DPP No: 01
 MATHS

 Maximum Time
50 Min
 TARGET
JEE-MAIN

 SYLLABUS : FUNDEMENTALS OF MATHEMATICS
 TARGET
JEE-MAIN

 SYLLABUS : FUNDEMENTALS OF MATHEMATICS
 In and 0 ≤ x ≤ 15 is
(A) 10
 (B) 11
 (C) 12
 (D) 13

 2.
 The number of positive integers satisfying the inequality
$$\frac{x^2 - 1}{2x + 5} < 3$$
 is
(A) 10
 (B) 9
 (C) 8
 (D) 7

 3.
 The complete set of values of 'x' which satisfy the inequations : $5x + 2 < 3x + 8$ and
 $\frac{x + 2}{x - 1} < 4$ is
(A) ($-\infty, 1$)
 (B) (2, 3)
 (C) ($-\infty, 3$)
 (D) ($-\infty, 1$) \cup (2, 3)

 4.
 The number of the integral solutions of $x^2 + 9 < (x + 3)^2 < 8x + 25$ is :
(A) 1
 (D) none of these

 5.
 The complete solution set of the inequality $\frac{x^4 - 3x^3 + 2x^2}{x^2 - 30} \ge 0$ is:
(A) ($-\infty, -5$) \cup (1, 2) \cup (6, ∞) \cup (0)
 (D) none of these

 6.
 Number of positive integral values of x satisfying the inequality
 $\frac{x^{(n-4)^{2013}}(x + 3)^{2014}(x + 1)}{x^{2018}(x - 2)^3 \cdot (x + 3)^{2014}(x + 1)}$
 $x^{2018}(x - 2)^3 \cdot (x + 3)^{2014}(x + 1)$
 $x^{2018}(x - 2)^3 \cdot (x + 3)^{2014}(x + 1)$
 $x^{2018}(x - 2)^3 \cdot (x + 3)^{2014}(x + 1)$
 $x^{2018}(x - 2)^3 \cdot (x + 3)^{2014}(x + 1)$
 $x^{(A) 1}$
 (D) 4

 8.
 The number of real roots of the equation $|x|^2 - 3|x| + 2 = 0$ is :
(A) 1
 (B) 2
 (C) 3
 (D) 4

 8.
 The minimum value of f(x)

10. If
$$||x - 1| - 5| = 2$$
, then number of distinct values of x is
(A) 1 (B) 2 (C) 3 (D) 4
11. Solve for $x \in R | x^2 - x - 6| = x + 2$.
(A) $x \in \{2, 4\}$ (B) $x \in \{-2, 4\}$ (C) $x \in \{-2, 2\}$ (D) $x \in \{-2, 2, 4\}$
12. If $||x - 3| - 4| = 1$ the sum of values of x is
(A) 3 (B) 6 (C) 9 (D) 12
13. Sum of the solutions of the equations $x^2 - 5|x| - 4 = 0$ is
(A) 8 (B) 2 (C) 10 (D) 0
14. The complete set of real 'x' satisfying $||x - 1| - 1| \le 1$ is :
(A) [0, 2] (B) [-1, 3] (C) [-1, 1] (D) [1, 3]
15. Solution set of the inequalities $|x^2 + x - 2| \le 0$ and $|x^2 - x + 2| \ge 0$ is
(A) $x \in [-2, 1]$ (B) $[-2, -1]$ (C) $\{-2, 1\}$ (D) $\{-2, -1, 1, 2\}$
16. If $a^4 \cdot b^5 = 1$ then the value of $\log_{a}(a^{5b4})$ equals
(A) $9/5$ (B) 4 (C) 5 (D) $8/5$
17. $\frac{1}{1 + \log_{b} a} + \frac{1}{\log_{\sqrt{a}} abc} + \frac{1}{1 + \log_{c} b} + \frac{1}{1 + \log_{a} b} + \log_{a} c}$ has the value equal to
(A) abc (B) $\frac{1}{abc}$ (C) 0 (D) 1
18. $\frac{1}{\log_{\sqrt{a}} \frac{1}{\sqrt{abc}}} + \frac{1}{1 \log_{\sqrt{a}} abc}} + \frac{1}{\log_{10} \pi^2}$ has the value equal to :
(A) $1/2$ (B) 1 (C) 2 (D) 4
19. Which one of the following is the smallest?
(A) $\log_{10}\pi$ (B) $\sqrt{\log_{10}\pi^2}$ (C) $\left(\frac{1}{\log_{10}\pi}\right)^3$ (D) $\left(\frac{1}{\log_{10}\sqrt{\pi}}\right)$
20. $\log_{10}(\log_23) + \log_{10}(\log_34) + \log_{10}(\log_25) + \dots + \log_{10}(\log_{023}1024)$ simplifies to
(A) a composite (B) $\frac{1}{abc}$ (C) $\frac{1}{2} \cdot 1 \cdot (2, \frac{5}{2}]$ (D) None of these
21. The solution set of the inequality $\log_{a(\frac{1}{3}}(x^2 - 3x + 2) \ge 2$ is
(A) $\left(\frac{1}{2} \cdot 2\right)$ (B) $\left(1, \frac{5}{2}\right$ (C) $\left(\frac{1}{2} \cdot 1 \cdot (2, \frac{5}{2}\right]$ (D) None of these
22. If $\log_{0.5}(x - 1) < \log_{0.5}(x - 1)$, then x lies in the interval
(A) $(2, \infty)$ (B) $(1, 2)$ (C) $(-2, -1)$ (D) none of these

- 23. Solution set of the inequality 2 log₂ (x² + 3x) ≥ 0 is : (A) [- 4, 1]
 (B) [- 4, - 3) ∪ (0, 1]
 (C) (-∞, -3) ∪ (1, ∞)
 (D) (-∞, -4) ∪ [1, ∞)
 24. If x, |x + 1|, |x - 1| are three terms of an A.P., then number of possible values of x is -(A) 1
 (B) 2
 (C) 3
 (D) 4
 25. Number of real solution(s) of the equation |x - 3|^{3x²-10x+3} = 1 is :
 - (A) exactly four (B) exactly three (C) exactly two (D) exactly one

ANSWER KEY OF DPP NO. : 01									
1.	(A)	2.	(D)	3.	(D)	4.	(D)	5.	(B)
6.	(D)	7.	(B)	8.	(B)	9.	(C)	10.	(D)
11.	(D)	12.	(D)	13.	(D)	14.	(B)	15.	(C)
16.	(A)	17.	(D)	18.	(B)	19.	(A)	20.	(D)
21.	(C)	22.	(A)	23.	(B)	24.	(B)	25.	(B)