EXPERIMENT No. 2

AIM – (a) To prepare 100ml of M/50 solution of Mohr's salt.

(b) Using this calculate the molarity and strength of the given KMnO_t solution.

APPARATUS AND CHEMICALS REQUIRED - Mohr's salt, weighing bottle, weight box, volumetric flask, funnel, distilled water, chemical balance, dilute HSO₄, beakers, conical flask, funnel, burette, pipette, clamp stand, tile, KMnO₄ solution.

THEORY- (a) Mohr's salt having the formula FeSO₄.(NH₄)₂SO₄.6H₂O has molar mass 392gmol⁻¹. It is a primary standard.

Its equivalent mass is 392/1 = 392 as its *n* factor is 1 as per the following reaction:

Calculation of amount of Mohr's Salt to be weighed to prepare 100ml M/20 solution:

$$M = \frac{\text{wt. } X}{\text{Mol. Wt}} = \frac{1000}{\text{V(ml)}}$$

PROCEDURE:

- 1. Weigh a clean dry bottle using a chemical balance.
- Add more weights to the pan containing the weights for the weighing bottle.
- Add Mohr's salt in small amounts to the weighing bottle, so that the pans are balanced.
- 4. Remove the weighing bottle from the pan.
- 5. Using a funnel, transfer the Mohr's salt to the volumetric flask.
- Add about 5ml. of dilute H₂SO₄ to the flask followed by distilled water and dissolve the Mohr's salt.
- Make up the volume to the required level using distilled water.
- 8. The standard solution is prepared.

(b) THEORY-

- The reaction between KMnO_t and Mohr's salt is a <u>redox reaction</u> and the titration is therefore called a <u>redox titration</u>.
- Mohr's salt is the reducing agent and KMnO_i is the oxidizing agent.
- KMnO₄ acts as an oxidizing agent in all the mediums; i.e. acidic, basic and neutral medium.
- KMnO₄ acts as the strongest oxidizing agent in the acidic medium and therefore dil. H₂SO₄ is added to the conical flask before starting the titration.

5.

IONIC EQUATIONS INVOLVED:

Reduction Half: MnO_4 + $8H^*$ + $5e^- \rightarrow Mn^{2+} + 4H_2O$

Oxidation Half: 5Fe²⁺ → 5Fe³⁺ + 5e⁻

Overall Equation: $MnO_4^- + 8H^+ + 5Fe^{2+} \rightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$

INDICATOR- KMnO4 acts as a self indicator.

END POINT- Colourless to light pink (KMnO₄ in the burette)

PROCEDURE-

- Fill the burette with KMnO₄ solution.
- Pipette out 10ml. of Mohr's salt solution into the conical flask.
- Add half a test tube of dil. H₂SO₄.
- Keep a glazed tile under the burette and place the conical flask on it.
- 5. Note down the initial reading of the burette.
- Run down the KMnO₄ solution into the conical flask drop wise with shaking.
- Stop the titration when a permanent pink colour is obtained in the solution.
- 8. This is the end point. Note down the final burette reading.
- 9. Repeat the experiment until three concordant values are obtained.

OBSERVATION TABLE: (TO BE PUT UP ON THE BLANK SIDE USING A PENCIL)

Volume of Mohr's salt solution taken =

S.No	BURETT	READINGS	VOLUME OF KMnO ₄
100000	INITIAL	FINAL	USED (ml)
1		î	
2			20
3		Ř.	0
4	0.00	8	
5		A.	

Concordant Value =

CALCULATIONS: (TO BE PUT UP ON THE BLANK SIDE USING A PENCIL)

Using formula:

 $N_1M_1V_1 = N_2M_2V_2$

Where $N_1=5$ (for KMnO₄), $V_1=$, $M_1=?$

 $N_2=1$ (for Mohr's salt), $V_2=10$ ml, $M_2=$

Strength = M X Molar Mass.

RESULT- (ON RULED SIDE) - The Molarity of KMnO₄ =
And the strength of KMnO₄ =