	
(3) $M_2(g, 10 \text{ atm}) \longrightarrow M_2(g, 1 \text{ atm})$		(4) Fe (at 400K) \longrightarrow Fe (at 300K)	
Entropy ch	ange in spontaneous adiabatic proce	ess is :-	

- 4. Entropy change
 - (2) < 0(1) Zero (3) > 0(4) None of these
- 5. 5 mole of an ideal gas expand reversibly from a volume of 8 dm³ to 80 dm³ at a temperature of 27°C. The change in entropy is :-

(1) 41.57 JK ⁻¹	(2) –95.73 JK ⁻¹
(3) 95.73 JK ⁻¹	(4) –41.57 JK ⁻¹

- 6. The latent heat of vapourisation of water at 100°C is 540 Cal g⁻¹. Calculate the entropy increase when one mole of water at 100°C is evaporated :-
 - (1) 26 Cal K⁻¹ mol⁻¹ (2) 1.45 Cal K⁻¹ mol⁻¹ (4) 1.82 Cal K⁻¹ mol⁻¹ (3) 367 Cal K⁻¹ mol⁻¹
- 7. Calculate enthalpy of vapourization per mole of ethanol. Given $\Delta S = 109.8 \text{ J K}^{-1} \text{ mol}^{-1}$ and B.P. of ethanol is 78.5℃ :-

(1) Zero	(2) 38.594 kJ mol ⁻¹
(3) 3.85 kJ mol ⁻¹	(4) None of these

5.13 SECOND LAW OF THERMODYNAMICS (SLOT) :

- It states about the direction of flow of heat (i)
- (ii) All natural processes in universe are ir-reversible process or natural processes are spontaneous process.
- (iii) Due to spontaneous process entropy of universe is increasing continuously i.e. entropy of an isolated system increases.

 $(\Delta S)_{sustem} + (\Delta S)_{surr} > 0$ $(\Delta S)_{T} = + ve$ or $(\Delta S)_{T} > 0$ or

Z:\NODE02\B0AI-B0\TARGET\CHEM\ENG\WODULE-1\5.THERMODYNAMCS\01-THERMO.P65 Ε ALLEN .

Solution

1.

2.

3.

Illustration 24

istry

Pre-Medical : Chemistry

5.14 GIBB'S ENERGY (G or F) :

- Gibb's energy is defined at constant temperature and pressure to predict spontaneity of a process.
- Gibb's energy is a thermodynamic quantity which is used to measure the capacity of system to do useful work or Gibb's energy is that part of the total energy of system which can be converted into useful work.
- The term Gibbs energy was introduced to explain criteria of spontaneity in terms of system.
 - Since ; energy = useful work + randomness energy

$$H = G + TS$$

G = H - TS ...(i)

So the function that takes both enthalpy and entropy of system into account is called Gibbs energy.

- Gibbs energy is an extensive property and state function.
- \bullet Absolute value of G can't be measured but change can be measured, So we discuss ({\$\Delta\$G})

$$\Delta G = G_{\text{final}} - G_{\text{initial}}$$

From eq. (i) $\Delta G = \Delta H - T \Delta S$

Where

 $\Delta H = Change in enthalpy$

 ΔG = Change in Gibb's energy

 ΔS = Change in entropy

Relation between Gibb's energy change and non expansion work or useful work :

 $FLOT : \Delta E = q + W$

If, work is done by the system, then, $\Delta E = q - W$ (i)

According to Gibb's, system does both expansion and non expansion work.

- $W = W_{expansion} + W_{non expansion}$ $W = P\Delta V + W_{non expansion}$ Put W in equation (i)
- $\Rightarrow \quad \Delta E = q (P\Delta V + W_{\text{non expansion}})$ $q = \Delta E + P\Delta V + W_{\text{non expansion}}$ $q = \Delta H + W_{\text{non expansion}} \quad (\because \Delta H = \Delta E + P\Delta V)$ $T\Delta S = \Delta H + W_{\text{non expansion}} \quad (\because \Delta S = q/T)$ $W_{\text{non expansion}} = T \cdot \Delta S \Delta H \quad (\because \Delta G = \Delta H T\Delta S)$
- \Rightarrow $W_{\text{non expansion}} = -\Delta G$ or $W_{\text{useful}} = -\Delta G$

The decrease in Gibb's energy of system is equal to the non expansion work or useful work.

Relation in between ΔG of system and ΔS_{total} or Gibb's energy change and spontaneity :

 $\therefore \qquad \Delta S_{\text{total}} = \Delta S_{\text{system}} + \Delta S_{\text{surroundings}}$

Let system releases heat at constant temperature T and pressure P.

$$\therefore$$
 $q = q_p = \Delta H$

 $q_{system} = -q_{surroundings}$

Z:\NODE02\B0AI-B0\T ARGET\CHEM\ENG\WODULE-1\5.THERMODYNAMICS\01-THERMO.P65

Ε

ALLEN -

\Rightarrow	$\Delta H_{system} = - \Delta H_{surroundings}$
	$\Delta S_{surr.} = \frac{\Delta H_{surr.}}{T}$
	$\Delta S_{surr.} = \frac{-\Delta H_{sys.}}{T}$
÷	$\Delta S_{total} = \Delta S_{sys.} + \left(\frac{-\Delta H_{sys.}}{T}\right)$
	$T\Delta S_{total} = T\Delta S_{sys.} - \Delta H_{sys.}$
	$T\Delta S_{total} = -(\Delta H_{sys.} - T\Delta S_{sys.})$
	$T\Delta S_{total} = -\Delta G_{sys.}$
or	$\Delta G_{sys.} = -T\Delta S_{total}$
If,	$\Delta S_{total} = +ve \implies \Delta G_{sustem} = -ve$

(i)	If,	$\Delta S_{total} = +ve \Rightarrow$	$\Delta G_{system} = -ve$	\Rightarrow	spontaneous process
(ii)	If,	$\Delta S_{total} = -ve \implies$	$\Delta G_{system} = +ve$	\Rightarrow	non spontaneous process
(iii)	If,	$\Delta S_{total} = 0 \implies$	$\Delta G_{system} = 0$	\Rightarrow	process is at equilibrium.

$\Delta_{r}H^{-}$	$\Delta_{\mathbf{r}}\mathbf{S}^{-}$	∆ _r G⁻	Description
-	+	-	Reaction spontaneous at all temperature
-	-	-	(at low T) Reaction spontaneous at low temperature
-	-	+	(at high T) Reaction nonspontaneous at high temperature
+	+	+	(at low T) Reaction nonspontaneous at low temperature
+	+	-	(at high T) Reaction spontaneous at high temperature
+	-	+	(at all T) Reaction nonspontaneous at all temperatures

Relationship between standard Gibb's energy change (ΔG°) and Equilibrium constant (K_{_{eq}}) :-

For a reaction $m_1A + m_2B \rightleftharpoons n_1C + n_2D$

$$\Delta G = \Delta G^{\circ} + RT \ \ell nQ$$

At equilibrium –
$$\Delta G$$
 = 0 and Q = $K_{_{eq}}$

$$0 = \Delta G^{\circ} + RT \ell n K_{eq}$$

$$\therefore \qquad \Delta G^{\circ} = -RT \ell n K_{eq} \qquad \dots (i)$$

or
$$\Delta G^{\circ} = -2.303 \text{RT} \log_{10} \text{K}_{eq}$$
 ...(ii)

from equation (i)

$$\log K_{eq} = -\frac{\Delta G^{\circ}}{RT}$$

$$\therefore \qquad K_{eq} = e^{-\Delta G^{\circ}/RT} \qquad \dots (iii)$$

	Illustrations				
Illustration 25. For a certain reaction the change in enthalpy and change in entropy are 40.63 kJ mol ⁻¹ 100 JK ⁻¹ . What is the value of ΔG at 27°C and indicate whether the reaction is possible or r					
Solution	We know that :				
	$\Delta G = \Delta H - T \Delta S$				
	T = 27 + 273 = 300K				
	$\Delta H = 40.63 \times 10^3 \text{ J mol}^{-1} = 40630 \text{ J mol}^{-1}$				
	$\Delta S = 100 J K^{-1}$				
	$\Delta G = 40630 - 300 \times 100 = 40630 - 30000 = + 10630 \text{ J}$				
	Positive value of ΔG indicates that the reaction is not possible.				
Illustration 26	For a reaction at 25°C enthalpy change (ΔH) and entropy change (ΔS) are $-11.7 \times 10^3 J$ mol ⁻¹ and $-105 J$ mol ⁻¹ K ⁻¹ respectively. Find out whether this reaction is spontaneous or not.				
Solution	$\Delta G = \Delta H - T \Delta S$				
	= - 11700 - 298 × (- 105)				
	= + 19590 J				
	$\Delta G = + ve$, so reaction is non-spontaneous.				
Illustration 27	Calculate the equilibrium constant for the reaction given below at 400K.				
	If ΔH° =77.2kJmol ⁻¹ and ΔS° = 122 JK ⁻¹ mol ⁻¹				
	$\text{PCl}_{5(g)} \longrightarrow \text{PCl}_{3(g)} + \text{Cl}_{2(g)}$				
Solution	$\Delta G^{0} = \Delta H^{0} - T\Delta S^{0} = 77200 - 400 \times 122 = 28400 \text{ J}$				
	$\Delta G^0 = -2.303 \text{ RT} \log \text{K}_c$				
	or $28400 = -2.303 \times 8.31 \times 400 \log K_c$				
	or $K_c = 1.958 \times 10^{-4}$				
Illustration 28	For the reaction, N ₂ (g) + $3H_2$ (g) $\longrightarrow 2NH_3$ (g); $\Delta H = -95.4$ kJ and $\Delta S = -198.3$ Jk ⁻¹ . Calculate the temperature at which the reaction will proceed in forward direction.				
Solution	$\Delta G = \Delta H - T \Delta S$				
	\therefore At equilibrium $\Delta G = 0$				
÷.	$\Delta H = T\Delta S$ so $T = \frac{\Delta H}{\Delta S} = \frac{-95.4 \times 1000 J}{-198.3 J K^{-1}} = 481 K$				
For	this reaction ΔH is -ve and ΔS is -ve, so it will be spontaneous at low temperature.				
	Below 481K the reaction would be spontaneous.				
218					

0

Illustration 29	Ition 29 Enthalpy and entropy changes of a reaction are 40.63 kJ mol ⁻¹ and 108.8 J K ⁻¹ mol ⁻¹ respect Analyse the feasibility of the reaction at 27°C.				
Solution	$\Delta H = 40.63 \text{ kJ mol}^{-1} = 40630 \text{ J K}^{-1} \text{ mol}^{-1}$				
	$\Delta S = 108.8 \text{ J K}^{-1} \text{ mol}^{-1}$				
	$T = 27^{\circ}C = 27 + 273 = 300 \text{ K}$				
	Now $\Delta G = \Delta H - T \Delta S$				
	= 40630 J mol ⁻¹ – (300 K) × (108.8 J K ⁻¹ mol ⁻¹)				
	$\Delta G = 7990 \text{ J mol}^{-1}.$				
	Since ΔG is positive, the reaction is not feasible in the forward direction.				
Illustration 30	For a certain reaction the change in enthalpy and change in entropy are 40.63 kJ mol ⁻¹ and 100 JK ⁻¹ . Show that the reaction at 27° C is possible or not.				
Solution	$\Delta G = \Delta H - T \Delta S$				
	$\Delta G = 40.63 - 300 \times 100 \times 10^{-3}$				
	$\Delta G = + 10.630 \text{ kJ}$				
	ΔG is positive so reaction is not possible.				
Illustration 31 Zinc reacts with dilute hydrochloric acid to give hydrogen at 17°C. The enthalpy of t –12.55 kJ mol ⁻¹ and entropy change is 5JK ⁻¹ mol ⁻¹ for the reaction. Calculate th change and predict whether the reaction is spontaneous or not.					
Solution	Given Δ H = -12.55 kJmol ⁻¹ and Δ S = 5 JK ⁻¹ mol ⁻¹				
	T= 17+273 = 290 K				
	Applying $\Delta G = \Delta H - T \Delta S$				
	$= -12.55 \frac{\text{kJ}}{\text{mol}} - 290\text{K} \times \frac{5}{1000} \frac{\text{kJ}}{\text{Kmol}}$				
	= - 12.55 - 1.45				
	$= -14 \frac{\text{kJ}}{\text{mol}}$				
	Since Δ G is negative, the reaction will be spontaneous				
Illustration 32	For a reaction both ΔH and ΔS are positive under what condition will the reaction occur spontaneously.				
Solution	The reaction will occurs spontaneously only when $T\Delta S > \Delta H$.				
	$\Delta G = \Delta H - T\Delta S = (+) - T (+)$				
	For ΔG to be negative, T ΔS must be > ΔH				
Illustration 33	Which of the following are state function ?				
	(i) q (ii) Entropy (iii) Specific heat capacity (iv) H (v) w				
Solution	Ans. (ii), (iii) and (iv)				
	219				

		BEGI	NNER'S BOX-6	
1.	If $\Delta G^{\circ} > 0$ for a read	ction then :-		
	(1) Kp > 1	(2) Kp < 1	(3) Kp = 1	(4) None
2.	For an endothermic	reaction to be spontan	eous :-	
	(1) ΔG must be +ve		(2) ΔS must be > 0	
	(3) T∆S must be -ve		(4) T ΔS must be equ	ual to ΔG
3.	The value of ΔG for	the process $H_2O(s)$ -	\longrightarrow H ₂ O(ℓ) at 1 atm and 2	260 K is :-
	(1) < 0	(2) = 0	(3) > 0	(4) Unpredictable
4.	In a certain chemical	reaction $\Delta H = 150 \text{ K}$	J and $\Delta S = 10 \text{ JK}^{-1}$ at 300	0 K. The value of ΔG would be :-
	(1) –2850 J		(2) Zero	
	(3) +2850 J		(4) 147 kJ	
5.	The standard Gibb's energy change for a gaseous reaction at 27° C is X kCal. If equilibrium constant a reaction is 100 and R is 2 Cal K ⁻¹ mol ⁻¹ . Then X is :-			
	(1) -2.7636	(2) +2.7636	(3) + 807	(4) - 807
6.	The favourable condi	tions for a spontaneou	s reaction are :-	
	(1) $T\Delta S > \Delta H$, $\Delta H =$	$+ve, \Delta S = +ve$	(2) $T\Delta S > \Delta H, \Delta H$	= +ve, ΔS = -ve
	(3) TΔS = ΔH, ΔH =	= -ve, ΔS = -ve	(4) $T\Delta S = \Delta H, \Delta H$	= +ve, ΔS = +ve

5.15 THIRD LAW OF THERMODYNAMICS (TLOT)

At zero kelvin (absolute zero temperature), the entropy of pure perfect crystalline solid is taken as zero.

Exceptions :

(i) NO, N_2O (ii) CO, CO_2	(iii) Mixture of isotopes	(iv) Ice
--------------------------------	---------------------------	----------

ALLEN

ENERGETICS

5.16 INTRODUCTION :

Thermochemistry is the branch of physical chemistry which deals with the transfer of heat between a chemical system and its surrounding when a change of phase or chemical reaction takes place within the system.

Depending upon the conditions under which the reaction is carried out, the quantity of heat transferred is related to energy or enthalpy change due to changes of states which occur in the system.

In this chapter we will introduced enthalpies of some specific reaction. Like, Enthalpy of formation (ΔH_{f}), Enthalpy of combustion (ΔH_{comb}), Bond dissociation enthalpy (ΔH_{BDF}) & Enthalpy of Neutralisation ($\Delta H_{neutralization}$)

THERMOCHEMICAL REACTION:

The balanced chemical reaction which give information about the physical states of reactants & products and heat change is called as thermo chemical reaction.

eg.
$$2\text{KClO}_{3(s)} \longrightarrow 2\text{KCl}_{(s)} + 3\text{O}_{2(q)}, \Delta H = + \text{xcal}$$

Thermo chemical reaction are of 2 types.

(i) Endothermic reaction :

The reaction which absorbs heat is called as endothermic reaction.

$$\Delta H = +ve$$

$$\Delta H = H_{\rm p} - H_{\rm R} = +ve \text{ i.e. } H_{\rm P} > H_{\rm R}$$

- (a) Stability of reactant > Stability of product because more heat is required to break the bonds of reactant.
- (b) The product formed in the endothermic reaction is called endothermic compound.
- (c) If more heat is absorbed then the product formed in the reaction will be less stable or the reactant is more stable.

Representation of endothermic reaction :

A + B + xCal	$\longrightarrow C + D$	(endo)
A + B	\longrightarrow C + D - xcal	(endo)
A + B	\longrightarrow C + D, Δ H = + xcal	(endo)

Examples :

- (I) Dissociation reactions (mostly)
- (II) Fusion reactions
- (III) Vaporization reactions
- (IV) Sublimation reactions

(V) Photosynthesis
$$6CO_2 + 6H_2O \longrightarrow C_6H_{12}O_6 + 6O_2$$
, $\Delta H = +ve$
(ii) **Exothermic reaction :**
The reaction which evolves heat is called as exothermic reaction.
 $\Delta H = -ve$ $\Delta H = H_p - H_R = -ve$ i.e. $H_p < H_R$

(

Pre-Medical : Chemistry

Z:\NODE02\B0AI-B0\TARGET\CHEM\ENG\WODULE-1\5.THERMODYNAMICS\01-THERMO.P65

Е

- (a) Stability of reactant < Stability of product because less heat is required to break the bonds of reactant.
- (b) The product formed in the exothermic reaction is called exothermic compound.
- (c) If more heat is released then the product formed in the reaction will be more stable or the reactant is less stable.

Representation of exothermic reaction.

 $A + B \longrightarrow C + D + xcal$ (exo) $A + B - xcal \longrightarrow C + D$ (exo) $A + B \longrightarrow C + D$, $\Delta H = -xcal$ (exo)

Examples:

(III)

(I) Combustion reactions

1

Respiration reacti

Neutralisation reactions

fon **eg.**
$$C_6 H_{12} O_6 + 6C$$

(II)

$$C_6H_{12}O_6 + 6O_2 \longrightarrow 6CO_2 + 6H_2O_2$$

$$\begin{bmatrix} C + 2S \longrightarrow CS_2 \\ \frac{1}{2}N_2 + \frac{3}{2}Cl_2 \longrightarrow NCl_3 \\ N_2 + O_2 \longrightarrow NO/N_2O/NO_2/N_2O_4 \\ O_2 + F_2 \longrightarrow OF_2/O_2F_2 \end{bmatrix} \Delta H = +ve \text{ (endothermic)}$$

GOLDEN KEY POINTS

- (i) If conditions are not given then, ΔH is considered to be ΔH° .
- (ii) If thermochemical reaction is multiplied by a coefficient then, ΔH of reaction is also multiplied by that coefficient.
 - $H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(\ell)$ e.g. $2H_{p}(g) + O_{p} \longrightarrow 2H_{p}O(\ell)$

 $\Delta H = -285 \text{ kJ mol}^{-1}$

$$\Delta H = -2 \times 285 \text{ kJ}$$

 $\Lambda H = -285 \text{ kJ mol}^{-1}$

If reaction is reversed then numerical value of ΔH remains same but sign is changed. (iii)

$$H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(\ell)$$

 $H_2O(\ell) \longrightarrow H_2(g) + \frac{1}{2}O_2(g)$

 $\Delta H = +285 \text{ kJ mol}^{-1}$

BEGINNER'S BOX-7

1. An endothermic reaction is one in which : (1) heat is converted into electricity (3) heat is evolved

(2) heat is asborbed

(4) heat is converted into mechanical work

If heat of reaction A + 5B \longrightarrow 2C + 3D, is -50 kJ. What is the heat of the reaction 2A + 10B \longrightarrow 4C + 6D. 2. (1) - 50 kJ(2) – 25 kJ (3) – 100 kJ (3) + 100 kJ3. The process $CH_2COOH \longrightarrow CH_2COO^- + H^+$, should be : (2) endothermic (1) exothermic (3) neither exothermic nor endothermic (4) exothermic or endothermic depending upon temperature 4. For the given reaction : $CO_2(g) + H_2(g) \longrightarrow CO(g) + H_2O(g); \Delta H = 40 \text{ kJ}$ The Δ H is specifically called (1) Heat of formation of CO (2) Heat of combustion (3) Heat of reaction (4) Heat of hydrogenation of C = O bond

5.17 HEAT OF REACTION OR (ENTHALPLY OF REACTION) OR (△ H_□) :

The amount of heat evolved or absorbed when number of moles of the reactant according to the balanced chemical reaction had completely reacted is called as heat of reaction.

Example :
$$H_{2(g)} + \frac{1}{2}O_{2(g)} \longrightarrow H_2O_{(g)}, \qquad \Delta H_R = \checkmark$$

 $H_{2(g)} + O_{2(g)} \longrightarrow H_2O_{(g)}, \qquad \Delta H_R = \times$
 $H_{2(g)} + O_{2(g)} \longrightarrow H_2O_{2(g)}, \qquad \Delta H_R = \checkmark$

Note : Heat of reaction at constant pressure is ΔH and heat of reaction at constant volume is ΔE .

Factors affecting heat of reaction :

Reaction condition : (i)

(a) The chemical reactions are carried out at constant temperature with either pressure or volume constant.

At constant pressure $q_p = \Delta H_{reactin}$

At constant volume
$$q_v = \Delta E_{reaction}$$

$$\Delta H = \Delta E + \Delta n_g RT$$

(ii) **Quantity of reactant :**

Example: $H_{2(g)} + \frac{1}{2} O_{2(g)} \longrightarrow H_2O_{(g)} \Delta H_1 = -x \ lCal \ mol^{-1}$ $2H_{2(g)} + O_{2(g)} \longrightarrow 2H_2O_{(g)} \Delta H_2 = 2 \times (-x \text{ Kcal})$

If equation is multiplied by coefficient then value of Δ H is also multiplied by that coefficient.

(iii) Physical state of products and reactants :

$$\begin{split} H_{2(g)} + \frac{1}{2} O_{2(g)} \longrightarrow H_2 O_{(\ell)}, & \Delta H = -285.8 \text{ kJ mole}^{-1} \\ H_{2(g)} + \frac{1}{2} O_{2(g)} \longrightarrow H_2 O_{(g)}, & \Delta H = -242 \text{ kJ/mole}^{-1} \end{split}$$

If the physical state of product is different then the value of ΔH is different.

Note : For H_2O (liq.), ΔH is more negative in comparison to the formation of H_2O (vap.) because when vapours convert into liquid then some heat is released.

Allotropic form : (Physical nature of reactant) (iv)

$$\begin{split} & C_{\text{graphite}} + O_2 \longrightarrow CO_2, \\ & C_{\text{diamond}} + O_2 \longrightarrow CO_2, \end{split} \qquad \qquad \Delta H_{\text{R}} = -393.5 \text{ kJ mole}^{-1} \\ & \Delta H_{\text{R}} = -399.5 \text{ kJ mole}^{-1} \end{split}$$

(v) **Temperature :**

Effect of temperature on heat of reaction is given by Kirchoff equation

(i) at constant pressure :
$$\frac{\Delta H_{T_2} - \Delta H_{T_1}}{T_2 - T_1} = \Delta C_{p_m}$$
$$\Delta C_{p_m} = \Sigma (C_{p_m})_p - \Sigma (C_{p_m})_R$$
$$\Delta H_{T_1} = \text{Heat of reaction at } T_1 \text{ temperature}$$
$$\Delta H_{T_2} = \text{Heat of reaction at } T_2 \text{ temperature}$$
(ii) at constant pressure is a constant of the temperature of the temperature is the temperature of temperature is the te

(ii) at constant volume :

$$\frac{1}{T_2 - T_1} = \Delta C_{Vm}$$
$$\Delta C_{Vm} = \Sigma (C_{Vm})_P - \Sigma (C_{Vm})_R$$

5.18 TYPES OF HEAT OF REACTION :

(A) Heat of formation, Enthalpy of formation (ΔH_{f}) or $(\Delta_{f} H)$:

It is the enthalpy change when one mole of a substance is formed from its elements in their most abundant naturally occurring form or in their standard and stable state form (also called reference states). The reference state of oxygen, carbon and sulphur are O_2 gas, C_{graphite} and S_{rhombic} , respectively some reactions with standard molar enthalpies of formation are :

$$H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(h) \qquad \Delta H_f \checkmark$$

$$\frac{1}{2}H_{2(g)} + \frac{1}{2}N_{2(g)} + \frac{3}{2}O_{2(g)} \longrightarrow \underset{1 \text{ mole}}{\text{HNO}_3} \qquad \Delta H_{f} \checkmark$$

$$Na_{(s)} + \frac{1}{2}O_{2(g)} + \frac{1}{2}H_{2(g)} \longrightarrow NaOH_{1mole} \Delta H_{f}$$

APPLICATION OF ΔH_f :

Calculation of ΔH of any general reaction.

Let us considered a general reaction $aA + bB \rightarrow cC + dD$

$$\Delta H_{reaction} = \Sigma \Delta H_{f(products)} - \Sigma \Delta H_{f(reactant)} = \left[c \Delta H_{f(C)} + d \Delta H_{f(D)} \right] - \left[a \Delta H_{f(A)} + b \Delta H_{f(B)} \right]$$

GOLDEN KEY POINTS

- Standard condition means, P = 1 atm, $T = 25^{\circ}C$ or 298 K Standard heat of formation is represent by ΔH_{f}° .
- If no condition is given then value of ΔH_{f} is considerd as ΔH_{f}° .
- Standard heat of formation of all the elements in stable standard state is taken to be zero.

т11

The reference state of commonly used elements are

Elements	Reference sta	te
С	C _(graphite)	
S	S _{8(Rhombic)}	(Rhombic sulphur is energy wise more stable as compared to monoclinic sulphur)
Р	P _{4(white)}	
О	O _{2(g)}	
Н	$H_{2(q)}$	
Br	$\operatorname{Br}_{2(\ell)}$	
Metal	M _(s) [except Hg _(l)]
The formation reaction may be e	xothermic or end	othermic.

	——————————————————————————————————————	1S ————		
Illustration 34	4 Since enthalpy of elements in their natural state is taken as zero. The value of ΔH_f of compounds :			
	(1) is always negative	(2) is always positive		
	(3) may be positive or negative	(4) is zero		
Solution	Ans. (3)			
Illustration 35	The enthalpy of formation of ammonia at 298K is given as $\Delta H_f^\circ = -46.11$ kJ per mol of NH ₃ (g). To which of the following equation does this value apply ?			
	(1) $\frac{1}{2}$ N ₂ (g) + $\frac{3}{2}$ H ₂ (g) \longrightarrow NH ₃ (g)	(2) N(g) + $3H(g) \longrightarrow NH_3(g)$		
	(3) $N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$	(4) $\frac{1}{2}$ N ₂ (g) + $\frac{3}{2}$ H ₂ (g) \longrightarrow NH ₃ (ℓ)		
Solution	Ans. (1)			
224	•	• E		

		rie-	Medical . Chemisiry
Illustration 36	5 Which of the following equation rep	resents the standard heat of forma	tion :
	(1) C(diamond) + $2H_2(g) \longrightarrow CH_4(g)$) (2) C(graphite) + 2H ₂ (g)	$\longrightarrow CH_{4}(g)$
	(3) C(diamond) + $4H(g) \longrightarrow CH_{4}(g)$	(4) C(graphite) + 4H(g)-	$\longrightarrow CH_{a}(g)$
Solution	Ans. (2)		•
Illustration 37	Which of the following reaction defin	nes ΔH_{f}°	
	(1) $C_{(diamond)} + O_2(g) \longrightarrow CO_2(g)$	(2) $\frac{1}{2}$ H ₂ (g) + $\frac{1}{2}$ F ₂ (g)	\rightarrow HF(g)
	(3) $N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$	(4) CO(g) + $\frac{1}{2}$ O ₂ (g)	$\rightarrow CO_2(g)$
Solution	Ans. (2)		
Illustration 38	How much heat will be required at co Given : $\Delta_{f}H^{\circ}$ (CaO, s) = - 152 kCal $\Delta_{f}H^{\circ}$ (CaC ₂ , s) = - 14 kCal s $\Delta_{f}H^{\circ}$ (CO, g) = - 26 kCal m	nstant pressure to form 1.28 kg of mol ⁻¹ mol ⁻¹ nol ⁻¹	CaC ₂ from CaO(s) & C(s)?
Solution.	(1) + 112 kCal (2) 224 kCal CaO(s) + 3C(s) \longrightarrow CaC ₂ (s) + CO(s)	(3) 3840 kCal g)	(4) 2240 kCal
	$\Delta_{\rm f} {\rm H}^{\circ} = (-14 - 26) - (-152) = +11$	12 kCal mol	
	Total heat required = $\left(\frac{1280}{64}\right) \times 112$	\Rightarrow 2240 kCal	
Illustration 39	The $\Delta_{f} H^{\circ} (N_{2}O_{5}, g)$ in kJ mol ⁻¹ on the $2NO(g) + O_{2} (g) \longrightarrow 2NO_{2} (g)$ $4NO_{2} (g) + O_{2} (g) \longrightarrow 2N_{2}O_{5}$ $\Delta_{f} H^{\circ} (NO,g) = 90.2 \text{ kJ mol}^{-1}$	the bases of the following data is : $\Delta_r H^\circ = -114 \text{ kJ mol}^{-1}$ (g) $\Delta_r H^\circ = -102.6 \text{ kJ mol}^{-1}$	1
	(1) 15.1 (2) 30.2	(3) – 36.2 (4)	none of these
Solution	$\frac{1}{2}$ N ₂ (g) + $\frac{1}{2}$ O ₂ (g) \longrightarrow NO (g)	$\Delta_{\rm f} {\rm H}^{\circ} = 90.2$	
	$\begin{array}{rcl} N_2(g) + O_2(g) &\longrightarrow & 2NO(g) \\ 2NO(g) + O_2(g) &\longrightarrow & 2NO_2(g) \end{array}$	$\Delta_{\rm r} {\rm H}^{\circ} = 90.2 \times 2 \qquad (1)$ $\Delta_{\rm r} {\rm H}^{\circ} = -114 \qquad (2)$	
	$2NO_2(g) + \frac{1}{2}O_2(g) \longrightarrow N_2O_5(g)$	$\Delta_{\rm r} {\rm H}^{\circ} = \frac{-102.6}{2} = -51.3$ (3))
	From Equations $(1) + (2) + (3)$		
	$N_2(g) + \frac{5}{2}O_2(g) \longrightarrow N_2O_5(g)\Delta_f H^{\circ}(N)$	₂ O ₅ , g) = 15.1 kJ mol ⁻¹	
Illustration 40	Calculate Δ H° for 2Al _(s) +Fe ₂ O ₃ — Al ₂ O ₃ are -196.5 and -399.1 kCal.	$\rightarrow 2Fe_{(s)} + Al_2O_3$ given that standar	rd enthalpy of Fe_2O_3 and
Solution	$\Delta H_{\text{Reaction}}^{0} = \Sigma \Delta H_{\text{P}}^{\circ} - \Sigma \Delta H_{\text{R}}^{\circ}$		
	$= \left[2 \times \Delta H^{0}_{Fe(s)} + \Delta H^{0}_{Al_{2}O_{3}} \right] - \left[2 \times \Delta H^{0}_{Al} \right]$	$_{(s)} + \Delta H^0_{Fe_2O_3}] = 2 \times 0 + (-399.1) -$	[2×0 + (- 196.5)]
	$\Delta H_{\text{Reaction}}^0 = -202.6 \text{ kCal}$		

Pre-Medical : Chemistry

Illustration 41 The heat of formation of the compound in the second se	he following reaction is :
---	----------------------------

 $\mathrm{H_{2(g)}} + \mathrm{Cl_{2(g)}} \longrightarrow \mathrm{2HCl_{(g)}} + 44 \ \mathrm{Kcal}$

(1) $-44 \text{ kCal mol}^{-1}$ (2) $-22 \text{ kCal mol}^{-1}$ (3) $+11 \text{ kCal mol}^{-1}$ (4) $-88 \text{ kCal mol}^{-1}$

Solution Ans. (2)

For the formation of 1 mol of HCl from elements $\Delta H_{f}^{\circ} = -\frac{44}{2} = -22$ Kcal

(B) Heat of combustion (ΔH_{comb}) :

Amount of heat evolved when 1 mole of substance is completely burnt (or oxidised) in excess of oxygen. **Example :**

$\begin{array}{cccc} C_{\text{graphite}} &+ O_2 \longrightarrow CO_2, \Delta H_{\text{comb}} & \checkmark & \text{and} & \Delta H_{\text{f}} & \checkmark \\ C_{\text{diamond}} &+ O_2 \longrightarrow CO_2, \Delta H_{\text{comb}} & \checkmark & \text{and} & \Delta H_{\text{f}} & \times \\ \frac{C}{1\text{mole}} &+ \frac{1}{2}O_2 \longrightarrow CO, & \Delta H_{\text{comb}} & \times & \text{and} & \Delta H_{\text{f}} & \checkmark \\ \frac{CO}{1\text{mole}} &+ \frac{1}{2}O_2 \longrightarrow CO_2, \Delta H_{\text{comb}} & \checkmark & \text{and} & \Delta H_{\text{f}} & \checkmark \end{array}$

Note :

- (I) Heat of combustion reaction is always exothermic
- (II) If conditions are not given then ΔH_{comb} considered as ΔH°_{comb} .
- (III) If in a reaction heats of combustion of reactants and products are given then heat of that reaction can be measured as follows

$$\Delta H = \Sigma (\Delta H_{\rm comb})_{\rm R} - \Delta (\Delta H_{\rm comb})_{\rm P}$$

APPLICATION OF HEAT OF COMBUSTION :

Calorific value or fuel value (C.V.) :

The amount of heat evolved when 1 g of a substance (food or fuel) is completely burnt (or oxidised)

Calorific value = $\frac{\Delta H_{comb}}{Molecular weight}$

Unit :- kJ g⁻¹ or kCal g⁻¹

GOLDEN KEY POINTS

- Heat of combustion reaction is always exothermic
- If conditions are not given then ΔH_{comb} is considered as ΔH°_{comb}
- Maximum value of calorific value = Maximum efficiency or best fuel
- H_2 has the highest calorific value (150 kJ/g) but it is not used as domestic or industrial fuel due to some technical problems.

		— Illustration	S	
Illustration 42	1 mole of methanol, when burnt in oxygen, gives out —723 kJ mol ⁻¹ heat. If 1 mole of oxygen i used what will be the amount of heat evolved?			
Solution	(1) 723 kJ Ans. (3)	(2) 964 kJ	(3) 482 kJ	(4) 241 kJ
	$CH_{3}OH + \frac{3}{2}O_{2}$	$\rightarrow CO_2 + 2H_2O$,	$\Delta H = -723 \text{ kJ}$	
	with 1 mole of O_2 ,	$\Delta H = -\frac{2}{3} \times 723 = -$	482 kJ	
Illustration 43	Combustion of metha (1) is an exothermic r	ane : eaction	(2) is an endothermic	c reaction
Solution	(3) requires a catalyst Ans. (1) Combustion is always	s exothermic	(4) gives n ₂	
Illustration 44	The heat evolved in t $C_6H_{12}O_6(s) + 6O_2(g) -$ The wt. of $CO_2(g)$ pro-	he combustion of gluco $\longrightarrow 6CO_2(g) + 6H_2O(g)$ pduced when 170 kCal (2) 66 g	ose is given by the equa g), of heat is evolved in th	tion $\Delta H = -680$ kCal e combustion of glucose is (4) 44 a
Solution	Ans. (2) Evolution of 680 Kca	(2) 66 g Il is accompanied by C(Il is accompanied by C($D_2 = 6 \times 44 = 264 \text{ g}$ $D_2 = \frac{264}{680} \times 170 = 66 \text{ g}$	(ד) דד ט
Illustration 45	Find out the calorific $C H O + 6O \rightarrow 60$	value of Glucose	2900 k.I mol ⁻¹	
Solution	 ∴ Heat evolved from ∴ Heat evolved from 	m 1 mol glucose = 290 180 gram glucose = 2 1 1 gram glucose = $\frac{29}{18}$	0 kJ 900 kJ $\frac{00}{00} = 16.11$ kJ g	
	or another method	$\text{C.V.} = \frac{\Delta \text{H}_{\text{comb}}}{\text{M}_{\text{w}}} = \frac{290}{18}$	$\frac{00}{0} = 16.11 \text{ kJ g}$	
Illustration 46	Enthalpy of combusti (1) > 0	on of a substance is alv $(2) \ge 0$	vays : (3) ≤ 0	(4) < 0
Solution	Ans. (4)			
Illustration 47	The heat change for	a reaction : CO(g) + $\frac{1}{2}$	$O_2 \longrightarrow CO_2(g)$ refers	to
Solution	(1) enthalpy of forma(3) enthalpy of vapouAns. (4)	tion of carbon dioxide risation	(2) enthalpy of comb (4) enthalpy of comb	ustion of carbon dioxide ustion of carbon monoxide

Heat of neutralisation (ΔH_{neut}) : (C)

The heat evolved when one equivalent of an acid is completely neutralised by one equivalent of a base in dilute solution is called as heat of neutralisation.

SA + SB	\longrightarrow Salt + Water
HCl (aq) + NaOH (aq)	\longrightarrow NaCl + H ₂ O
H ⁺ + Cl ⁻ + Na ⁺ + OH ⁻	\longrightarrow Na ⁺ + Cl ⁻ + H ₂ O
$H^+ + OH^- \longrightarrow H_2O$)

Note :

(i) When one equivalent of SA is neutralised by one equivalent of SB then evolve heat remain constant and its value is - 13.7 kCal/equivalent or - 57.2 kJ equivalent⁻¹.

eg.	SA	SB	
	HCl (aq) +	NaOH (aq)	\longrightarrow NaCl + H ₂ O + 13.7 kCal
	NV = 1 eq.	NV = 1 eq.	$\longrightarrow \Delta H = -13.7 \text{ kCal}$
	NV = 2 eq.	NV = 2 eq.	$\longrightarrow \Delta H = 2 (-13.7) \text{ kCal}$
	NV = 3 eq.	NV = 3 eq.	$\longrightarrow \Delta H = 3 (-13.7) \text{ kCal}$
	NV = 4 eq.	NV = 5 eq. = (4 + 1) eq.	$\longrightarrow \Delta H = 4 (-13.7) \text{ kCal}$
	NV = 5 eq. = (3+2)eq	NV = 3 eq.	$\longrightarrow \Delta H = 3 (-13.7) \text{ kCal}$

(ii) If one of the acid or base or both are weak then heat of neutralization is usually less than -13.7 KCal eq⁻¹ or -57.3 kJ eq⁻¹ because some part of the heat released in neutralization is absorbed to dissociate the weak electrolyte completely.

eg.
$$CH_3COOH(aq) + NaOH(aq) \rightarrow CH_3COONa(aq) + H_2O; \Delta H = -13.4 \text{ kCal } eq^{-1}$$

Exception:

For a reaction HF + NaOH \rightarrow NaF + H₂O; Δ H=-16.7 Kcal; this is because of hydration of F⁻ ion.

Heat of hydrogenation ($\Delta H_{Hydrogenation}$) : (D)

The heat evolved during the complete hydrogenation of one mol unsaturated organic compound into its saturated compound is called as heat of hydrogenation.

Change → Saturated organic compound Unsaturated organic compound -

 $(= \text{ or } \equiv \text{Bond})$ (- Bond) $C_{2}H_{2} + 2H_{2}$ $C_{2}H_{6}$, $\Delta H_{\rm hydro}$ → 1 $\Delta H_{\rm hydro}$ $C_{2}H_{2} + H_{2}$ $C_{2}H_{4}$, × \rightarrow \longrightarrow $C_{2}H_{4} + H_{2}$ 1 $C_{2}H_{6}$, ΔH_{hvdro}

Note : Heat of hydrogenation is exothermic process.

(E) Heat of atomization (ΔH_{atom}) :

The amount of heat required to dissociate 1 mol substance into gaseous atoms is called as heat of atomization.

Example :	$\frac{1}{2}$ H _{2(g)} $\longrightarrow 1$ H _(g)	$\Delta H_{\rm atom}$	X
	$H_{2(g)} \longrightarrow 2 H_{(g)}$	ΔH_{atom}	1
	$\frac{1}{2}\operatorname{Cl}_{_{2(g)}} \longrightarrow 1 \operatorname{Cl}_{_{(g)}}$	ΔH_{atom}	×
	$\operatorname{Cl}_{2(g)} \longrightarrow \operatorname{2Cl}_{(g)}$	ΔH_{atom}	1
Note :	It is an endothermic re	action.	

 \checkmark

(F) HEAT OF TRANSFORMATION :

(i) Heat of fusion (ΔH_{fusion}): The required amount of heat to convert 1 mole solid into liquid at its melting point is called as heat of fusion.

Example : $1 \operatorname{H}_2\operatorname{O}_{(s)} \longrightarrow \operatorname{H}_2\operatorname{O}_{\mathbb{Q}} \longrightarrow \operatorname{H}_{\operatorname{fusion}}$

Note : Heat of fusion is always endothermic reaction i.e. $(\Delta H = + ve)$

(ii) Heat of vapourization (ΔH_{Vapour}): The required amount of heat to convert 1 mole liquid into gas at its boiling point is called as heat of vapourization.

Example: $1 H_2 O_{(l)} \longrightarrow H_2 O_{(q)} \Delta H_{Vapour}$

Note : Heat of vapourization is always endothermic reaction i.e. ($\Delta H = +ve$)

(iii) Heat of sublimation (ΔH_{Sub}) :

The required amount of heat to convert 1 mole solid into gas at a certain termperature is called as heat of sublimation.

Example: $H_2O_{(s)} \longrightarrow H_2O_{(o)}, \Delta H_{Sub}$

Note : Heat of sublimation is always endothermic reaction i.e. $(\Delta H = + ve)$

Illustrations ———— **Illustration 48** Heat of neutralisation of an acid by a base is maximum when : (1) Both the acid and base are weak (2) Both the acid and base are strong (3) The acid is strong and the base is weak (4) The acid is weak and the base is strong Solution Ans. (2) Heat of neutralisation is maximum (57.2 kJ eq⁻¹ or 13.7 kCal eq⁻¹) when both acid and base are strong. The enthalpy change for the process $C_{(s)} \longrightarrow C_{(g)}$ corresponds to the enthalpy of **Illustration 49** (1) fusion (2) vapourization (3) combustion (4) sublimation **Solution** Ans. (4) Solid \longrightarrow gas, is sublimation. **Illustration 50** If $H^+ + OH^- \longrightarrow H_2O + 13.7$ kCal, then heat of complete neutralisation of 1 gm mol of H_2SO_4 with base in excess will be : (3) -6.85 kCal (1) -13.7 kCal (2) -27.4 kCal (4) -3.425 kCal Solution Ans. (2) Moles of $H_2SO_4 = 1$ mol g eq. of H_2SO_4 = moles ×V.F. = 1 ×2 = 2 g eq. Heat evolve due to 2 g eq. = $-13.7 \times 2 = -27.4$ kCal 200 cm³ of 0.1 M H₂SO₄ is mixed with 150 cm³ of 0.2 M KOH. Find the value of evolved heat. **Illustration 51** KOH Solution H_2SO_4 eq. = NV = $(0.1 \times 2) \times 0.2$ $(0.2 \times 1) \times (0.15)$ = 0.04= 0.03Heat liberated by 1 eq. = 57.2 kJSo heat liberated by 0.03 eq. = $57.2 \times 0.03 = 1.7$ kJ 229

		BEGIN	INER'S BOX-8	
1.	Enathalpy of neutral	isation of acetic acid with	KOH will be numerically :	
	(1) = 57.2 kJ	(2) > 57.2 kJ	(3) $< 57.2 \text{ kJ}$	(4) unpredictable
2.	The vapourisation pr	ocess is always :		
	(1) exothermic		(2) endothermic	
	(3) can be exothermi	c or endothermic	(4) none of these	
3.	 One mol of H₂SO₄ is completely neutralised wit evolved during the process is : 		with 2 mole of NaOH in dilu	ute solutions. The amount of heat
	(1) 57.2 kJ	(2) $\frac{57.2 \text{kJ}}{2}$	(3) 13.7 kCal	(4) 114.4 kJ
4.	Which of the following	ng data represents the valu	ue of heat of neutralisation of	f strong acid against strong base ?
	(1) – 13.7 kCal	(2) – 57.2 kJ	$(3) - 5.72 \times 10^4 \mathrm{J}$	(4) All the above
5.	Fusion of ice is :			
	(1) exothermic chang	je	(2) endothermic chang	je

(G) Heat of hydration (ΔH_{hydra}) :

Amount of heat evolved when **one mole** of anhydrous salt combines with fixed number of water molecules to convert into its specific hydrated crystal is called as heat of hydration.

Example :

•	$1 \text{ CuSO}_4(s) + 5\text{H}_2\text{O}(\ell)$	\longrightarrow	$CuSO_4$.5 $H_2O(s)$	$\Delta H = -ve$
	anhydrous salt		hydrated salt	
•	$1 \text{ MgSO}_4(s) + 7\text{H}_2\text{O} (\ell)$	\longrightarrow	MgSO ₄ .7H ₂ O(s)	$\Delta H = -ve$
	anhydrous salt		hydrated salt	
•	$1 \text{ CaCl}_2(s) + 6\text{H}_2\text{O}(\ell)$	\longrightarrow	$CaCl_2 .6 H_2O(s)$	$\Delta H = -ve$
	anhydrous salt		hydrated salt	

Special Note : Heat of hydration is exothermic

(H) Heat of solution ($\Delta H_{sol.}$) :

Amount of heat absorbed or evolved when **one mol** of substance is dissolved in such a large volume of solvent that further addition of solvent does not produce any more heat change is called as **'Heat of solution**'.

Example 1:	1 CuSO _{4(s)}	+	aq	\longrightarrow CuSO ₄ (aq)	$\Delta H_{\rm solution}$	1
	$1 \text{ CuSO}_{4(s)} + 5 \text{H}_2 \text{O} (\ell)$			\longrightarrow CuSO ₄ .5H ₂ O(s)	$\Delta H_{ m hydration}$	1
Example 2:	$MgSO_{4(s)} + 7H_2O(\ell)$	+	aq	\longrightarrow MgSO ₄ (aq)	$\Delta H_{solution}$	1
	MgSO ₄ .7H ₂ O(s)	+	aq	\longrightarrow MgSO ₄ (aq)	$\Delta H_{solution}$	1

Sp. Note : Heat of solution may be endothermic or exothermic.

(I) Bond energy / Bond dissociation energy :

ALLEN

The required amount of energy to dissociate **one mole gaseous bond** into separate **gaseous atoms** is called as **bond dissociation energy**.

Example :	$1H-H_{\rm (g)}$	$\longrightarrow 2H_{g}$	$\Delta H_{_{H-H}}$	1
	$1Cl - Cl_{(g)}$	$\longrightarrow 2Cl_{g}$	$\Delta H_{\text{Cl}-\text{Cl}}$	1
	$1H - Cl_{(g)}$	\longrightarrow $H_{(g)} + Cl_{(g)}$	$\Delta H_{\rm H-Cl}$	1
	$1H - Cl_{g}$	$\longrightarrow H^+_{(g)} + Cl^{(g)}$	$\Delta H_{\rm H-Cl}$	×
	$1H-Cl_{(g)}$	$\longrightarrow \ \frac{1}{2} \operatorname{H}_{\operatorname{2(g)}} + \ \frac{1}{2} \operatorname{Cl}_{\operatorname{2(g)}},$	$\Delta H_{\rm H-Cl}$	×
	$1H_2O_{\rm (g)}$	$\longrightarrow 2H_{(g)} + O_{(g)}$	$\Delta H_{\rm H-O}$	×

GOLDEN KEY POINTS

- The **bond energy** may be defined as the **average** amount of energy required to dissociate one mole gaseous bond into separate gaseous atoms.
- Bond dissociation process is an endothermic process.
- If bond energy of various bonds present in the reactants and products are given then ΔH of that reaction can be calculate as follows.

 $\Delta H = \Sigma (B.E.)_{\rm R} - \Sigma (B.E.)_{\rm P}$

• In the case of poly atomic molecule we calculate the average bond energy.

 $(BE)_{av}$ = Average bond energy = $\frac{\text{Total energy required with all bonds}}{NL}$ $H - O - H_{(q)} + 112 \text{ KJ} \longrightarrow H - O_{(q)} + H_{(q)}$ Example : $H - O_{(0)} + 108 \text{ KJ} \longrightarrow H_{(0)} + O_{(0)}$ $(BE)_{av} = Average bond energy = \frac{112 + 108}{2} = 110 \text{ kJ mol}^{-1}$ Illustrations ——— Given the bond energy of $N \equiv N$, H - H and N - H bonds are 945, 436 and 391 kJ mol⁻¹ **Illustration 52** respectively, the enthalpy of the reaction $N_{2(g)}+3H_{2(g)} \longrightarrow 2NH_{3(g)}$ is : (1) – 93 kJ (2) 102 kJ (4) 105 kJ (3) 90 kJ Solution Ans. (1) Η $N \equiv N_{(g)} + 3H - H_{(g)} \longrightarrow 2N - H_{(g)}$ 945 + 3 × 436 $2 \times (3 \times 391)$ = 2253 kJ = 2346 kJ $\Delta H = \Sigma (B.E.)_{R} - \Sigma (B.E.)_{P} = 2253 - 2346 = -93 \text{ kJ}$

Z:\NODED2\BDAH_BD\TARGET\CHEM\ENG_WODULE-1\5.THERWODMNAMICS\01-THERWO.P65

Pre-Medical : Chemistry

Pre-Medical :	Chemistry		ALLEN		
Illustration 53	The enthalpy changes at 298 K in success	sive breaking of O – H bor	nds of $H - O - H$ are		
	$H_2O_{(g)} \longrightarrow H_{(g)} + OH_{(g)},$	$\Delta H = 498 \text{ kJ mol}^{-1}$			
	$OH_{(g)} \longrightarrow H_{(g)} + O_{(g)},$ The based are the large of the O . If the and is	$\Delta H = 428 \text{ kJ mol}^{-1}$			
	(1) 498 kJ mol ⁻¹ (2) 463 kJ mol ⁻¹	(3) 428 kJ mol ⁻¹	(4) 70 kJ mol ⁻¹		
Solution	Ans. (2)	(0) 120 10 1101			
	$(B.E.)_{av} = \frac{498 + 428}{2} = 463 \text{ kJ}$				
Illustration 54	The required heat for dissociation of $1~{ m m}$	ol H_2O into its atoms (H a	and oxygen) is $\Delta { m H}_{ m _{Dis.}}.$ Then		
	calculate the bond energy of $O - H$ bond.				
	$H_2O(g) \rightarrow O(g) + 2H(g); \ \Delta H_{\rm Dissociation}$				
Solution	$H - O - H(g) \longrightarrow O(g) + 2H(g); \Delta H_{Dissoci}$	ation			
	\because required energy for breaking the 2 mo	$IO - H$ bond = $\Delta H_{Dis.}$			
	\therefore required energy for 1 mole $=\frac{\Delta H_{\text{Dis.}}}{2}$; $\Delta H_{\text{O-H}} = \frac{\Delta H_{\text{Dis.}}}{2}$				
Illustration 55	Calculate the bond energy of C – H Bond	in methane.			
Solution	$CH_{4(g)} \rightarrow C_{(g)} + 4H_{(g)} ; \Delta H_{\text{Dis.}}$ H_{I}				
	or $H \stackrel{!}{\longrightarrow} C_{(g)} + 4H_{(g)}; \Delta H_{\text{Dis.}}$				
	: Bond energy of 4 mol $C - H = \Delta H_{Dis}$				
	\therefore Bond energy of 1 mol C – H bond	$=\frac{\Delta H_{\text{Dis.}}}{4}$			
Illustration 56	The energy change of reaction $C_2H_{6(g)} \longrightarrow 2C_{(g)} + 6H_{(g)}$ is X kJ. The bond energy of C – H bond is:				
	(1) $\frac{X}{6}$ kJ mol ⁻¹ (2) $\frac{X}{3}$ kJ mol ⁻¹	(3) X kJ /mol ⁻¹ (4) t	unpredictable from data		
Solution	Ans. (4)				
Illustration 57	$CuSO_4(\ell) + 5H_2O(s) \longrightarrow CuSO_4. 5H_2O(s)$	$S); \Delta H = -x kJ$			
	The value of Δ H represents :				
	(1) enthalpy of solution of copper (II) sulphate				
	(2) enthalpy of hydration of copper (II) sulphate				
	(3) enthalpy of hydrolysis of copper (II) sulphate				
	(4) lattice energy of copper (II) sulphate				
Solution	Ans. (2)				
Illustration 58	The bond energy of hydrogen is 103 kCa	l mol ⁻¹ . This means that :			
	(1) 103 kCal are required to break 6.023×10^{23} gaseous H, molecules into gaseous atoms				
	(2) 103 kCal are required to break the bonds in one gram of hydrogen				
	(3) 103 kCal are required to break one bond to form two atoms of hydrogen				
	(4) 103 kCal are required to break one mole of gaseous hydrogen molecules into ions				
Solution	Ans. (1)	<u> </u>			
232	\				

5.19 LAWS OF THERMOCHEMISTRY :

(I) LAVOISIER AND LAPLACE LAW :

Enthalpy of formation of compound is **numerically equal** to the enthalpy of decomposition of that compound with **opposite sign**.

Example : $C + O_2 \longrightarrow CO_2$, $\Delta H = -94 \text{ kCal}$ $CO_2 \longrightarrow C + O_2$, $\Delta H = +94 \text{ kCal}$

(II) HESS LAW OF CONSTANT HEAT SUMMATION :

The heat change in a complete chemical reaction always remain same whether reaction completes in one step or more.

$$\Delta H = \Delta H_1 + \Delta H_2$$

or
$$\Delta H = \Delta H_3 + \Delta H_4 + \Delta H_5$$

or
$$\Delta H = \Delta H_1 + \Delta H_2 = \Delta H_3 + \Delta H_4 + \Delta H_5$$

 ΔH , co

Example - 2 :

$$C + O_2$$

+ $1/2O_2$
 CO
 CO_2
+ $1/2O_2$

 $\Delta H = \Delta H_1 + \Delta H_2$

GOLDEN KEY POINTS

- Heat change of a reaction does not depend on the **number of steps** used in the reaction.
- Heat change of a reaction does not depend on **intermediate position**, it depend only on initial and final state.
- Heat change of a chemical reaction does not depend on **time of reaction**.

Illustrations ———

Illustration 59 Single step reaction $A \rightarrow B$; $\Delta H = ?$

Multi step reaction to produce B from A is given

$$A \xrightarrow{\Delta H_1} C \xrightarrow{\Delta H_2} D \xrightarrow{\Delta H_3} E \xrightarrow{\Delta H_4} B$$

Solution

According to Hess's law $\Delta H = \Delta H_1 + \Delta H_2 + \Delta H_3 + \Delta H_4$

Illustration 60 Calculate the heat of formation of Benzene. The reaction is given below :			elow :				
	$6C(s) + 3H_{2(g)} \rightarrow C_6H_6(\ell)$ and -3268 , -393.5 and -285.8 kJ mol ⁻¹ are the heats of combustion						
	of benzene, heat of for	rmation of $\rm CO_2$ and he	eat of formation of H ₂ O	(ℓ) respectively.			
Solution	Target reation $6C_{(s)}$ + Given	Target reation $6C_{(s)} + 3H_{2(g)} \rightarrow C_6H_{6(\ell)}$ Given					
	(i) $C_6 H_{6(\ell)} + 7\frac{1}{2} O_{2(g)} -$	→ $6CO_2$ (g) + $3H_2O(\ell)$)	$\Delta H = -3268 \text{ kJ}$			
	(ii) $C(s) + O_2(g) \rightarrow CO_2(g)$	₂ (g);		$\Delta H = -393.5 \text{ kJ}$			
	(iii) $H_2(g) + \frac{1}{2}O_2(g) \rightarrow$	H₂O(ℓ);		$\Delta H = -285.8 \text{ kJ}$			
	6 ×eq. (ii) + 3 ×ea	q. (iii) – eq. (i)					
	$\Delta H = 6 \times -39$	93.5 + 3 ×- 285.8 - (-	–3268) = + 49.6 kJ mo	bl ⁻¹			
Illustration 61	The heats of formation of benzene is -783 kC	a of CO $_{2(g)}$ and $H_2O_{(\ell)}$ are call mol ⁻¹ . What will be t	e – 97 and – 68 kCal me the heat of formation o	ol ⁻¹ . The heat of combustion f benzene ?			
Solution	Given :						
	(i) $C_6 H_6(\ell) + \frac{7}{2} O_2(g)$ -	$\longrightarrow 6CO_2$ (g) + 3H	I₂O (ℓ);	$\Delta H = -783 \text{ kCal.}$			
	(ii) C (s) + O_2 (g)	$\rightarrow CO_2$ (g) ;		$\Delta H = -97$ kCal.			
	(iii) $H_2(g) + \frac{1}{2}O_2(g) -$	\longrightarrow H ₂ O (ℓ) ;		$\Delta H = -68 \text{ kCal.}$			
	Target reaction	$6C(s) + 3H_2(g)$	$\rightarrow C_6 H_6(\ell);$	$\Delta H = -3 \text{ kCal.}$			
		$6 \times eq.$ (ii) + $3 \times eq.$ (iii)	ii) – eq. (i)				
		$\Delta H = 6 \times -97 + 3 \times$	(-68 - (-783)) = -3 kC	Cal mol ⁻¹			
Illustration 62	Calculate the enthalpy and 1 atmospheric p -393.7, -241.8, + 52	of combustion of ethyl ressure. The enthalpi 2.3 kJ per mol respecti	lene (gas) to form CO_2 (rises of formation of CC vely.	gas) and H_2O (gas) at 298 K $D_{2 (g)}$, $H_2O_{(g)}$ and $C_2H_{4 (g)}$ are			
Solution	We are given :	/ >					
	(i) C (s) + O_2 (g)	$\rightarrow CO_2$ (g);	$\Delta H = -393.7 \text{ kJ mol}$	-1			
	(ii) $H_2(g) + \frac{1}{2}O_2(g)$ —	\longrightarrow H ₂ O (g);	$\Delta H = -241.8 \text{ kJ mol}$	-1			
	(iii) 2C (s) + $2H_2$ (g) —	$\longrightarrow C_2 H_4$ (g);	$\Delta H = +52.3 \text{ kJ mol}^{-2}$	l			
	Target reaction $C_2H_4(g) + 3O_2(g) \longrightarrow 2CO_2(g) + 2H_2O(g)$, $\Delta H = ?$						
	$2 \times$ Equation (i) + 2 × Equation (ii) – Equation (iii) gives						
		$\Delta H = 2(-393.7) + 2($	(-241.8) - (52.3) = -13	323.3 kJ mol⁻¹			
Illustration 63	The heat of solution of 2.8 kCal mol ⁻¹ . Calcu	of anhydrous ${ m CuSO}_{_{4(s)}}$ late the heat of hydra	is −15.9 kCal mol ⁻¹ an ation of CuSO _{4(s)} .	d that of $\text{CuSO}_4.5\text{H}_2\text{O}_{(s)}$ is			
Solution	Given $CuSO_{4(s)}$ + aq.	\longrightarrow CuSO ₄ (aq))	$\Delta H = -15.9 \text{ kCal} \dots(\text{i})$			
	$\rm CuSO_4.5H_2O_{(s)}$	$+ aq. \longrightarrow CuSO_4(aq)$)	$\Delta H = +2.8 \text{ kCal } \dots \dots$ (ii)			
	Subtracting Eq. (ii) from	n Eq.(i)					
	$CuSO_{4(s)} + 5H_2O \longrightarrow$	$CuSO_4.5H_2O_{(s)};$	$\Delta H = -15.9 - 2.8 =$	– 18.7 kCal			
004		-10.7 KCdIII					
234							

Z:\NODE02\B04I-B0\TARSET\CHEM\ENG\WODULE-1\5.THERWODYNAMCS\01-THERWOP65

BEGINNER'S BOX-9

- **1.** A hypothetical reaction, $X \longrightarrow 2Y$ proceeds by the following sequence of steps
- (i) $\frac{1}{2} X \longrightarrow Z$; $\Delta H = q_1$ (ii) $Z \longrightarrow 2W$; $\Delta H = q_2$ (iii) $W \longrightarrow \frac{1}{2} Y$; $\Delta H = q_3$ The value of ΔH of reaction is: (1) $q_1 + q_2 + q_3$ (2) $2q_1 + 2q_2 + 3q_3$ (3) $2(q_1 + q_2 + 2q_3)$ (4) $2(q_1 + q_2 + q_3)$ 2. Consider two paths of a certain reaction (i) $A + B \xrightarrow{\Delta H_1} AB$; $AB \xrightarrow{\Delta H_2} P + Q$ (ii) $A + B \xrightarrow{\Delta H_3} C$; $C \xrightarrow{\Delta H_4} P + Q$ then,
 - (1) $(\Delta H_1 + \Delta H_2) > (\Delta H_3 + \Delta H_4)$ (2) $(\Delta H_1 + \Delta H_2) = (\Delta H_3 + \Delta H_4)$ (3) $(\Delta H_2 + \Delta H_3) = (\Delta H_1 + \Delta H_4)$ (4) $(\Delta H_1 + \Delta H_2) < (\Delta H_3 + \Delta H_4)$

ANSWER KEY

BEGINNER'S BOY-1	Que.	1	2	3	4						
BEGINNER S BOX-1	Ans.	1	1	1	1						
REGINNER'S ROX-2	Que.	1	2	3	4						
DECIMALN S DOX-2	Ans.	3	4	2	1						
REGINNED'S BOV 2	Que.	1	2	3	4	5	6	7	8		
BEGINNER 5 BOX-5	Ans.	2	2	2	3	1	2	4	3		
REGINNER'S ROX- 4	Que.	1	2								
DEGININER O DOR-4	Ans.	1	3								
										_	
REGINNED'S BOY 5	Que.	1	2	3	4	5	6	7			
BEGINNER 5 BOX-5	Ans.	2	3	4	3	3	1	2			
REGINNER'S BOX-6	Que.	1	2	3	4	5	6				
BEGINNER O BOX O	Ans.	2	2	3	4	1	1				
					_	_			-		
REGINNED'S BOY 7	Que.	1	2	3	4						
DEGINNER 5 DUX-7	Ans.	2	3	2	3						
REGINNER'S BOX-8	Que.	1	2	3	4	5					
	Ans.	3	2	4	4	2					
BEGINNER'S BOX-9	Que.	1	2								
	Ans.	3	2								
											23

Ε

E)	(ERCISE-I (Concep	tual Questions)		Build Up You	r Understanding
1.	INTRODUC Thermodynamics is conc (1) Total energy of a syst	CTION eerned with :- em	10.	The work done by a we an expansion ΔV (at cortice the opposing pressure F	eightless piston in causing istant temperature), when P is variable, is given by :
	(2) Energy changes in a s(3) Rate of a chemical ch(4) Mass changes in nucle	system ange ear reactions		(1) W = $-\int PdV$ (3) W = $-P\Delta V$	(2) W = 0 (4) None
2.	A well stoppered thermo cubes. This is an exampl (1) Closed system (2) Open system (3) Isolated system	e of :-	11.	The work done by 100 c expansion of ideal gas is (1) 418.4 J (3) 41.84 J	alorie of heat in isothermal s :- (2) 4.184 J (4) None
3.	 (4) Non-thermodynamic Identify the intensive qua (1) Enthalpy and temperat (2) Volume and temperat (3) Enthalpy and volume (4) Temperature and refr 	system Intity from the following - ature ure active index	12.	Temperature and volum (1) Extensive properties (2) Intensive properties (3) Intensive and extensi (4) Extensive and intensi	e are not :- ve properties respectively ive properties respectively
4.	Which of the following is (1) Mass (3) Energy	an extensive property (2) Enthalpy (4) All of these	13.	 (1) Isothermal process (3) Cyclic process 	(2) Adiabatic process (4) 1 and 3 both
5.	For an adiabatic process relations is correct (1) $\Delta E = 0$ (3) $q = 0$	s which of the following (2) $P \Delta V = 0$ (4) $q = + W$	15.	 (1) Adiabatic compression (3) Isothermal expansion Enthalpy of 1 mole mon 	on (2) Adiabatic expansion (4) Isothermal compression oatomic ideal gas is equals
6.	In which of the follo independent of path : (1) Isothermal (3) Adiabatic	wing process work is (2) Isochoric (4) Isobaric		to :- (1) $\frac{3}{2}$ RT (3) RT	(2) $\frac{5}{2}$ RT (4) 2 RT
7.	When a gas is compre- reversibly, the final temp (1) Higher than the initial (2) Lower than the initial (3) The same as initial ten (4) Dependent upon the	essed adiabatically and erature is- l temperature temperature mperature rate of compression	16.	 Which statement is true (1) It takes place in single (2) Driving force is much force (3) Work obtain is minimed (4) None 	for reversible process :- e step ch greater than opposing num
8.	Which one is dependent state ? (1) Heat supplied at cons (2) Heat supplied at cons (3) Enthalpy (4) All of the above	t only on initial and final tant pressure tant volume	FIRS 17.	T LAW OF THERMOD Both q & w are (1) State (3) Path, State	YNAMICS (∆E = q + W) function :- (2) State, Path (4) Path vstem is 300 ioule when
9. 236	Out of boiling point (I), er of a cell (IV), intensive pr (1) I, III, IV (3) I, II, III	atropy (II), pH (III) and emf operties are : (2) I, II (4) All of these	10.	100 cal. heat is supplied t energy during the proce (1) – 200 Joul (3) 720 Joul	to it. The change in internal ess is :- (2) 400 Joul (4) 120 Joul

ALL	.EN		
19	A system has internal energy heat is taken out of it and it. The final energy of the (1) ($E_1 + 150$) (3) ($E_1 - 150$)	ergy equal to E_1 , 450 J of 600 J of work is done on e system will be - (2) (E_1 + 1050) (4) None of these	27 28
20.	The work done by a system supplied to it. The change system during the process (1) 32 J (3) 48 J	m is 8J when 40J heat is in internal energy of the s : (2) 40 J (4) -32 J	
21.	If a gas absorbs 100 J c 500cm ³ against a constant the change in internal ene (1) - 300 J (3) + 100 J	of heat and expands by pressure of 2 ×10 ⁵ Nm ⁻² , ergy is:- (2) - 100 J (4) None of these	29
EN	$\Gamma HALPY [\Delta H = \Delta E + P\Delta$	$V/\Delta H = \Delta E + \Delta n_g RT$	30
22.	Internal energy chang isothermal expansion of a (1) Always negative (2) Always positive (3) Zero (4) May be positive or neg	e during a reversible an ideal gas is :- gative	31
23.	Under which of the follow relation, $\Delta H = \Delta E + P\Delta V$ (1) Constant pressure (2) Constant temperature (3) Constant temperature, (4) Constant temperature,	owing conditions is the valid for a system :- and pressure pressure and composition	32
24.	The difference between here pressure and constant w $2C_6H_6(l) + 15O_2(g) \longrightarrow$ $25^{\circ}C$ in KJ is (1) + 7.43 (3) - 7.43	ats of reaction at constant rolume for the reaction $12CO_2(g) + 6H_2O(l)$ at (2) +3.72 (4) - 3.72	33
25.	For a gaseous reaction, $A(g) + 3B(g) \longrightarrow 3C(g) + \Delta E \text{ is } 17 \text{ kCal at } 27^{\circ}\text{C} \text{ assut}$ the value of ΔH for the at (1) 15.8 Kcal (3) 20.0 Kcal	- 3D(g) ming R = 2 Cal K ⁻¹ mol ⁻¹ , pove reaction is: (2) 18.2 Kcal (4) 16.4 Kcal	34
26.	Which of the following s the reaction ;CO(g) + $\frac{1}{2}$ constant temperature and (1) $\Delta H = \Delta E$ (3) $\Delta H > \Delta E$	tatements is correct for $\langle 2 \ O_2(g) \longrightarrow CO_2(g)$ at l pressure (2) $\Delta H < \Delta E$ (4) None of the above	35

- **27.** For the reaction $Ag_2O(s) \longrightarrow 2Ag(s) + \frac{1}{2}O_2(g)$, which one of the following is true : (1) $\Delta H = \Delta E$ (2) $\Delta H = \frac{1}{2}\Delta E$ (3) $\Delta H < \Delta E$ (4) $\Delta H > \Delta E$ **28.** A mixture of 2 moles of carbon monoxide and one male of current in a closed uncertaint in print d to get
- mole of oxygen in a closed vessel is ignited to get carbon dioxide. If ΔH is the enthalpy change and ΔE is the change in internal energy, then :-
 - (1) $\Delta H > \Delta E$ (2) $\Delta H < \Delta E$ (3) $\Delta H = \Delta E$ (4) Not definite
- **29.** For the gaseous reaction involving the complete combustion of isobutane -(1) $\Delta H = \Delta E$ (2) $\Delta H > \Delta E$ (3) $\Delta H = \Delta E = 0$ (4) $\Delta H < \Delta E$
- 30. For the reversible isothermal expansion of one mole of an ideal gas at 300 K, from a volume of 10 dm³ to 20 dm³, ΔH is (1) 1.73 kJ
 (2) -1.73 kJ
 (3) 3.46 kJ
 (4) Zero
- **31.** For CaCO₃(s) \rightarrow CaO(s) + CO₂(g) at 977°C, Δ H = 174 KJ/mol ; then Δ E is :-(1) 160 kJ (2) 163.6 kJ (3) 186.4 kJ (4) 180 kJ
- Heat of reaction for , CO(g) + ½O₂(g) → CO₂(g) at constant V is -67.71 K cal at 17°C. The heat of reaction at constant P at 17°C is :(1) -68.0 kCal
 (2) + 68.0 kCal
 (3) 67.42 kCal
 (4) None
- **33.** The reaction :-

$$\mathrm{NH_2CN}_{(\mathrm{S})} + \frac{3}{2}\mathrm{O}_{2(\mathrm{g})} \rightarrow \mathrm{N}_{2(\mathrm{g})} + \mathrm{CO}_{2(\mathrm{g})} + \mathrm{H_2O}_{(\mathrm{f})}$$

was carried out in a bomb caloriemeter. The heat released was 743 kJ mol⁻¹. The value of ΔH_{300k} for this reaction would be :-(1) - 740.5 kJ mol⁻¹ (2) - 741.75 kJ mol⁻¹

- (1) 740.5 kJ mol⁻¹
 (2) 741.75 kJ mol⁻¹

 (3) 743.0 kJ mol⁻¹
 (4) 744.25 kJ mol⁻¹
- 34. The enthalpy of vaporisation of water at 100°C is 40.63 kJ mol⁻¹. The value ΔE for this process would be:(1) 37.53 kJ mol⁻¹
 (2) 39.08 kJ mol⁻¹

(1) 37.53 kJ mol⁻¹	(2) 39.08 kJ mol ⁻¹
(3) 42.19 kJ mol ⁻¹	(4) 43.73 kJ mol ⁻¹

35. For the system $S(s) + O_2(g) \rightarrow SO_2(g) :=$ (1) $\Delta H = \Delta E$ (2) $\Delta H > \Delta E$ (3) $\Delta E > \Delta H$ (4) $\Delta H = 0$

Z: \NOD602\B0AI+60\TARGET\CHEM\ENG WODULE-1\S.THERMODYNAMCS\02-EXERCISE.P65

- - - - - - -

36.	For the reaction CO (g) + $\frac{1}{2}$ O ₂ (g) \rightarrow CO ₂ (g)	44
	Which one of the statement is correct at constant T and P? (1) $\Delta H = \Delta E$ (2) $\Delta H < \Delta E$ (3) $\Delta H > \Delta E$ (4) ΔH is Independent of physical state of reactants	4
37.	Which is true for the combustion of sucrose $(C_{12}H_{22}O_{11})$ at 25°C :- (1) $\Delta H > \Delta E$ (2) $\Delta H < \Delta E$ (3) $\Delta H = \Delta E$ (4) None	4
38.	For which change $\Delta H \neq \Delta E$:-	
	(1) $H_2(g) + I_2(g) \implies 2HI(g)$ (2) $HCl(\ell) + NaOH(\ell) \rightarrow NaCl(s) + H_2O(\ell)$ (3) $C(s) + O_2(g) \rightarrow CO_2(g)$ (4) $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$	El
39.	The heat of combustion of ethanol determined in a bomb calorimeter is -670.48 kCal mole ⁻¹ at 27°C. What is Δ H at 27°C for the reaction :- (1) -335.24 kCal (2) -671.08 kCal (3) -670.48 kCal (4) $+ 670.48$ kCal	47
40.	The difference in Δ H and Δ E for the combustion of methane at 25°C would be :- (1) Zero (2) 2 × 298 × - 2 Cals. (3) 2 × 298 × - 3 Cals. (4) 2 × 25 × - 3 Cals.	48
41.	For which of the following reactions ΔH is less than $\Delta E :=$ (1) $C_{12}H_{22}O_{11}(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(\ell)$ (2) $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$ (3) $N_2O_4(g) \rightarrow 2NO_2(g)$ (4) $N_2(g) + O_2(g) \rightarrow 2NO(g)$	4
42.	$\begin{array}{ll} \mbox{For a reaction } 2X(s) + 2Y(s) \rightarrow 2C(\ell) + D(g) \\ \mbox{The } q_p \mbox{ at } 27^{\circ}\mbox{C is } - 28 \mbox{ kCal mol}^{-1}. \\ \mbox{The } q_V \mbox{ is } \mbox{ kCal mol}^{-1} :- \\ (1) - 27.4 & (2) + 27.4 \\ (3) - 28.6 & (4) \mbox{ 28.6} \end{array}$	5
	WORK DONE IN DIFFERENT PROCESS	
43.	The work done in ergs for a reversible expansion	

44.	Two litre of N_2 at 0°C an isothermally against a con of 1 atm until the pressur Assuming the gas to be expansion ? (1) -504.2 Joule (3) +810.4 Joule	nd 5 atm are expanded instant external pressure re of gas reaches 1 atm. ideal calculate work of (2) -405.2 Joule (4) -810.4 Joule		
45.	Two moles of an ideal ga into vacuum. The work do (1) Zero (3) 4 J	as expand spontaneouly one is :- (2) 2 J (4) 8 J		
46.	One mole of a gas occupying a constant external pressu of 13 lit. The workdone is (1) - 10 atm dm ³ (3) - 39 atm dm ³	ng 3dm ³ expands against ure of 1 atm to a volume s :- (2) - 20 atm dm ³ (4) - 48 atm dm ³		
ENTF	ROPY/SECOND LAW OF	THERMODYNAMICS		
47.	For which reaction from the following, ΔS will be maximum ? (1) Ca(s) + $\frac{1}{2} O_2(g) \longrightarrow CaO(s)$ (2) CaCO ₃ (s) $\longrightarrow CaO(s) + CO_2(g)$ (3) C(s) + $O_2(g) \longrightarrow CO_2$ (g) (4) $N_2(g) + O_2(g) \longrightarrow 2NO(g)$			
48.	An adiabatic reversible process is one in which :- (1) Temperature of the system does not change (2) The system is not closed to heat transfer (3) There is no entropy change (4) None of these			
49.	Entropy means (1) Disorderness (3) Orderness	(2) Randomness (4) both 1 & 2		
50.	$ \Delta S \text{ for the reaction;} MgCO_3(s) \longrightarrow MgO(s) (1) 0 (2) -ve $	+ CO₂(g) will be : (3) +ve (4) ∞		
51.	Change in entropy is negative (1) Bromine $(\ell) \longrightarrow$ Brom (2) C(s) + H ₂ O(g) \longrightarrow CO (3) N ₂ (g, 10 atm) \longrightarrow N ₂ (4) Fe(at 400 K) \longrightarrow Fe(ative for mine (g) D(g) + H ₂ (g) g (g, 1 atm) at 300 K)		
52.	In which reaction ΔS is point (1) H ₂ O (ℓ) \rightarrow H ₂ O (s) (2) 3O ₂ (g) \rightarrow 2O ₃ (g) (3) H ₂ O (ℓ) \rightarrow H ₂ O (g) (4) N ₂ (g) + 3H ₂ (g) \rightarrow 2NH	ositive :- I ₃ (g)		

AL	len			Pre-/	Medical : Chemistry
53.	 When the egg is hard boiled, there is- (1) Increase in disorder (2) Decrease in disorder (3) No change in disorder (4) ΔG is negative 		63.	 Calculate the entropy of Br₂(g) in the reaction H₂(g) + Br₂(g) → 2HBr(g), ΔS° = 20.1JK⁻¹ give entropy of H₂ and HBr is 130.6 at 198.5 J mol⁻¹K⁻¹:- (1) 246.3 JK⁻¹ (2) 123.15 JK⁻¹ (3) 94.62 Wel 	
54. 55.	If S ⁰ for H ₂ , Cl ₂ and HCl are 0.13, 0.22 and 0.19 kJ K ⁻¹ mol ⁻¹ respectively. The total change in standard entropy for the reaction H ₂ + Cl ₂ \longrightarrow 2HCl is : (1) 30 JK ⁻¹ mol ⁻¹ (2) 40 JK ⁻¹ mol ⁻¹ (3) 60 JK ⁻¹ mol ⁻¹ (4) 20 JK ⁻¹ mol ⁻¹		64.	 (3) 24.05 JK⁻¹ Ammonium chloride whe to cooling sensation. The constant temperature is a (1) Increase in entropy (2) Decrease in entropy (3) No change in entropy (4) No change in enthalp 	(4) 20 KJK ⁻ en dissolved in water leads e dissolution of NH ₄ Cl at accompanied by :
	(1) Graphite (3) N ₂ (g)	(2) Diamond (4) N ₂ O(g)	65.	In which of the following (1) Solid changing to ligu	case entropy decreases— id
56.	When two gases are mix (1) Remains constant (3) Increases	ed the entropy : (2) Decreases (4) Becomes zero		(1) Solid changing to liquid(2) Expansion of a gas(3) Crystals dissolve(4) Polymerisation	
57.	The enthalpy of vap 186.5 kJ mol ⁻¹ , the entro be- (1) 0.5 kJK ⁻¹ mol ⁻¹	orization for water is opy of its vaporization will (2) 1.0 kJK ⁻¹ mole ⁻¹	66.	Which of the following sta standard state :- (1) Enthalpy (3) Free energy	ate function is not zero at (2) Entropy (4) Work
58.	(3) 1.5 kJ K ⁻¹ mole ⁻¹ The enthalpy of vaporisat (b.p. = 79.5° C and Δ S =	(4) 2.0 kJK ⁻¹ mole ⁻¹ ion of per mole of ethanol = $109.8 \text{ JK}^{-1} \text{ mol}^{-1}$) is :-	67.	Entropy of an adiabatic r (1) Positive (3) Negative	eversible process is:- (2) Zero (4) Constant
	(1) 27.35 kJ mol ⁻¹ (3) 38.70 kJ mol ⁻¹	(2) 32.19 kJ mol ⁻¹ (4) 42.37 kJ mol ⁻¹		GIBBS FREE I	ENERGY
59.	If 900J/g of heat is exch water, then what is increa (1) 43.4 JK ⁻¹ mole ⁻¹ (2) 87.2 JK ⁻¹ mole ⁻¹	nanged at boiling point of use in entropy?	68.	A gas is allowed to expand conditions then what is z (1) $\Delta G = 0$ (3) $\Delta S = 0$	l under reversible adiabatic ero for such a process:- (2) $\Delta T = 0$ (4) None of these
C 0	(2) 37.2 JK filole (3) 900 JK ⁻¹ mole ⁻¹ (4) Zero		69.	in thalpy change (Δ H) and -11.7 × 10 ³ Jmol ⁻¹ and ively. The reaction is :	
60.	5 mole of an ideal gas of volume of 8 dm ³ to 80 27°C. The change in en (1) 41.57 JK ⁻¹ (3) 95.73 JK ⁻¹	expand reversibly from a dm^3 at a temperature of tropy is :- (2) - 95.73 JK ⁻¹ (4) - 41.57 JK ⁻¹		 (1) Spontaneous (2) Non spontaneous (3) At equilibrium (4) Can't say anything 	
61.	In a spontaneous irreve entropy of the system and (1) Remains constant (3) Decreases	ersible process the total ad surroundings (2) Increases (4) Zero	70.	The spontaneous nature of (1) \triangle H is +ve, \triangle S is also (2) \triangle H is - ve; \triangle S is also (3) \triangle H is -ve; \triangle S is +ve (4) \triangle H is +ve; \triangle S is -ve	a reaction is impossible if :
62.	The total entropy cha surroundings increases if (1) Reversible (3) Exothermic	nge for a system & its f the process is : (2) Irreversible (4) Endothermic	71.	If Δ H > 0 and Δ S > 0 spontaneously when :- (1) Δ H > 0 (3) Δ H = T Δ S), the reaction proceeds (2) ∆ H < T ∆ S (4) None
					239

Pre-Medical : Chemistry

- **72.** The temperature at which the reaction $Ag_2O(s) \longrightarrow 2Ag(s) + \frac{1}{2}O_2(g)$ is at equilibrium is; Given $\Delta H = 30.5 \text{ kJ mol}^{-1}$ and $\Delta S = 0.066 \text{ kJK}^{-1} \text{ mol}^{-1}$: (1) 462.12 K (2) 362.12 K (3) 262.12 K (4) 562.12 K
- **73.** The enthalpy change for a given reaction at 298 K is –x cal mol⁻¹. If the reaction occurs spontaneously at 298 K, the entropy change at that temperature
 - (1) Can be negative but numerically larger than x/298 Cal K⁻¹mol⁻¹
 - (2) Can be negative but numerically smaller than $x/298\ Cal\ K^{\rm -1}\ mol^{\rm -1}$
 - (3) Cannot be negative
 - (4) Cannot be positive
- **74.** Which of the following is true for the reaction $H_2O(\ell) \Longrightarrow H_2O(g)$ at 100°C and 1 atmosphere (1) $\Delta S = 0$ (2) $\Delta H = 0$ (3) $\Delta H = \Delta E$ (4) $\Delta H = T\Delta S$
- **75.** For the reaction $Ag_2O(s) \longrightarrow 2Ag(s) + \frac{1}{2} O_2(g)$ the value of $\Delta H = 30.56 \text{ kJ mol}^{-1}$ and $\Delta S=66 \text{ JK}^{-1} \text{ mol}^{-1}$. The temperature at which the free energy change for the reaction will be zero is :-(1) 373 K (2) 413 K (3) 463 K (4) 493 K
- **76.** For hypothetical reversible reaction

 $\label{eq:alpha} \begin{array}{ll} {}^{1\!\!/_{\!2}}A_2(g) + {}^{3\!\!/_{\!2}}B_2(g) \longrightarrow AB_3(g); & \Delta \, H = -20 \ \text{kJ if} \\ \text{standard entropies of } A_2, \, B_2 \ \text{and} \ AB_3 \ \text{are} \ 60, \ 40 \\ \text{and} \ 50 \ \text{JK}^{-1} \ \text{mole}^{-1} \ \text{respectively. The above reaction} \\ \text{will be in equilibrium at :-} \\ (1) \ 400 \ \text{K} \\ (3) \ 250 \ \text{K} \\ (4) \ 200 \ \text{K} \end{array}$

- **77.** For the precipitation of AgCl by Ag⁺ ions and HCl (1) Δ H = 0 (2) Δ G = 0 (3) Δ G = -ve (4) Δ H = Δ G
- **78.** What is the sign of ΔG for the process of ice melting at 283 K? (1) $\Delta G > 0$ (2) $\Delta G = 0$ (3) $\Delta G < 0$ (4) None of these
- 79. What is the free energy change ∆G, when 1.0 mole of water at 100°C and 1 atm pressure is converted into steam at 100°C and 1 atm pressure :- (1) 540 Cal
 (2) -9800 Cal
 (3) 9800 Cal
 (4) 0 Cal

a positive entropy change, the reaction will be
(1) Possible at high temperature
(2) Possible only at low temperature
(3) Not possible at any temperature
(4) Possible at any temperature

81. Equilibrium constant of a reaction is related to :

(1) Standard free energy change ΔG⁰
(2) Free energy change ΔG
(3) Entropy change
(4) None

A reaction $A + B \longrightarrow C + D + q$ is found to have

- **82.** The Vant Hoff equation is : (1) $\Delta G^{\circ} = RT \log_{e} K_{p}$ (2) $-\Delta G^{\circ} = RT \log_{e} K_{p}$ (3) $\Delta G^{\circ} = RT^{2} \ell n K_{p}$ (4) None
- **83.** If $\Delta G^0 > 0$ for a reaction then : (1) $K_p > 1$
 - (2) $K_p < 1$

80.

- (3) The products predominate in the equilibrium mixture
- (4) None

84. If the equilibrium constant for a reaction is 10, then the value of ΔG^0 will be (R = 8JK⁻¹ mol⁻¹, T = 300 K) (1) + 5.527 kJ mol⁻¹ (2) - 5.527 kJ mol⁻¹ (3) +55.27 kJ mol⁻¹

- $(4) 55.27 \text{ kJ mol}^{-1}$
- 85. The process of evaporation of a liquid is accompanied by :
 (1) Increase in enthalpy
 (2) Decrease in free energy
 - (3) Increase in entropy
 - (4) All
- **86.** For the process, $CO_2(s) \longrightarrow CO_2(g)$: (1) Both ΔH and ΔS are +ve (2) ΔH is negative and ΔS is +ve (3) ΔH is +ve and ΔS is -ve (4) Both ΔH and ΔS are -ve
- 87. Which of the following provide exceptions to third law of thermodynamics
 (1) CO
 (2) ice
 (3) CO₂
 (4) All the above

88. The Gibbs free energy change of a reaction at 27°C is -26 kCal. and its entropy change is -60 Cals K. ΔH for the reaction is :(1) - 44 kCals.
(2) - 18 kCals.
(3) 34 kals.
(4) - 24 kCals.

Pre-Medical : Chemistry

ALLEN

- **89.** Which of the following reaction is expected never to be spontaneous :-
 - (1) $2O_3(g) \rightarrow 3O_2(g)$ $\Delta H = -Ve, \Delta S = +Ve$ (2) $Mg(s) + H_2(g) \rightarrow MgH_2\Delta H = -Ve, \Delta S = -Ve$ (3) $Br_2(I) \rightarrow Br_2(g)$ $\Delta H = +Ve, \Delta S = +Ve$
 - (4) $2Ag(s) + 3N_2(g) \rightarrow 2AgN_2\Delta H = + Ve, \Delta S = -Ve$

THERMOCHEMICAL REACTION

- **90.** The formation of water from $H_2(g)$ and $O_2(g)$ is an exothermic process because :
 - (1) The chemical energy of $H_2(g)$ and $O_2(g)$ is more than that of water
 - (2) The chemical energy of $H_2(g)$ and $O_2(g)$ is less than that of water
 - (3) The temperature of $H_2(g)$ and $O_2(g)$ is higher than that of water
 - (4) The temperature of H₂(g) and O₂(g) is lower than that of water
- **91.** Which plot represents for an exothermic reaction:

- **92.** Which one of the following is not applicable for a thermochemical equation :
 - (1) It tells about physical state of reactants and products
 - (2) It tells whether the reaction is spontaneous
 - (3) It tells whether the reaction is exothermic or endothermic
 - (4) It tells about the allotropic form (if any) of the reactants
- **93.** The correct thermochemical equation is : (1) $C + O_2 \longrightarrow CO_2$; $\Delta H = -94$ kCal (2) $C + O_2 \longrightarrow CO_2$; $\Delta H = +94.0$ kCal (3) $C(s) + O_2(g) \longrightarrow CO_2(g)$; $\Delta H = -94$ kCal
 - (4) $C(s) + O_2(g) \longrightarrow CO_2(g); \Delta H = +94 \text{ kCal}$
- **94.** The enthalpy changes of formation of the gaseous oxide of nitrogen (N_2O and NO) are positive because of :
 - (1) The high bond energy of the nitrogen molecule
 - (2) The high electron affinity of oxygen atoms
 - (3) The high electron affinity of nitrogen atoms
 - (4) The tendency of oxygen to form $O^{2\text{-}}$

graphite form is – 453.5 Cal. This suggests that : (1) Graphite is chemically different from diamond (2) Graphite is as stable as diamond (3) Graphite is more stable than diamond (4) Diamond is more stable than graphite **96**. Which of the following values of heat of formation indicates that the product is least stable (1) – 94 kCal (2) - 231.6 kCal (3) + 21.4 kCal (4) + 64.8 kCal **97**. Heat of formation, ΔH_{f}° of an explosive compound like NCl₂ is -(1) Positive (2) Negative

 ΔH for transition of carbon from diamond form to

95.

- (1) Positive(2) Negative(3) Zero(4) Positive or negative
- 98. According to the following reaction C(s) + 1/2 O₂(g) → CO(g), ΔH = 26.4 kCal (1) CO is an endothermic compound (2) CO is an exothermic compound (3) The reaction is endothermic (4) None of the above
- 99. Which of the following represents an exothermic reaction:(1) N₂(g) + O₂(g) → 2NO(g), ΔH = 180.5 kJ
 (2) H₂O(g) + C(s) → CO(g) + H₂(g), ΔE = 131.2kJ
 (3) 2HgO(s) + 180.4 KJ → 2Hg(ℓ) + O₂(g)
 - (4) $2Zn(s) + O_2(g) \rightarrow 2ZnO(s), \Delta E = -693.8 \text{ kJ}$
- **100.** The heat change during the reaction 24g C and 128g S following the change $C+S_2 \rightarrow CS_2$; $\Delta H=22$ kCal (1) 22 kCal (2) 11 kCal (3) 44 kCal (4) 32 kCal
- **101.** Consider the reaction $3O_2 \rightarrow 2O_3$; $\Delta H = +$ Ve, from the reaction, we can say that :- (1) Ozone is more stable then oxygen
 - (2) Ozone is less stable then oxygen and ozone decomposes forming oxygen readily
 - (3) Oxygen is less stable than ozone and oxygen decomposes forming ozone readily
 - (4) None of the above
- **102.** From the reaction P(White) \rightarrow P(Red) ; $\Delta H = -18.4$ kJ, it follows that :-
 - (1) Red P is readily formed from white P
 - (2) White P is readily formed from red P
 - (3) White P can not be converted to red p
 - (4) White P can be converted into red P and red P is more stable

FA	CTORS AFFECTIN	G HEAT OF REACTION
103.	In Kirchoff's equation of reaction : (1) Pressure (3) Volume	n which factor affects the heat (2) Temperature (4) Atomicity
104.	For the reaction; $\Delta C_p = 7.63$ Cal deg will be the value (in 4 (1) 7.63 × (373 - 29) (2) 7.63 × 10 ⁻³ (373) (3) 7.63 × 10 ⁻³ (373) (4) 7.63 × (373 - 29)	$H_{2}(g) + \frac{1}{2} O_{2}(g) = H_{2}O(\ell),$ i; $\Delta H_{25^{0}C} = 68.3 \text{ kCal, what}$ iCal) of Δ H at 100°C : 8) - 68.3 - 298) - 68.3 - 298) + 68.3 8) + 68.3
105.	The enthalpy of a rewhat will be the enthalpy $\Delta C_p = \text{zero} :-$ (1) - 3.57 (3) - 3.57 × $\frac{373}{3-3}$	action at 273 K is – 3.57 kJ. halpy of reaction at 373 K if (2) Zero (4) – 375
106.	For the reactions, (i) $H_2(g) + Cl_2(g) \longrightarrow$ (ii) $H_2(g) + Cl_2(g) \longrightarrow$ (iii) $H_2(g) + Cl_2(g) \longrightarrow$ Which one of the fol (1) $x > y$ (3) $x = y$	 2HCl(g) + xkJ 2HCl(ℓ) + ykJ lowing statement is correct : (2) x < y (4) More data required
	HEAT OF I	FORMATION
107	Since the enthalm	, of the elements in their

- e the enthalpy of the elements in their standard states is taken to be zero. The heat of formation (ΔH_{ι}) of compounds :
 - (1) Is always negative
 - (2) Is always positive
 - (3) Is zero
 - (4) May be positive or negative
- **108.** Reaction $H_2(s) + I_2(g) \longrightarrow 2HI; \Delta H = 12.40 \text{ kCal.}$ According to this, heat of formation of HI will be -

(1) 12.40 kCal	(2) – 12.40 kCal
(3) – 6.20 kCal	(4) 6.20 kCal

- **109.** At 300K the standard enthalpies of formation of $C_6H_5COOH_{(s)}$, $CO_{2(q)}$ and $H_2O_{(l)}$ are –408, –393 and -286 kJ mol⁻¹ respectively. Calculate the heat of combustion of benzoic acid at contant volume : (1) +3201 kJ (2) +3199.75 kJ
 - (3) -3201 kJ
 - (4) -3199.75 kJ

- **110.** Enthalpy of a compound is equal to its :-(When it is formed from constituent particles) (1) Heat of combustion (2) Heat of formation (3) Heat of reaction
 - (4) Heat of solution
- **111.** Which of the following equations respresents standard heat of formation of CH₄?
 - (1) $C_{(diamond)} + 2H_{2(g)} \longrightarrow CH_{4(g)}$ $\begin{array}{l} \text{(2)} C_{\text{(graphite)}} + 2H_{2(g)} \longrightarrow CH_{4(g)} \\ \text{(3)} C_{\text{(diamond)}} + 4H_{(g)} \longrightarrow CH_{4(g)} \\ \text{(4)} C_{\text{(graphite)}} + 4H_{(g)} \longrightarrow CH_{4(g)} \end{array}$
- **112.** The enthalpy of formation of ammonia is -46.0 kJ mol⁻¹. The enthalpy change for the reaction $2NH_3(g) \rightarrow N_2(g) + 3H_2(g)$ is : (1) 46.0 kJ mol⁻¹ (2) 92.0 kJ mol⁻¹ (3) – 23.0 kJ mol⁻¹ (4) - 92.0 kJ mol⁻¹

113. Given enthalpy of formation of CO₂(g) and CaO(s) are - 94.0 kJ and - 152 kJ respectively and the enthalpy of the reaction : $CaCO_3(s) \longrightarrow CaO(s) + CO_2(g)$ is 42 kJ. The enthalpy of formation of $CaCO_3(s)$ is (1) - 42 KJ(2) – 202 KJ (3) +202 KJ (4) - 288KJ

- **114.** Given that standard heat enthalpy of CH_4 , C_2H_4 and $C_{2}H_{2}$ are -17.9, 12.5, -24.8 kCal mol⁻¹. The Δ H for $CH_4 + C_2H_4 \rightarrow C_3H_8$ is : (2) - 30.2 kCal (1) - 55.2 kCal (3) 55.2 kCal (4) - 19.4 kCal
- **115.** The standard molar heat of formation of ethane, CO_{2} and water(ℓ) are respectively -21.1, -94.1 and - 68.3 kCal. The standard molar heat of combustion of ethane will be (1) -372 kCal (2) -162 kCal (3) - 240 kCal (4) -183.5 kCal
- **116.** Two atoms of hydrogen combine to form a molecule of hydrogen gas, the energy of the $H_{\scriptscriptstyle 9}$ Z:\NODE02\B0AI-B0\TARGET\CHEM\ENG\WODULE-1\5.THERMODYNAMCS\02-EXERCISE molecule is : (1) Greater than that of seperate atoms (2) Equal to that of seperate atoms (3) Lower than that of seperate atoms
 - (4) Some times lower and some times higher
- **117.** The ΔH_{f}° for CO₂₍₀₎, CO₍₀₎ and H₂O₍₀₎ are -393.5, -110.5 and -241.8 kJ mol⁻¹respectively the standard enthalpy change (in kJ) for the reaction $CO_{2(g)}$ + $H_{2(g)}$ \rightarrow $CO_{(g)}$ + $H_{2}O_{(g)}$ is -(1) 524.1 (2) 41.2 (3) -262.5 (4) - 41.2

Ε

118. The enthalpies of combustion of carbon and carbon monoxide are -393.5 kJ and -283 kJ, respectively the enthalpy of formation of carbon monoxide is :

	01 001 0011 11101101104
(1) –676.5 kJ	(2) –110.5 kJ
(3) 110.5 kJ	(4) 676.5 kJ

- **119.** The standard heat of formation of $CS_{0}(\ell)$ will be; given that the standard heat of combustion of carbon (s), sulphur(s) and $CS_2(\ell)$ are -393.3, -293.72 and -1108.76 kJ mol⁻¹ respectively is (1) -128.02 kJ mole⁻¹ (2) +12.802 kJ mol⁻¹ (3) +128.02 kJ mol⁻¹ (4) -12.802 kJ mol⁻¹
- **120.** The heat of combustion of $CH_{4(g)}$, $C_{(s)}$ and $H_{2(g)}$ at 25 °C are -212.4 K Cal, -94.0 K Cal and -68.4 K Cal respectively, the heat of formation of CH₄ will be -(1) +54.4 K Cal (2) -18.4 K Cal (3) -375.2 K Cal (4) +212.8 K Cal
- **121.** Standard enthalpy of formation is zero for .

(1) C _{diamond}	(2) Br _(g)
(3) C _{graphite}	(4) O _{3(g)}

122. The standard heats of formation of NO₂(g) and $N_2O_4(g)$ are 8.0 and 2.0 kCal mol⁻¹ respectively the heat of dimerization of NO₂ in kCal is

(1) 10.0(2) - 6.0(3) - 12.0(4) - 14.0

123. M is a metal that forms an oxide

$$\mathsf{M_2O}, \ \frac{1}{2} \, \mathsf{M_2O} \rightarrow \mathsf{M} + \ \frac{1}{4} \, \mathsf{O_2} \ \ \Delta \mathsf{H} = 120 \text{ kCal}.$$

When a sample of metal M reacts with one mole of oxygen what will be the ΔH in that case (1) 240 kCal. (2) - 240 kCal. (3) 480 kCal. (4) – 480 kCal.

HEAT OF COMBUSTION

124. According to equation, $C_6H_6(\ell) + 15/2 O_2(g) \longrightarrow 6CO_2(g) + 3H_2O(\ell);$ Δ H = -3264.4 kJ mol⁻¹ the energy evolved when 7.8 g benzene is burnt in air will be -(1) 163.22 kJ (2) 32.64 kJ (3) 3.264 kJ (4) 326.4 kJ

125. Heat of combustion of CH_4 , C_2H_6 , C_2H_4 and C_2H_2 gases are -212.8, -373.0, -337.0 and -310.5 kCal respectively at the same temperature. The best fuel among these gases is : (1) CH_4 (2) $C_2 H_6$ (3) $C_2 H_4$ (4) $C_2 H_2$

126. Given standard enthalpy of formation of CO $(-110 \text{ kJ mol}^{-1})$ and CO₂ $(-394 \text{ kJ mol}^{-1})$. The heat of combustion when one mole of graphite burns is (1) - 110 kJ(2) – 284 kJ (3) - 394 kJ (4) - 504 kJ

- **127.** The enthalpy of formation for $C_2H_4(g)$, $CO_2(g)$ and $H_{2}O(\ell)$ at 25°C and 1 atm. pressure are 52, - 394 and - 286 kJ mole⁻¹ respectively. The enthalpy of combustion of C₂H₄ will be:-(1) + 1412 kJ mole⁻¹ (2) -1412 kJ mole⁻¹ $(3) + 142.2 \text{ kJ mole}^{-1}$ $(4) - 141.2 \text{ kJ mole}^{-1}$
- 128. The heat of combustion of carbon and carbon monoxide are – 394 and –285 kJ mol⁻¹ respectively. The heat of formation of CO in kJ mol⁻¹ is:-(2) - 109(1) + 109(3) + 218(4) - 218
- **129.** If heat of combustion of ethylene is 1411 kJ when a certain amount of ethylene was burnt 6226 kJ heat was evolved. Then the volume of O_2 (at NTP) that entered into the reaction is :-

(1) 296.5 ml	(2) 296.5 litre
(3) 6226 ×22.4 litre	(4) 22.4 litre

- **130.** The heat evolved during the combustion of 112 litre of water gas at STP (mixture of equal volume of H_2 and CO) is : Given $H_{2}(g) + \frac{1}{2}O_{2}(g) = H_{2}O(g); \Delta H = -241.8 \text{ kJ}$ $CO(g) + \frac{1}{2}O_{2}(g) = CO_{2}(g); \Delta H = -283 \text{ kJ}$ (1) 241.8 kJ (2) 283 kJ (3) 1312 kJ (4) 1586 kJ
- **131.** A person requires 2870 kCal of energy to lead normal daily life. If heat of combustion of cane sugar is -1349 kCal, then his daily consumption of sugar is :
 - (2) 0.728g (1) 728g (3) 342 g(4) 0.342 g

132. On complete combustion of 2 gm methane 26575 Cal heat is generated. The heat of formation of methane will be (given heat of formation of CO₂ and H_2O are -97000 and -68000 Cal respectively) :

(1) + 20400 Cal	(2) + 20600 Cal
(3) – 20400 Cal	(4) – 2000 Cal

Pre-Medical : Chemistry

Pre-	Medical: Chemistry			ALLEN
133.	X gm of ethanal was subjected to combustion in a bomb calorimeter and the heat produced is YJoules. Then - (1) $\Delta E_{(combustion)} = -XJ$ (2) $\Delta E_{(combustion)} = -YJ$	140.	Heat of formation of CO would be the quantity of of graphite is burnt in exe (1) 23.5 kCal (3) 94.0 kCal	O ₂ is - 94.0 kCal. What heat liberated, when 3 g cess of oxygen:- (2) 2.35 kCal (4) 31.3 kCal
	(3) $\Delta F = -\frac{44Y}{1000} J \text{ mol}^{-1}$		HEAT OF NEUTR	ALIZATION
	(4) $\Delta H_{\text{(combustion)}} = -\frac{44 \text{ Y}}{\text{X}} \text{ J mol}^{-1}$	141.	The amount of heat libe NH ₄ OH reacts with one (1) 13.7 kCal (3) Less than 13.7 kCal	rated when one mole of mole of HCl is (2) More than 13.7 kCal (4) Cannot be predicted
134.	The following are the heats of reactions -	142.	If $H^+ + OH^- = H_0O +$	13.7 kCal. then heat of
	(i) $\Delta H_{\rm f}^{\rm o}$ of $H_2O_{(\ell)} = -68.3~{\rm kCal~mol^{-1}}$		complete neutralisation of	one gram mole of H_2SO_4
	(ii) $\Delta H_{\text{comb.}}^{\circ}$ of $C_2 H_2 = -337.2 \text{ kCal mol}^{-1}$		with strong base will be :	
	(iii) AH° of C H = -363.7 kCal mol ⁻¹		(1) 13.7 Kcal (3) 6.85 Kcal	(2) 27.4 Kcal (4) 3.425 KCal
	Then heat change for the reaction $C_2H_2 + H_2 \rightarrow C_2H_4$ is - (1) -716.1 kCal (2) + 337.2 kCal (3) -41.8 kCal (4) -579.5 kCal	143.	Heat of neutralisation of dilute solution by NaOH (1) – 27.4 kCal eq^{-1} (3) 13.7 kCal eq^{-1}	f a strong dibasic acid in is nearly : (2) – 13.7 kCal eq ⁻¹ (4) – 13.7 kCal mol ⁻¹
135.	The heat of combustion of a substance is :- (1) Always positive (2) Always negative (3) Numerically equal to the heat of formation (4) 1 and 3 both	144.	The temperature of a 5 m by 5° C when 5 ml of a str 10 ml of each are mix increase by : (1) 5° C	nl of strong acid increases rong base is added to it. If red temperature should (2) 10°C
136.	The value of ΔH for the combustion of C(s) is -94.4 kCal. The heat of formation of CO ₂ (g) is :- (1) -49.5 kCal (2) -94.4 kCal (3) -188.0 kCal (4) More data required	145.	 (3) 15°C The heat of neutralizat -55.9 kCal mol⁻¹. If the HCN by NaOH is - 12.1 	(4) Cannot be known ion of HCl by NaOH is heat of neutralization of l kCal mol ⁻¹ . The energy
137.	In the combustion of $0.4\mathrm{g}$. of $\mathrm{CH_4}, 0.25\mathrm{kCal}$. of heat		of dissociation of HCN is	
	is liberated. The heat of combustion of CH_4 is		(1) – 43.8 kJ (3) 68 kJ	(2) 43.8 kJ (4) – 68 kJ
	(1) - 20 KCal $(2) - 10$ KCal (3) - 2.5 KCal $(4) - 5$ KCal	146	If water is formed from L	It is no and OLI- the best
120		140.	of formation of water is :	I' IONS and OTT the heat
130.	$\Delta H = -680 \text{ kCal The weight of CO_2(g)} + 6H_2O(g);$; ed (1) – 13.7 kCal ((2) 13.7 kCal
	when 170 kCal of heat is evolved in the combustion		(3) –63.4 kCal	(4) More data required
	of glucose is:- (1) 265 g (2) 66 g (3) 11 g (4) 64 g	147.	The change in the enthal $NaOH + HCI \longrightarrow NaC$ (1) Heat of neutralisation	py of l + H ₂ O is called : (2) Heat of reaction
139.	Which of the following equations corresponds to the enthalpy of combustion at 298 K :-	148.	(3) Heat of hydrationHeat of neutralisation of ox	(4) Heat of solution kalic acid is -106.7 kJ mol ⁻¹
	(1) $C_2H_6(g) + 7/2 O_2(g) \rightarrow 2CO_2(g) + 3H_2O(g)$		using NaOH hence ΔH c	of :
	(2) $2C_2H_6(g) + 7 O_2(g) \rightarrow 4CO_2(g) + 6H_2O(g)$		$H_2C_2O_4 \rightarrow C_2O_4^{2-} + 2H_2$	I+ is :-
	(3) $C_2H_6(g) + 7/2 O_2(g) \rightarrow 2CO_2(g) + 3H_2O(\ell)$		(1) 5.88 kJ mol ⁻¹ (3) -13.7 kCol mol ⁻¹	(2) $-5.88 \text{ kJ mol}^{-1}$
	(4) $2C_2H_6(g) + 7O_2(g) \rightarrow 4CO_2(g) + 6H_2O(\ell)$		(J) = 13.7 KCal IIIOI*	(+) / .J KJ III0I*
244		L		

(4) 720 kJ mol⁻¹

ALLEN

HEAT OF HYDROGENATION

149. The heat of combustion of C_2H_4 , C_2H_6 and H_2 are -1409.5 kJ, -1558.3 kJ and -285.6 kJ. The heat of hydrogenation of ethene is - (1) -136.8 kJ (2) -13.68 kJ

() = = = =	() = = = =
(3) 273.6 kJ	(4) 1.368 kJ

- 150. The enthalpy of combustion of cyclohexane, cyclohexene and H₂ are respectively -3920, -3800 and -241 kJ mol⁻¹. The heat of hydrogenation of cyclohexene is:(1) -121 kJ mol⁻¹
 (2) 121 kJ mol⁻¹
 - (3) -242 kJ mol^{-1} (4) 242 kJ mol^{-1}

BOND ENERGY/RESONANCE ENERGY

- 151. Bond energy of a molecule :
 - (1) Is always negative
 - (2) Is always positive
 - (3) Either positive or negative
 - (4) Depends upon the physical state of the system
- **152.** Among the following for which reaction heat of reaction represents bond energy of HCl
 - (1) $HCl(g) \longrightarrow H^+(g) + Cl^-(g)$
 - (2) HCl(g) $\longrightarrow \frac{1}{2} H_2(g) + \frac{1}{2} Cl_2(g)$
 - (3) 2HCl(g) \longrightarrow H₂(g) + Cl₂(g)
 - $(4) \text{ HCl}(g) \longrightarrow \text{ H}(g) + \text{ Cl}(g)$
- **153.** The bond energies of F_2 , Cl_2 , Br_2 and I_2 are 155.4, 243.6, 193.2 and 151.2 kJ mol⁻¹ respectively. The strongest bond is :

(1) F – F	(2) Cl – Cl
(3) Br – Br	(4) I – I

- 154. Energy required to dissociate 4g of gaseous hydrogen into free gaseous atoms is 208 kCal at 25°C. The bond energy of H—H bond will be :
 (1) 1.04 kCal
 (2) 10.4 kCal
 (3) 104 kCal
 (4) 1040 kCal
- **155.** Heat evolved in the reaction $H_2 + Cl_2 \longrightarrow 2HCl$ is 182 kJ. Bond energies of H–H and Cl–Cl are 430 and 242 kJ mol⁻¹ respectively. The H–Cl bond energy is :
 - (1) 245 kJ mol⁻¹
 - (2) 427 kJ mol⁻¹
 - (3) 336 kJ mol⁻¹
 - (4) 154 kJ mol⁻¹

energies are, H-H = 103, C-H = 99, C-C = 80 & $C = C = 145 \text{ kCal mol}^{-1}$ (1) -10 kCal mol}^{-1} (2) +10 kCal mol}^{-1} (3) - 30 kCal mol}^{-1} (4) +30 kCal mol}^{-1} **157.** Bond dissociation enthalphies of $H_2(g)$ and $N_2(g)$ are 436.0 kJ mol}^{-1} and 941.8 kJ mol}^{-1} respectively and enthalpy of formation of $NH_3(g)$ is -46 kJ mol}^{-1}. What is enthalpy of atomization of $NH_3(g)$? (1) 390.3 kJ mol}^{-1} (2) 1170.9 kJ mol}^{-1}

 $H_2(g) + C_2H_4(g) \rightarrow C_2H_6(g)$ is..... The bond

156. The enthalpy change for the reaction

158. From the reactions :

(3) 590 kJ mol⁻¹

- $\begin{array}{l} C(s) + 2H_2(g) \rightarrow CH_4(g) \ \Delta H = X \ Kcal \\ C(g) + 4H(g) \rightarrow CH_4(g), \ \Delta H = X_1 \ Kcal \\ CH_4(g) \rightarrow CH_3(g) + H(g) \ \Delta H = + \ Y(Kcal) \\ Bond \ energy \ of \ C-H \ bond \ is \ \end{array}$
- (1) $\frac{X}{4}$ kCal mol⁻¹

(2) Y kCal mol⁻¹

- (3) $\frac{X_1}{4}$ kCal mol⁻¹
- (4) X₁ kCal mol⁻¹
- **159.** The enthalpy changes at 298 K in successive breaking of O–H bonds of water are

$H_2O \longrightarrow H(g) + OH(g)$	g); $\Delta H = 498 \text{ kJ mol}^{-1}$
$OH(g) \longrightarrow H(g) + O(g)$	g); $\Delta H = 428 \text{ kJmol}^{-1}$
the bond enthalpy of C	D–H bond is
(1) 498 kJ mol ⁻¹	(2) 428 kJ mol ⁻¹
(3) 70 kJ mol ⁻¹	(4) 463 kJ mol ⁻¹

- 161. Heat of dissociation of benzene to elements is 5535 kJ mol⁻¹. The bond enthalpies of C–C, C=C and C–H are 347.3, 615.0 and 416.2 kJ respectively. Magnitude resonance energy of benzene is

 (1) 1.51 kJ
 (2) 15.1 kJ
 (3) 151 kJ
 (4) 1511 kJ

SOME OTHER HEAT OF REACTIONS	169. $2CO_{(g)} + O_{2(g)} \longrightarrow 2CO_{2(g)} + X kJ$
162. The enthalpy change for the reaction $2C(\text{graphite}) + 3H_2(g) \longrightarrow C_2H_6(g)$ is called (1) Enthalpy of formation (2) Enthalpy of combustion (3) Enthalpy of hydrogenation (4) Enthalpy of vaporisation	 (1) Heat of formation of CO₂ (2) Heat of vapourisation (3) Heat of reaction (4) Heat of sublimation 170. Which of the following reactions represents ΔH (hydration) :-
163. $Cl_2(g) \longrightarrow 2Cl(g)$, In this process value of ΔH will be - (1) Positive (2) Negative (3) Zero (4) Nothing can be predicted	(1) $\operatorname{CuSO}_4(s) + (\operatorname{aq}) \rightarrow \operatorname{CuSO}_4(\operatorname{aq})$; $\Delta H = -x kJ$ (2) $\operatorname{BaCl}_2(s) + 2H_2O(\ell) \rightarrow \operatorname{BaCl}_2 \cdot 2H_2O(s)$; $\Delta H = -x' kJ$ (3) $\operatorname{CuSO}_4(s) + 5H_2O(\ell) + (\operatorname{aq}) \rightarrow \operatorname{CuSO}_4 \cdot 5H_2O(\operatorname{aq})$; $\Delta H = -y' kJ$ (4) None of the above
 164. The magnitude of heat of solution on addition of solvent to solution (1) Decreases (2) Increases (3) Remains constant (4) Increases or decreases 165. If H₂(g) = 2H(g) ; ΔH = 104 kCal, than heat of 	171. ΔH for the reaction, $I_{(g)} + I_{(g)} \rightarrow I_2(g)$ will be: (1) Zero (2) - ve (3) + ve (4) ∞ 172. Given that : $A(s) \rightarrow A(\ell)$; $\Delta H = x, A(\ell) \rightarrow A(g) - y$ The heat of sublimation of A will be:- (1) x + y (2) x - y (3) x or y (4) - (x + y)
atomisation of hydrogen is :	
atomisation of hydrogen is : (1) 52 kCal (2) 104 kCal	HESS LAW
atomisation of hydrogen is : (1) 52 kCal (2) 104 kCal (3) 208 kCal (4) None of these 166. $S_{(thombic)} + O_{2(g)} \longrightarrow SO_{2(g)}$; $\Delta H = -297.5$ kJ $S_{(monoclinic)} + O_{2(g)} \longrightarrow SO_{2}$; $\Delta H = -300$ kJ The data can predict that – (1) Rhombic sulphur is yellow in colour (2) Monoclinic sulphur has metallic lusture. (3) Monoclinic sulphur is more stable (4) Δ H transition of S_R to S_M is endothermic	HESS LAW 173. The enthalpy change of a reaction does not depend on (1) State of reactants and products (2) Nature of reactants and products (3) Different intermediate reactions (4) Initial and final enthalpy change of reaction 174. From the thermochemical reactions, $C(\text{graphite}) + \frac{1}{2}O_2 \longrightarrow CO; \Delta H = -110.5 \text{ kJ}$ $CO + \frac{1}{2}O_2 \longrightarrow CO_2; \Delta H = -283.2 \text{ kJ}$ the heat of reaction of $C(\text{graphite}) + O_2 \longrightarrow CO_2$ is :
atomisation of hydrogen is : (1) 52 kCal (2) 104 kCal (3) 208 kCal (4) None of these 166. $S_{(rhombic)} + O_{2(g)} \longrightarrow SO_{2(g)}$; $\Delta H = -297.5$ kJ $S_{(monoclinic)} + O_{2(g)} \longrightarrow SO_{2}$; $\Delta H = -300$ kJ The data can predict that – (1) Rhombic sulphur is yellow in colour (2) Monoclinic sulphur has metallic lusture. (3) Monoclinic sulphur is more stable (4) Δ H transition of S_R to S_M is endothermic 167. The heat of combustion of yellow phosphorous and red phosphorous are – 9.91 kJ and –8.78 kJ respectively. The heat of transition of yellow phosphorous to red phosphorous is (1) –18.69 kJ (2) +1.13 kJ (3) +18.69 kJ (4) –1.13 kJ (3) +18.69 kJ (4) –1.13 kJ	HESS LAW HESS LAW173. The enthalpy change of a reaction does not depend on (1) State of reactants and products (2) Nature of reactants and products (3) Different intermediate reactions (4) Initial and final enthalpy change of reaction 174. From the thermochemical reactions, $C(graphite) + \frac{1}{2}O_2 \longrightarrow CO$; $\Delta H = -110.5 \text{ kJ}$ $CO + \frac{1}{2}O_2 \longrightarrow CO_2$; $\Delta H = -283.2 \text{ kJ}$ the heat of reaction of $C(graphite) + O_2 \longrightarrow CO_2$ is : (1) 393.7 kJ (2) - 393.7 kJ (3) - 172.7 kJ (4) + 172.7 kJ 175. If $H_2 + \frac{1}{2}O_2 \longrightarrow H_2O$; $\Delta H = -68.39 \text{ kCal}$ $K + H_2O + \text{ water} \longrightarrow \text{KOH(aq)} + \frac{1}{2}H_2$;

KOH + water \longrightarrow KOH (aq) $\Delta H = -14.0$ kCal graphite are seperately burnt to yield $\mathrm{CO}_{\rm 2}$ the heat the heat of formation of KOH is -

Z:\NODE02\B0AI-B0\TARGET\CHEM\ENG\WODULE-1\5.THERWODYNAMCS\02-EXERCISE.P65

Ε

ALLEN

(1) - 68.39 + 48 - 14.0

(2) - 68.39 - 48.0 + 14.0

- (3) +68.39 48.0 + 14.0
- (4) + 68.39 + 48.0 14.0

246

liberated in first case is :

(1) Less than in the second case by 1.89 kJ

(2) Less than in the second case by 11.34 kJ

(3) Less than in the second case by 14.34 kJ

(4) More than in the second case by 0.945 kJ

ALLEN **176.** Given $C(s) + O_2(g) \longrightarrow CO_2(g) + 94.2 \text{ kCal}$ $H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(\ell) + 68.3 \text{ kCal}$ $CH_{4}(g) + 2O_{2}(g) \longrightarrow CO_{2}(g) + 2H_{2}O(\ell) + 210.8 \text{ kCal}$ The heat of formation of methane in Kcal will be (1) - 45.9(2) - 47.8(3) - 20.0(4) - 47.3**177.** From the following data, the heat of formation of Ca(OH)₂(s) at 18°C is kCal. (i) $CaO(s) + H_2O(\ell) = Ca(OH)_2$ (s); $\Delta H_{180}C = -15.26 \text{ kCal.....}$ (ii) $H_2O(\ell) = H_2(g) + \frac{1}{2} O_2(g)$; $\Delta H_{180}C = 68.37 \text{ kCal} \dots$ (iii) $Ca(s) + \frac{1}{2}O_{2}(g) = CaO(s)$; $\Delta H_{180}C = -151.80$ kCal (1) - 98.69(2) - 235.43(3) 194.91 (4) 98.69 **178.** If, $H_2(g) + Cl_2(g) \longrightarrow 2HCl(g)$; $\Delta H^0 = -44$ kCal $2Na(s) + 2HCl(g) \longrightarrow 2NaCl(s) + H_{2}(g);$ Δ H = -152 kCal Then, Na(s) + 0.5 Cl₂(g) \longrightarrow NaCl(s) ; Δ H⁰ = ? (2) 196 kCal (1) 108 kCal (3) - 98 kCal (4) 54 kCal **179.** (i) $S(s) + 3/2 O_2(g) = SO_3(g) + 2x kCal$ (ii) $SO_{2}(g) + \frac{1}{2}O_{2}(g) = SO_{3}(g) + y kCal$ Calculate the heat of formation of SO_2 : (1)(2x + y)(2) - (2x - y)(3) x + y(4) 2x / y **180.** If $S + O_2 \longrightarrow SO_2$; $\Delta H = -298.2$ $SO_2 + \frac{1}{2}O_2 \longrightarrow SO_3$; $\Delta H = -98.7$ $SO_3 + H_2O \longrightarrow H_2SO_4$; $\Delta H = -130.2$ $H_2 + \frac{1}{2}O_2 \longrightarrow H_2O$; $\Delta H = -287.3$ Then the enthalpy of formation of H_2SO_4 at 298 K is -(1) -814.4 kJ (2) -650.3 kJ (3) -320.5 kJ (4) -433.5 kJ **181.** Given that : $Zn + \frac{1}{2}O_2 \rightarrow ZnO + 84000 Cal$ 1 $Hg + \frac{1}{2}O_2 \rightarrow HgO + 21700 \text{ Cal}$ 2 The heat of reaction (ΔH) for, $Zn + HgO \rightarrow ZnO + Hg is :-$ (1) 105700 Cal (2) 62300 Cal (3) -105700 Cal (4) - 62300 Cal

182. Given that - $2C(s) + 2O_2(g) \rightarrow 2CO_2(g) \quad \Delta H = -787 \text{ kJ}$ $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(\ell) \quad \Delta H = -286 \text{ kJ}$ $C_2H_2(g)$ + $\frac{5}{2}O_2(g)$ →2 $CO_2(g)$ + $H_2O(\ell)$ ΔH=-1310 kJ Heat of formation of acetylene is :-(1) + 1802 kJ(2) - 1802 kJ (3) - 800 kJ (4) + 237 kJ 183. Find the heat change in the reaction : $NH_{a}(g) + HCl(g) \rightarrow NH_{a}Cl(s)$ from the following data $NH_3(g) + aq \rightarrow NH_3(aq),$ $\Delta H = -8.4 \text{ kCal}$ $HCl(g) + aq \rightarrow HCl(aq),$ $\Delta H = -17.3 \text{ kCal}$ $NH_{a}(aq)+HCl(aq)\rightarrow NH_{a}Cl(aq), \Delta H = -12.5 \text{ kCal}$ $NH_{a}Cl(s) + aq \rightarrow NH_{a}Cl(aq), \Delta H = +3.9 kCal$ (1) - 42.1(2) - 34.3(3) + 34.3(4) + 42.1184. The heat of reaction for A + $\frac{1}{2}O_2 \rightarrow AO$ is - 50 kCal and $AO + \frac{1}{2} O_2 \rightarrow AO_2$ is 100 kCal. The heat of reaction for A + $O_2 \rightarrow AO_2$ is:-(1) – 50 kCal (2) + 50 kCal (3) 100 kCal (4) 150 kCal **185.** $C(s) + O_2(g) \rightarrow CO_2(g) + 94.0 \text{ kCal}$ $CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g), \quad \Delta H = -67.7 \text{ kCal}$ from the above reactions find how much heat (kCal mole⁻¹) would be produced in the following reaction: $C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g)$ (1) 20.6(2) 26.3(3) 44.2(4) 161.6 **186.** Using the following thermochemical data: $C(S) + O_2(g) \rightarrow CO_2(g),$ $\Delta H = -94.0 \text{ kCal}$ $H_2(g) + 1/2O_2(g) \rightarrow H_2O(\ell), \Delta H = -68.0 \text{ kCal}$ $CH_3COOH(\ell) + 2O_2(g) \rightarrow 2CO_2(g) + 2H_2O(\ell), \Delta H$ = -210.0 kCal The heat of formation of acetic acid is:-(1) 116.0 kCal (2) - 116.0 kCal (3) - 114.0 kCal (4) + 114.0 kCal

```
247
```

Pre-Medical : Chemistry

187. The enthalpy of vapourisation of liquid water using the data:

$$\begin{split} H_2(g) + \frac{1}{2} & O_2(g) \to H_2O(\ell); \Delta H = -285.77 \text{ kJ mol}^{-1} \\ H_2(g) + \frac{1}{2} & O_2(g) \to H_2O(g); \Delta H = -241.84 \text{ kJ mol}^{-1} \\ (1) + 43.93 \text{ kJ mol}^{-1} & (2) - 43.93 \text{ kJ mol}^{-1} \\ (3) + 527.61 \text{ kJ mol}^{-1} & (4) - 527.61 \text{ kJ mol}^{-1} \end{split}$$

- **188.** $H_2(g) + \frac{1}{2}O_2(g) = H_2O(\ell)$; $\Delta H_{298K} = -68.32$ kCal. Heat of vapourisation of water at 1 atm and 25°C is 10.52 kCal. The standard heat of formation (in kCal) of 1 mole of water vapour at 25°C is (1) 10.52 (2) -78.84 (3) +57.80 (4) -57.80
- 189. The heat of solution of anhydrous CuSO₄ and CuSO₄.5H₂O are 15.89 and 2.80 kCal mol⁻¹ respectively. What will be the heat of hydration of anhydrous CuSO₄?
 (1) -18.69 kCal
 (2) 18.69 kCal
 (3) -28.96 kCal
 (4) 28.96 kCal

190. One mole of anhydrous salt AB dissolves in water and librates 21.0 J mol⁻¹ of heat. The value of ΔH_(hydration) of AB is -29.4 J mol⁻¹. The heat of dissolution of hydrated salt AB.2H₂O_(s) is - (1) 50.4 J mol⁻¹ (2) 8.4 J mol⁻¹ (3) -50.4 J mol⁻¹ (5) -8.4 J mol⁻¹

191. Which of the following expressions is true:-

(1)
$$H_{f}^{0}(CO,g) = \frac{1}{2} \Delta H_{f}^{0}(CO_{2},g)$$

(2) ΔH_{f}^{0} (CO,g)= ΔH_{f}^{0} (C,graphite) + $\frac{1}{2} \Delta H_{f}^{0}$ (O₂,g)

(3)
$$\Delta H_{f}^{0}$$
 (CO,g)= ΔH_{f}^{0} (CO₂,g) - $\frac{1}{2}$ ΔH_{f}^{0} (O₂,g)

(4) ΔH_{f}^{0} (CO,g)= ΔH_{comb}^{0} (C,graphite)- ΔH_{comb}^{0} (CO,g)

EX	ERC	ISE-I	(Cond	ceptua	al Que	stions	;)							VER	KEY
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	2	3	4	4	3	3	1	4	1	1	1	4	2	1	2
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	4	4	4	1	1	4	3	1	3	2	2	4	2	2	4
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	2	1	2	1	1	2	3	4	2	2	2	3	1	4	1
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	1	2	3	4	3	4	3	1	1	2	3	1	3	1	3
Que.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans.	2	2	1	1	4	2	4	3	2	4	2	1	2	4	3
Que.	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
Ans.	2	3	3	4	4	1	2	2	2	4	1	4	1	4	1
Que.	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105
Ans.	1	2	3	1	3	4	1	2	4	3	2	4	2	3	1
Que.	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
Ans.	2	4	4	4	2	2	2	4	4	1	3	2	2	3	2
Que.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135
Ans.	3	4	4	4	1	3	2	2	2	3	1	3	3	3	2
Que.	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150
Ans.	2	2	2	3	1	3	2	2	1	2	1	1	4	1	1
Que.	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165
Ans.	2	4	2	3	2	3	2	3	4	3	3	1	1	3	2
Que.	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
Ans.	4	4	4	3	2	2	1	3	2	2	3	2	3	2	1
Que.	181	182	183	184	185	186	187	188	189	190	191				
Ans.	4	4	1	2	2	3	1	4	1	2	4				
248					•			_		-0					

Z:\NODE02\B0AI-B0\TARGET\CHEM\ENG\WODULE-1\5.THERWODYNAMCS\02-EXERCISE.P65

Е

AL	LEN		Pre-Medical : Chemistry
E	EXERCISE-II (Previous Year Questions)		AIPMT/NEET & AIIMS (2006-2018)
1.	AIPMT 2006Identify the correct statement for change of Gibbsenergy for a system (ΔG_{system}) at constanttemperature and pressure.(1) If $\Delta G_{system} > 0$, the process is spontaneous.(2) If $\Delta G_{system} = 0$, the system has attained	8.	The enthalpy change (Δ H) for the reaction, N ₂ (g) + 3H ₂ (g) \longrightarrow 2NH ₃ (g) is -92.38 kJ at 298 K. The internal energy change Δ U at 298 K is (1) -92.38 kJ (2) -87.42 kJ (3) -97.34 kJ (4) -89.9 kJ AIPMT 2007
	equilibrium. (3) If $\Delta G_{system} = 0$, the system is still moving in a particular direction. (4) If $\Delta G_{system} < 0$, the process is not spontaneous.	9.	Consider the following reactions : (a) $H^+_{(aq)} + OH^{(aq)} = H_2O_{(l)}$, $\Delta H = -X_1 kJ mol^{-1}$ (b) $H^- + \frac{1}{2}O = H_1O \Delta H = -X_1 kJ mol^{-1}$
2.	Assume each reaction is carried out in an open container. For which reaction will $\Delta H = \Delta E$? (1) $H_2(g) + Br_2(g) \rightarrow 2 HBr(g)$ (2) C (s) + 2 $H_2O(g) \rightarrow 2 H_2(g) + CO_2(g)$ (3) $PCl_5(g) \rightarrow PCl_3(g) + Cl_2(g)$ (4) 2 CO (g) + $O_2(g) \rightarrow 2 CO_2(g)$		(b) $H_{2(g)}^{-1} + \frac{2}{2}O_{2(g)}^{-1} - H_{2}O_{0}^{-1}$, $\Delta H^{-1} - X_{2}kJ$ mol ⁻¹ (c) $CO_{2(g)} + H_{2(g)} = CO_{(g)} + H_{2}O_{(0)} - X_{3}kJ$ mol ⁻¹ (d) $C_{2}H_{2(g)} + \frac{5}{2}O_{2(g)}^{-1} = 2CO_{2(g)} + H_{2}O_{(0)} + X_{4}kJ$ mol ⁻¹ Enthalpy of formation of $H_{2}O_{(0)}$ is : (1) $+X_{1}$ kJ mol ⁻¹ (2) $-X_{2}$ kJ mol ⁻¹
3.	The enthalpy and entropy change for reaction $Br_2(\ell) + Cl_2(g) \rightarrow 2 BrCl(g)$ are 30 kJ mol ⁻¹ and 105 JK ⁻¹ mol ⁻¹ respectively. The temperature at which the reaction will be in equilibrium is (1) 285.7 K (2) 273 K (3) 450 K (4) 300 K	10.	(3) $+X_3 \text{ kJ mol}^{-1}$ (4) $-X_4 \text{ kJ mol}^{-1}$ Given that bond energies of H–H and Cl–Cl are 430 kJ mol ⁻¹ and 240 kJ mol ⁻¹ respectively and Δ_1 H for HCl is -90 kJ mol ⁻¹ . Bond enthalpy of HCl is : (1) 245 kJ mol ⁻¹ (2) 290 kJ mol ⁻¹
4.	The enthalpy of hydrogenation of cyclohexene is $-119.5 \text{ kJ mol}^{-1}$. If resonance energy of benzene is $-150.4 \text{ kJ mol}^{-1}$, its enthalpy of hydrogenation would be	11.	 (3) 380 kJ mol⁻¹ (4) 425 kJ mol⁻¹ AIPMT 2008 Bond dissociation enthalpy of H₂,Cl₂ and HCl are
	(1) $-508.9 \text{ kJ mol}^{-1}$ (2) $-208.1 \text{ kJ mol}^{-1}$ (3) $-269.9 \text{ kJ mol}^{-1}$ (4) $-358.5 \text{ kJ mol}^{-1}$ AIIMS 2006		434, 242 and 431 kJmol ⁻¹ respectively.Enthalpy of formation of HCl is:-
5.	When you make ice cubes, the entropy of water (1) Does not change (2) Increases (3) Decreases (4) May either increase or decrease depending on	12.	 -93 kJmol⁻¹ 245 kJmol⁻¹ 93 kJmol⁻¹ 93 kJmol⁻¹ -245 kJmol⁻¹ For the gas phase reaction,
	the process used		$PCl_5(g) \longrightarrow PCl_3(g)+Cl_2(g)$ Which of the following conditions are correct ?
6.	For a phase change $H_2O(\ell) \xrightarrow{0^{\circ}C \text{ 1bar}} H_2O(s)$ (1) $\Delta G = 0$ (2) $\Delta S = 0$ (3) $\Delta H = 0$ (4) $\Delta U = 0$		(1) $\Delta H < 0$ and $\Delta S < 0$ (2) $\Delta H > 0$ and $\Delta S < 0$ (3) $\Delta H = 0$ and $\Delta S < 0$ (4) $\Delta H > 0$ and $\Delta S > 0$
7.	For a spontaneous process the correct statement is – (1) Entropy of the system always increase (2) Free energy of the system always increases (3) Total entropy change is always negative (4) Total entropy change is always positive	13.	Which of the following are not state functions ? (I) q + w (II) q (III) w (IV) H-TS (1) (I),(II) and (III) (2) (II) and (III) (3) (I) and (IV) (4) (II), (III) and (IV)

AIPMT 2009

14. From the following bond energies :-H – H bond energy : $431.37 \text{ kJ mol}^{-1}$ C = C bond energy : $606.10 \text{ kJ mol}^{-1}$ C – C bond energy : $336.49 \text{ kJ mol}^{-1}$ C – H bond energy : $410.50 \text{ kJ mol}^{-1}$ Enthalpy for the reaction,

 $\begin{array}{c} H & H & H & H \\ C = C + H - H \rightarrow H - C - C - H \\ H & H & H \end{array}$ will be :(1) 553.0 kJ mol⁻¹
(2) 1523.6 kJ mol⁻¹
(3) -243.6 kJ mol⁻¹
(4) -120.0 kJ mol⁻¹
(5) H = 1000

15. The values of ΔH and ΔS for the reaction, $C_{(\text{graphite})} + CO_{2(g)} \rightarrow 2CO_{(g)}$ are 170 kJ and 170JK^{-1} , respectively. This reaction will be spontaneous at :-(1) 510 K (2) 710 K (3) 910 K (4) 1110 K

AIPMT 2010

16. For vaporization of water at 1 atmospheric pressure, the values of ΔH and ΔS are 40.63 kJ mol⁻¹ and 108.8 JK⁻¹mol⁻¹, respectively. The temperature when Gibbs energy change (ΔG) for this transformation will be zero, is :- (1) 393.4 K (2) 373.4 K

(4) 273.4 K

- 17. Three moles of an ideal gas expanded spontaneously into vacuum. The work done will be :(1) 3 Joule
 (2) 9 Joule
 (3) Zero
 (4) Infinite
- **18.** The following two reactions are known : $Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(s) + 3CO_2(g)$; $\Delta H = -26.8 \text{ kJ}$ $FeO(s) + CO(g) \rightarrow Fe(s) + CO_2(g)$; $\Delta H = -16.5 \text{ kJ}$ Correct target equation is $Fe_2O_3(s) + CO(g) \rightarrow 2FeO(s) + CO_2(g)$, $\Delta H = ?$ (1) -43.3 kJ (2) -10.3 kJ (3) + 6.2 kJ (4) + 10.3 kJ
- **19.** Standard entropies of X_2 , Y_2 and XY_3 are 60, 40 and 50 JK^{-1} mol⁻¹ respectively. For the reaction
 - $\frac{1}{2}X_2 + \frac{3}{2}Y_2 \implies XY_3, \Delta H = -30 \text{ kJ to be at}$ equilibrium, the temperature should be :-(1) 500 K (2) 750 K (3) 1000 K (4) 1250 K

AIIMS 2010

- **20.** Intensive property is :-
(1) Moles
(3) Enthalpy(2) Volume
(4) Temperature
- 21. In which of following there is decrease in entropy :-
 - (1) When temperature is raised from 30 K to 150 K.
 - (2) When NaHCO $_{\rm 3}$ changes into Na $_{\rm 2}{\rm CO}_{\rm 3}$ (s) and CO $_{\rm 2}({\rm g})$
 - (3) $H_2(g) \longrightarrow 2H(g)$
 - (4) Liquid crystalises into a solid
- **22.** Which of the following is not a state function:-(1) Pressure (2) Volume
 - (3) Temperature (4) Heat

AIPMT Pre. 2011

- 23. If the enthalpy change for the transition of liquid water to steam is 30 kJ mol⁻¹ at 27°C, the entropy changes for the process would be:
 (1) 10 J mol⁻¹ K⁻¹
 (2) 1.0 J mol⁻¹ K⁻¹
 (3) 0.1 J mol⁻¹ K⁻¹
 (4) 100 J mol⁻¹ K⁻¹
 24 Enthalpy change for the reaction
- 24. Enthalpy change for the reaction, $4H_{(g)} \rightarrow 2H_{2(g)}$ is -869.6 kJ The dissociation energy of H−H bond is : (1) -434.8 kJ (2) 869.6 kJ (3) +434.8 kJ (4) +217.4 kJ
- 25. Which of the following correct option for free expansion of an ideal gas under adiabatic condition ?
 (1) q = 0, ΔT ≠ 0, w = 0
 (2) q ≠ 0, ΔT = 0, w = 0
 (3) q = 0, ΔT = 0, w = 0
 - (4) q = 0, $\Delta T < 0$, w $\neq 0$

AIPMT Msins 2011

26. Consider the following processes :- $\Delta H(kJ \text{ mol}^{-1})$

 $\begin{array}{ll} \frac{1}{2} \ A \to B & +150 \\ 3B \to 2C + D & -125 \\ E + A \to 2D & +350 \\ For \ B + D \to E + 2C, & \Delta H \text{ will be }: \\ (1) \ 325 \ kJ \ mol^{-1} \\ (2) \ 525 \ kJ \ mol^{-1} \\ (3) \ -175 \ kJ \ mol^{-1} \\ (4) \ -325 \ kJ \ mol^{-1} \end{array}$

Pre-Medical : Chemistry

AIIMS 2011 AIIMS 2012 At equilibrium which is correct :-27. The enthalpy of formation of CO(g), $CO_2(g)$, $N_2O(g)$ 34. and $N_{2}O_{4}(g)$ is -110, -393, +81 and 10 kJ mol⁻¹ (1) $\Delta G = 0$ (2) $\Delta S = 0$ respectively. For the reaction $N_2O_4(g) + 3CO(g) \rightarrow$ (4) $\Delta G^\circ = 0$ (3) $\Delta H = 0$ $N_{2}O(g) + 3CO_{2}(g)$. ΔH_{r} is 35. Heat of atomisation of CH₄ is 360 kJ mol⁻¹ and (1) - 212(2) + 212C₂H₆ has 620 kJ mol⁻¹. Then bond dissociation (3) + 778(4) - 778energy of C-C bond is :-**28**. For adiabatic process which is correct-(1) 170 kJ mol⁻¹ (2) 50 kJ mol⁻¹ (1) $\Delta T = 0$ (2) w = 0(3) 80 kJ mol⁻¹ (4) $\Delta U = 0$ (3) q = 0(4) 220 kJ mol⁻¹ 29. Which of the following is not thermodynamic **AIIMS 2013** function-36. Which thermodynamic parameter does not depend (1) Internal energy (2) work done only on initial and final state ? (3) Enthalpy (4) Entropy (1) q at constant pressure **30.** Which of the following is intensive property-(2) g at constant volume (1) Enthalpy (2) Entropy (3) w at adiabatic (3) specific heat (4) volume (4) w at isothermal AIPMT Pre. 2012 **AIPMT 2014** 31. In which of the following reactions, standard 37. For the reaction : $X_2O_4(\ell) \longrightarrow 2XO_2(g)$ reaction entropy change (ΔS°) is positive and $\Delta U = 2.1$ kCal, $\Delta S = 20$ cal K⁻¹ at 300 K standard Gibb's energy change (ΔG°) decreases Hence ΔG is :sharply with increasing temperature? (2) - 2.7 kCal (1) 2.7 kCal (4) - 9.3 kCal (3) 9.3 kCal (1) Mg(s) + $\frac{1}{2}$ O₂(g) \rightarrow MgO(s) **AIIMS 2014** $\begin{array}{l} \Delta S_{_{Total}} = - \ 40 \ \ kJ \ \ mol^{-1} \ \times K^{-1} \\ \Delta H_{_{Sys}} = \ 2000 \ \ kJ \ \ mol^{-1} \end{array}$ 38. (2) $\frac{1}{2}$ C graphite + $\frac{1}{2}$ O₂(g) $\rightarrow \frac{1}{2}$ CO₂(g) T = 400 KCalculate value of ΔS_{system} ? (3) C graphite + $\frac{1}{2}$ O₂ (g) \rightarrow CO (g) (1) - 35 kJ mol⁻¹ × K $(2) - 5 \text{ kJ mol}^{-1} \times \text{K}$ (4) CO(g) + $\frac{1}{2}$ O₂(g) \rightarrow CO₂(g) $(3) - 40 \text{ kJ mol}^{-1} \times \text{K}$ $(4) + 5 \text{ kJ mol}^{-1} \times \text{K}$ **AIPMT 2015** Standard enthalpy of vapourisation $\Delta_{vap}H^{\Theta}$ for **32**. 39. Which of the following statements is **correct** for water at 100°C is 40.66 kJmol⁻¹. The a reversible process in a state of equilibrium ? internal energy of vaporisation of water at (1) $\Delta G = 2.30 \text{ RT} \log K$ 100°C (in kJmol⁻¹) is (2) $\Delta G^{\circ} = -2.30 \text{ RT} \log K$ (1) + 43.76(2) + 40.66(3) + 37.56(4) - 43.76(3) $\Delta G^{\circ} = 2.30 \text{ RT} \log \text{K}$ (4) $\Delta G = -2.30 \text{ RT} \log K$ The enthalpy of fusion of water is $1.435 \text{ kCal mol}^{-1}$. 33. The molar entropy change for the melting of ice Re-AIPMT 2015 40. The heat of combustion of carbon to CO_2 is at 0°C is: (1) 5.260 Cal mol⁻¹ K⁻¹ -393.5 kJ mol⁻¹. The heat released upon formation (2) 0.526 Cal mol⁻¹ K⁻¹ of 35.2 g of CO₂ from carbon and oxygen gas is: (3) 10.52 Cal mol⁻¹ K⁻¹ (1) -630 kJ (2) -3.15 kJ (4) 21.04 Cal mol⁻¹ K⁻¹ (3) –315 kJ (4) +315 kJ

AIIMS 2015

- **41**. $A_{2(g)} \rightarrow 2A(g)$ and for this reaction on increasing T value of K_{eq} increases then for this reaction is
 - (1) ΔH = positive; ΔS = positive
 - (2) ΔH = negative; ΔS = negative
 - (3) ΔH = positive; ΔS = negative
 - (4) ΔH = negative ; ΔS = positive
- **42.** For endothermic reaction when change in entropy is negative, then reaction is
 - (1) not possible at any temperature
 - (2) possible at low temperature
 - (3) possible at all temperature
 - (4) possible at high temperature
- **43.** For the formation of CH_4 of $\Delta U^0 = -x \text{ kJ mol}^{-1}$ then what will be value of $\Delta H^0 \text{ kJ mol}^{-1}$.
 - (1) -x RT (2) -x + 2RT
 - (3) -x + RT (4) -2x 4RT

NEET-I 2016

- 44. The correct thermodynamic conditions for the spontaneous reaction at all temperatures is
 (1) ΔH > 0 and ΔS > 0
 - (1) $\Delta H > 0$ and $\Delta S < 0$ (2) $\Delta H > 0$ and $\Delta S < 0$
 - (2) $\Delta H > 0$ and $\Delta S < 0$ (3) $\Delta H < 0$ and $\Delta S > 0$
 - $(3) \Delta \Pi < 0 \text{ and } \Delta S > 0$
 - (4) $\Delta H < 0$ and $\Delta S < 0$

NEET-II 2016

45. For a sample of perfect gas when its pressure is changed isothermally from p_i to p_f, the entropy change is given by

(1)
$$\Delta S = nRT \ln\left(\frac{p_f}{p_i}\right)$$
 (2) $\Delta S = RT \ln\left(\frac{p_i}{p_f}\right)$
(3) $\Delta S = nR \ln\left(\frac{p_f}{p_i}\right)$ (4) $\Delta S = nR \ln\left(\frac{p_i}{p_f}\right)$

AIIMS 2016

46. For a given reaction at 298K

$$2A_{(\alpha)} + B_{(\alpha)} \longrightarrow 2C_{(\alpha)}$$

If $\Delta U^{\circ} = -10 \text{kJ mol}^{-1}$ $\Delta S^{\circ} = -45 \text{J K}^{-1} \text{mol}^{-1}$

Then what will be value of ΔG° for above reaction?

- (1) +930 J mol⁻¹ (2) -25890 J mol⁻¹
- (3) 2000 J mol⁻¹ (4) 8500 J mol⁻¹
- **47.** Calculate work done during isothermal reversible process when 5 mol ideal gas is expanded so that its volume is doubled at 400K?

- **48.** For a reaction
 - $2\mathsf{A}_{\scriptscriptstyle (g)} + \mathsf{B}_{\scriptscriptstyle (g)} \longrightarrow \mathsf{C}_{\scriptscriptstyle (g)} + \mathsf{D}_{\scriptscriptstyle (g)} \mathsf{q}$

Where ΔS is –ve; then which of the following is correct?

- (1) reaction is possible only at low temperature
- (2) reaction is possible only at high temperature
- (3) reaction is never possible
- (4) reaction is possible at all temperature
- **49.** If 400 kJ work is done by the system and 150 kJ heat is given to system then what will be effect on internal energy?
 - (1) Increases by 250 kJ (2) Decreases by 250 kJ
 - (3) Increases by 600 kJ (4) Decreases by 600 kJ
- 50. For gas 'A' in a calorimeter heat evolved is 250 kJ mol⁻¹. For 0.2 mol of A, temperature rise from 298 K to 300 K. Find out heat capacity of calorimeter:(1) 12.5 kJ K⁻¹
 (2) 25 kJ K⁻¹
 - (3) 50 kJ K⁻¹ (4) 100 kJ K⁻¹

NEET(UG) 2017

51. For a given reaction, $\Delta H = 35.5 \text{ kJ mol}^{-1}$ and $\Delta S = 83.6 \text{ JK}^{-1} \text{mol}^{-1}$. The reaction is spontaneous at : (Assume that ΔH and ΔS do not vary with tempearature)

(1) T > 425 K	(2) All temperatures
---------------	----------------------

- (3) T > 298 K (4) T < 425 K
- **52.** A gas is allowed to expand in a well insulated container against a constant external pressure of 2.5 atm from an initial volume of 2.50 L to a final volume of 4.50 L. The change in internal energy ΔU of the gas in joules will be:-

(1) –500 J	(2) –505 J
(3) +505 J	(4) 1136.25 J

AIIMS 2017

- **53.** For an isolated system :-
 - (1) q = 0 and w = 0
 - (2) $q \neq 0$ and w = 0
 - (3) q = 0 and $w \neq 0$
 - (4) $q \neq 0$ and $w \neq 0$

54. An ideal gas is expanded against 42 Pascal external pressure by 10 m³. If 350 J heat is given to the system then ΔU of system (in J) will be :-

(1) -50 J (2) -70 J (3) +50 J (4) +70 J

ALLEN

- **55.** The heat of combustion of C_4H_{10} is -2878 kJ mol⁻¹. If the heats of formation of CO_2 and H_2O are -393.5 kJ mol⁻¹ and -285.8 kJ mol⁻¹ then the heat of formation of C_4H_{10} is :-(1) -125.0 kJ mol⁻¹ (2) 126.75 kJ mol⁻¹ (3) -402.5 kJ mol⁻¹ (4) 402.5 kJ mol⁻¹
- 56. During adiabatic expansion of an ideal gas in vacuum :(1) q = 0 and ΔU ≠ 0 (2) q ≠ 0 and ΔU ≠ 0

(3) $q \neq 0$ and $\Delta U \neq 0$ (4) q = 0 and $\Delta U = 0$ **NEET(UG) 2018**

57. The bond dissociation energies of X_2 , Y_2 and XY are in the ratio of 1 : 0.5 : 1. ΔH for the formation of XY is -200 kJ mol⁻¹. The bond dissociation energy of X_2 will be (1) 200 kJ mol⁻¹ (2) 100 kJ mol⁻¹ (3) 800 kJ mol⁻¹ (4) 400 kJ mol⁻¹

AIIMS 2018

- 58. Which of the following pair is an example of extensive property :
 (1) P and T
 (2) C_p and E
 - (3) E and V (4) T and V
- 59. An ideal gas expands from 2 L to 10 L adiabatically against a constant external pressure of 10 atm. Then find the change in internal energy:
 (1) -80 L-atm
 (2) Zero
 (3) 80 L-atm
 (4) 40 L-atm
- **60.** The correct set of intensive properties :-(1) P, T (2) V, T (3) P, V (4) V, E

61. Which of the following always increases for spontaneous process :-

(1)
$$\Delta H_{system}$$
 (2) ΔS_{system}
(3) $\Delta S_{system} - \frac{\Delta H_{system}}{T}$

(4) $\Delta G_{system} = \Delta H_{system} - T\Delta S_{system}$

62. 1 mole of ideal gas (A) expands from 2 lit to 4 lit through reversible isothermal process. 3 mol of another ideal gas (B) expands from 2 lit to x lit and does the same amount of work as done by gas (A) the value of x is :- (Consider that both the gases temperature is same)

63. (1) 2 (2) 8 (3) (8)^{1/3} (4) (4)^{2/3}

$$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O \Delta H = -2220 \text{ kJ mol}^{-1}$$

 $C_3H_6 + H_2 \rightarrow C_3H_8 \Delta H = -124 \text{ kJ mol}^{-1}$

$$H_2 + \frac{1}{2}O_2 \rightarrow H_2O \Delta H = -285 \text{ kJ mol}^{-1}$$

Then find heat of combustion of C_3H_6 (1) -2059 kJ mol⁻¹ (2) 2059 kJ mol⁻¹ (3) -4118 kJ mol⁻¹ (4) +4118 kJ mol⁻¹

- **64.** A rigid container contain 1 kg N_2 gas at 400 K if final temeprature is 800 K then find change in entropy (J K⁻¹) [Given : $C_p = 29.099$ joule) (1) 512.86 (2) 1025.736 (3) 256.43 (4) 170.9
- **65.** Heat of formation of ethane –20.2 kCal mol⁻¹ and heat of atomisation of C and H₂ are 179.2 kCal mol⁻¹ and 52.1 kCal mol⁻¹ respectively. If bond energy of C–H bond is 73.3 kCal mol⁻¹. Then caculate approx. B.E. of C–C :-

(1) 96 kCal mol ⁻¹	(2) 230 kCal mol ⁻¹
(3) 88 kCal mol ⁻¹	(4) 540 kCal mol ⁻¹

E	(ERC	ISE-I	l (Pre	vious	Year	Quest	ions)						ANS	WER	KEY
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	2	1	1	2	3	1	4	2	2	4	1	4	2	4	4
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	2	3	3	2	4	4	4	4	3	3	3	4	3	2	3
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	3	3	1	1	3	4	2	1	2	3	1	1	1	3	4
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	1	1	3	2	2	1	2	1	2	1	4	3	3	1	1
Que.	61	62	63	64	65					-				-	
Ans.	3	4	1	1	1										
															253

110	Medical : Chemish y		r	
E	XERCISE-III (Anal	ytical Questions)		Check Your Understanding
1.	For the reaction of one mole of sulphuric acid in and w correspond to :- (1) $\Delta U < 0$, w=0 (3) $\Delta U > 0$, w=0	mole of zinc dust with one n a bomb calorimeter, ΔU - (2) $\Delta U < 0$, w < 0 (4) $\Delta U > 0$, w > 0	7.	The value of enthalpy change (Δ H) for the reaction $C_2H_5OH_{(\ell)} + 3O_{2(g)} \rightarrow 2CO_{2(g)} + 3H_2O_{(\ell)}$ at 27°C is -1366.5 kJ mol ⁻¹ . The value of internal energy change for the above reaction at this temperature will be :- (1) 1371.5 kJ (2) 1369.0 kJ
2.	Consider the reaction : out at constant tempera and ΔU are the enthal changes for the reaction expressions is true ? (1) Δ H < Δ U (3) Δ H = 0	N ₂ + 3H ₂ → 2NH ₃ carried ature and pressure. If Δ H lpy and internal energy n, which of the following (2) Δ H > Δ U (4) Δ H = Δ U	8.	(1) -1371.5 kJ (2) -1369.0 kJ (3) -1364.0 kJ (4) -1361.5 kJ For the process $H_2O(\ell)$ (1 bar , 373K) $\rightarrow H_2O(g)$ (1 bar , 373K), the correct set of thermodynamic parameters is : (1) $\Delta G = 0$, $\Delta S = +ve$ (2) $\Delta G = 0$, $\Delta S = -ve$ (3) $\Delta G = +ve$, $\Delta S = 0$
3.	For a reversible process is increased from $V_i = 1$ ΔH if the process is iso (1) 11.47 kJ (3) 0	at T = 300K, the volume L to $V_f = 10L$. Calculate othermal - (2) 4.98 kJ (4) -11.47 kJ	9.	(4) $\Delta G = -ve$, $\Delta S = +ve$ Which of the following pairs of a chemical reaction is certain to result in a spontaneous reaction.? (1) endothermic and decreasing disorder (2) exothermic and increasing disorder
4.	Assuming that water values internal energy change (is vapourised at 1 ba (Given : Molar enthalpy at 1 bar and 373 H $R = 8.3 \text{ J mol}^{-1} \text{ K}^{-1}$ wi (1) 4.100 kJ mol}^{-1}	pour is an ideal gas, the (ΔU) when 1 mol of water r pressure and 100°C, of vapourisation of water $\zeta = 41 \text{ kJ mol}^{-1}$ and ll be) :- (2) 3.7904 kJ mol}^{-1}	10.	(3) endothermic and increasing disorder (4) exothermic and decreasing disorder The conversion A to B is carried out by the following path : $C \longrightarrow D$ $A \longrightarrow B$ Given : $\Delta S_{(A \rightarrow C)} = 50$ e.u. ,
5.	(3) 37.904 kJ mol ⁻¹ A piston filled with 0.04 r reversibly from 50.0 mL temperature of 37.0° C. 208 J of heat. The values will be :- (R = 8.314 J mol ⁻¹ K ⁻¹ (1) q = + 208 J, w = - (2) q = - 208 J, w = - (3) q = - 208 J, w = + (4) q = + 208 J, w = -	(4) 41.00 kJ mol ² nol of an ideal gas expands to 375 mL at a constant As it does so, it absorbs of q and w for the process (4) (ln 7.5 = 2.01) - 208 J - 208 J - 208 J - 208 J	11.	$\begin{split} \Delta S_{(C \rightarrow D)} &= 30 \text{ e.u., } \Delta S_{(B \rightarrow D)} = 20 \text{ e.u.} \\ \text{where e.u. is entropy unit then } \Delta S_{(A \rightarrow B)} \text{ is} \\ (1) + 100 \text{ e.u.} \\ (2) + 60 \text{ e.u.} \\ (3) - 100 \text{ e.u.} \\ (3) - 100 \text{ e.u.} \\ (4) - 60 \text{ e.u.} \\ \text{In conversion of lime-stone to lime,} \\ CaCO_3(s) \longrightarrow CaO(s) + CO_2(g) \\ \text{the values of } \Delta H^\circ \text{ and } \Delta S^\circ \text{ are } + 179.1 \text{ kJ mol}^{-1} \text{ and} \\ 160.2 \text{ J } \text{ K}^{-1} \text{ respectively at } 298 \text{ K and } 1 \text{ bar.} \end{split}$
6.	The entropy change in	volved in the isothermal		Assuming that ΔH° and ΔS° do not change with temperature, temperature above which conversion

6. The entropy change involved in the isothermal reversible expansion of 2 moles of an ideal gas from a volume of 10 dm³ to a volume of 100 dm³ at 27°C is :-

254

(1) 32.3 J mol ⁻¹ K ⁻¹	(2) 42.3 J mol-1 K-1
(3) 38.3 J mol ⁻¹ K ⁻¹	(4) 35.8 J mol ⁻¹ K ⁻¹

Z.\NODB02\804-80\74KGET\CHEM\ENG\WODULE-1\5.THE8WODYNAMCS\02-EXERCISE.P65

of limestone to lime will be spontaneous is :-

(1) 1008 K

(2) 1200 K

(3) 845 K (4) 1118 K

ALLEN

12. In a fuel cell methanol is used as fuel and oxygen gas is used as an oxidizer. The reaction is

$$CH_3OH(\ell) + \frac{3}{2}O_2(g) \longrightarrow CO_2(g) + 2H_2O(\ell)$$

At 298 K standard Gibb's energies of formation for $CH_3OH(\ell)$, $H_2O(\ell)$ and $CO_2(g)$ are -166.2, -237.2 and -394.4 kJ mol⁻¹ respectively. If standard enthalpy of combustion of methanol is -726 kJ mol⁻¹, efficiency of the fuel cell will be (1) 90% (2) 97% (3) 80% (4) 87%

- Identify the correct statement regarding a sponateous process :-
 - (1) For a spontaneous process in an isolated system, the change in entropy is positive
 - (2) Endothermic processes are never spontaneous
 - (3) Exothermic processes are always spontaneous
 - (4) Lowering of energy in the reaction process is the only criterion for spontaneity
- **14.** Standard entropy of X₂, Y₂ and XY₃ are 60, 40 and 50 JK⁻¹ mol⁻¹, respectively. For the reaction,

 $\frac{1}{2}X_{_2}$ + $\frac{3}{2}Y_{_2}$ \rightarrow $XY_{_3}, \ _{\Delta H}$ = – 30 kJ, to be at

equilibrium, the temperature will be (1) 1250 K (2) 500 K (3) 750 K (4) 1000 K

15. The absolute enthalpy of neutralisation of the reaction for MgO(s) : MgO(s) + 2HCl(aq) → Mg Cl₂(aq) + H₂O (ℓ) will be : (1) 57.33 kJ mol⁻¹ (2) - 57.33 kJ mol⁻¹ (3) Greater than -57.33 kJ mol⁻¹ (4) Less than -57.33 kJ mol⁻¹
16. The enthalpy changes for the following processes are listed below : Cl₂(g) → 2Cl(g), 242.3 kJ mol⁻¹

 $I_2(g) \rightarrow 2I(g), 151.0 \text{ kJ mol}^{-1}$ ICl(g) $\rightarrow I(g) + Cl(g), 211.3 \text{ kJ mol}^{-1}$

 $I_{g}(s) \rightarrow I_{g}(g), 62.76 \text{ kJ mol}^{-1}$

Given that the standard states for iodine and chlorine are $I_2(s)$ and $Cl_2(g)$, the standard enthalpy of formation for ICl(g) is :-

(1) $-16.8 \text{ kJ mol}^{-1}$ (2) $+16.8 \text{ kJ mol}^{-1}$ (3) $+244.8 \text{ kJ mol}^{-1}$ (4) $-14.6 \text{ kJ mol}^{-1}$

Consider the reaction : 17. $4NO_{2(g)} + O_{2(g)} \rightarrow 2N_2O_{5(g)}, \Delta_r H = -111kJ.$ If $N_2O_{5(s)}$ is formed instead of $N_2O_{5(g)}$ in the above reaction, the $\Delta_r H$ value will be :-(given, ΔH of sublimation for N₂O₅ is 54 kJ mol⁻¹) (1) -165 kJ (2) +54 kJ (3) +219 kJ (4) -219 kJ 18. For complete combustion of ethanol, $C_2H_5OH(\ell) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(\ell)$, the amount of heat produced as measured in bomb calorimeter, is 1364.47 kJ mol⁻¹ at 25°C. Assuming ideality the Enthalpy of combustion, $\Delta_c H$, for the raction will be :- $(R = 8.314 \text{ kJ mol}^{-1})$ (1) -1460.50 kJ mol-1 (2) - 1350.50 kJ mol-1 (3) - 1366.95 kJ mol⁻¹ (4) - 1361.95 kJ mol-1 19. If the bond dissociation energies of XY, X_2 and Y_2 (all diatomic molecules) are in the ratio of 1:1:0.5and $\Delta_{f}H$ for the formation of XY is -200 kJ mol^{-1} . The bond dissociation energy of X_2 will be :-(1) 200 kJ mol⁻¹ (2) 100 kJ mol⁻¹ (3) 800 kJ mol⁻¹ (4) 300 kJ mol⁻¹ 20. The standard enthlapy of formation (Δ_r H^o) at 298K for methane, $CH_4(g)$, is -74.8 kJ mol⁻¹. The additional information required to determine the average energy for C-H bond formation would be:-(1) Latent heat of vapourization of methane (2) The first four ionization energies of carbon and electron gain enthalpy of hydrogen

- (3) The dissociation energy of hydrogen molecule H_2
- (4) The dissociation energy of $\rm H_{2}$ and enthalpy of sublimation of carbon
- 21. The standard enthalphy of formation of NH₃ is -46.0 kJ mol⁻¹. If the enthalpy of formation of H₂ from its atoms is -436 kJ mol⁻¹ and that of N₂ is -712kJ mol⁻¹, the average bond enthalpy of N-H bond in NH₃ is :-

(1) –1102 kJ mol-1

- (2) –964 kJ mol-1
- (3) + 352 kJ mol⁻¹

(4) +1056 kJ mol⁻¹

Pre-Medical : Chemistry 22. The incorrect comparison

22.	The incorrect expression among the following is :- (1) K = $e^{-\Delta G^{\circ}/RT}$	24.	On the basis of the following thermochemical
	(2) $\frac{\Delta G_{system}}{\Delta S_{total}} = -T$		data : $\left[\Delta H_{f}^{0} \left(H_{(aq)}^{+} = 0 \right) \right]$ $H_{f} O(\ell) \rightarrow H^{+}(aq) + OH^{-}(aq) + \Delta H = 57.32 \text{ kJ}$
	(3) In isothermal process, $W_{\text{reversible}} = -nRT \ln \frac{V_f}{V_i}$ (4) $\ln K = \frac{\Delta H^\circ - T\Delta S^\circ}{RT}$		$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(\ell)$; $\Delta H = -286.20 \text{ kJ}$
23.	Oxidising power of chlorine in aqueous solution can be determined by the parameters indicated below: $\frac{1}{2} \operatorname{Cl}_2(g) \xrightarrow{\frac{1}{2}\Delta_{diss}H^{\Theta}} \operatorname{Cl}(g) \xrightarrow{\Delta_{eg}H^{\Theta}} \operatorname{Cl}^{-}(g)$		1 he value of enthalpy of formation of OH ⁻ ion at 25°C is :- (1) +228.88 kJ (2) -343.52 kJ (3) -22.88 kJ (4) -228.88 kJ
	$\xrightarrow{\Delta_{hyd}H^{\Theta}} Cl^{-}(aq)$ The energy involved in the conversion of $\frac{1}{2}$ Cl ₂ (g)		
	to Cl ⁻ (aq) (using the data $\Delta_{diss} H^{\Theta}_{Cl_2} = 240 \text{ kJ mol}^{-1}$,		
	$\Delta_{eg} H_{Cl}^{\Theta} = -349 \text{ kJ mol}^{-1}, \Delta_{hyd} H_{Cl}^{\Theta} = -381 \text{ kJ mol}^{-1})$ will be:- (1) -610 kJ mol}^{-1} (2) -850 kJ mol}^{-1} (3) +120 kJ mol}^{-1} (4) +152 kJ mol}^{-1}		

EX	ERC	ISE-I	II (An	alytic	al Que	stion	5)						ANSV	VER H	(EY
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	1	1	3	3	1	3	3	1	2	2	4	2	1	3	3
Que.	16	17	18	19	20	21	22	23	24			-	-		
Ans.	2	4	3	3	4	3	4	1	4						
256					•			_		-					

E	XERCISE	-IV (Ass	ertion & F	Reason)				Targ	get AIIMS			
			Directi	ons for Asse	rtion	& Reason	question	S				
Tł	nese questic these	ons consist Questions	of two state you are req	ements each, j juired to choos	printeo se any	l as Assertio one of the	on and Rea following f	son. While our respons	answering ses.			
(A)	If both As	sertion & F	Reason are 7	Frue & the Rea	son is a	a correct exp	planation of	f the Asserti	on.			
(B)	If both As	sertion & F	Reason are 7	Frue but Reason	n is no	t a correct ex	xplanation	of the Asser	tion.			
(C)	If Assertio	on is True b	ut the Reaso	on is False.								
(D)	If both As	sertion & R	Reason are f	alse.								
1.	Assertion ΔG is posit Reason :- negative. (1) A	:-There is n tive, yet it is - For photo (2) B	o reaction kr s spontaneo chemical re (3) C	nown for which us. actions, ΔG is (4) D	8.	Assertion extensive p Reason :- amount of (1) A	n :- Mass, properties. - Extensive p the substar (2) B	Volume and properties de nce. (3) C	l pressure are pend upon the (4) D			
2.	Assertion be determin Reason :- value of in absolutely th not be dete (1) A	 - Absolute ned. - Enthalpy is ternal energinerefore absermined. (2) B 	e value of er s defined as gy cannot b solute value c (3) C	H=E+PV, and determined of enthalpy can (4) D	9.	Assertion combustion greater tha Reason : accomplish (1) A	n :- For a p n at consta n that at c - Combusti ned by incre (2) B	particular rea ont pressure onstant volu on reactions pase in no. o (3) C	action, heat of (q _p) is always me (q ₁). are invariably of moles. (4) D			
3.	Assertion entropy inc Reason :- (1) A	e :- When a creases. - During exp (2) B	a rubber bar pansion entr (3) C	nd is stretched opy increases. (4) D	10.	Assertion the change zero. Reason : both remain	• :- At cond • $H_2O(s) \rightarrow 1$ - During iso ins constant	D(s) \rightarrow H ₂ O(l) Δ H and Δ E both are uring isothermal process H and E onstant.				
4.	Assertion $H_2O(s) \rightarrow H$ Reason :- always neg. (1) A	<i>:</i> - At consta H₂O(g) work - During pha ative. (2) B	ant pressure a done is ne ase transition (3) C	for the change gative. n work done is (4) D	11.	(1) A Assertion for the va 1 atm and Beason	(2) B 1 :- The cha pourization 373 K is : - For all is:	(3) C (4) D ange in internal energy (ΔE) a of one mole of water at zero.				
5.	Assertion that of diar Reason : of diamond (1) A	e :- Enthalpy mond. Entropy of g l. (2) B	y of graphite graphite is gr (3) C	e is lower than reater than that (4) D	12.	(1) A Assertion than ice at Reason:	(2) B a:- Water ir troom tem Water in liq	(3) C I liquid state perature. uid from has	(4) D is more stable higher entropy			
6.	Assertion oxygen mo of one atm Reason :- oxygen mol (1) A	:- The entha lecules at 2' i. is zero. - The entrop ecules under (2) B	alpy of forma 98K and un by of formati the same co (3) C	tion of gaseous der a pressure ion of gaseous ndition is zero. (4) D	13.	(1) A Assertion increases c Reason: isothermal.	(2) B n- In an is lue to spon The process	(3) C olated system taneous pro- ses in an isola	(4) D m the entropy cess. ated system are			
7.	Assertion are not sp spontaneou Reason :- increase in (1) A	 - Many e ontaneous us at high te Entropy of temperature (2) B 	ndothermic at room te emp. the system e. (3) C	reactions that mp. becomes increases with (4) D	14.	 (1) A Assertion system. Reason :- (1) A 	(2) B :- Entropy is Closed sys (2) B	(3) C always const tem is alway (3) C	(4) D ant for a closed as reversible (4) D			

Pre-Medical : Chemistry

15.	Assertio	n :- For an	isolated syst	em q is zero.	23.	Assertion	1 :- Adiabati	c free expans	ion of an ideal			
	Reason	:- In an is	olated syste	em change in		gas is irrev	versible.					
	U is zero.					Reason :	-PV = cons	tant for rever	sible adiabatic			
	(1) A	(2) B	(3) C	(4) D		expansion.						
16.	Assertion	n :- Entropy	of system al	ways increases		(1) A	(2) B	(3) C	(4) D			
	for a spon	taneous rea	iction.		24.	Assertio	n :- Inter	nal energy	at particular			
	Reason :	- Enthalpy o	of reaction alv	ways decreases		temperture does not depend on volume.						
	for sponta	neous react	ion.			Reason :	- State fun	ction does n	ot depend on			
	(1) A	(2) B	(3) C	(4) D		volume.						
17.	Assertion	n :- Catalyst	changes Gib	bs free energy		(1) A	(2) B	(3) C	(4) D			
	of system.				25.	Assertion :- Graphite is thermodynamically mo						
	Reason :	- Catalyst ch	anges preexp	onential factor		stable allot	rope of carb	oon.				
	of a chem	ical reactior	1.			Reason :-	Standard h	eat of formati	on of graphite			
	(1) A	(2) B	(3) C	(4) D		is +1.9 kJ/	/mol.					
18.	Assertion	n :- Entropy) increases w	ith increase in		(1) A	(2) B	(3) C	(4) D			
	temperatu	re of gas.			26 .	Assertion	ı : A gas e	xpands from	(P ₁ , V ₁ , T ₁) to			
	Reason :	- If q _{rev} is s	ame, then er	ntropy of that		(P_2, V_2, T_2)	the work d	one in 2 step	s will be more			
	system is ł	nigher for w	hich tempera	ature is higher.		than, if the	e process is	carried out in	single step.			
	(1) A	(2) B	(3) C	(4) D		Reason :	Work done	is path depen	ident quantity.			
19.	Assertion	1 :- The valu	e of specific h	neat at constant		(1) A	(2) B	(3) C	(4) D			
	pressure is	s more than	that at cons	stant volume.	27.	Assertion	1 : All spor	ntaneous pro	cess in nature			
	Reason	:- The en	nergy requ	ired to raise		are irrevers	sible.					
	temperatur	re by a unit a	t constant pre	essure is greater		Reason :	All reversib	le process are	e quasistatic.			
	because so	me amount (of heat is used	l in doing work.		(1) A	(2) B	(3) C	(4) D			
	(1) A	(2) B	(3) C	(4) D	28.	Assertion	n :- Sum o	of q and w i	s different in			
20 .	Assertion	n : Sum of t	wo path fund	ctions is always		reversible a	and irreversi	ble process.				
	path funct	ion.				Reason :	- Sum of tv	vo path funct	ion can never			
	Reason :	Sum of pat	h function de	pends on path		state functi	on.					
	followed.					(1) A	(2) B	(3) C	(4) D			
	(1) A	(2) B	(3) C	(4) D	29.	Assertio	n : Intern	al energy of	f gas remain			
21.	Assertion	n :- Heat is	not a state t	nermodynamic		constant d	uring adiaba	atic free expan	nsion.			
	property.			1 1 1		Reason :	Work done	e is zero and h	neat exchange			
	Keason :	- Heat given	i in a process	depends on its		is zero.						
	type.	(0) D	(2)			(1) A	(2) B	(3) C	(4) D			
00	(1) A	(2) B	(3) C	(4) D								
ZZ.	Assertion	Assertion :- For ideal gas in a closed container										
		alic walls, te	emperature d	ecreases when								
	WORK IS DC		ystem.									

Reason :- Internal energy is used in work done by the system.

(1) A (2) B (3) C (4) D

EXERCISE-IV (Assertion & Reason)												ANS	NER	KEY	
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	4	1	4	3	2	3	2	4	4	4	4	2	1	4	3
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	
Ans.	4	4	3	1	4	1	1	3	3	3	1	2	4	1	
258															