CLASS TEST

CLASS TEST # 14

SECTION-I

Single Correct Answer Type

Two short electric dipoles of dipole moment \vec{p} each are placed at two 1. corners of a square as shown in figure. What is ratio of magnitudes of electric field at two point O and A :-

(B) $2\sqrt{2}$ (A) 2 (D) $\sqrt{2}$

(C) 1

PHYSICS

Three equal charges Q are placed at the vertices of an equilateral triangle. What should be the value of 2. a charge so that when placed at the centroid, self energy of the system becomes zero. (excluding the self energies of point charges)

(A)
$$\frac{-Q}{2}$$
 (B) $\frac{-Q}{3}$ (C) $\frac{-Q}{2\sqrt{3}}$ (D) $\frac{-Q}{\sqrt{3}}$

- 3. A wire, of length L(=20 cm), is bent into a semi-circular arc. If the two equal halves, of the arc, were each to be uniformly charged with charges $\pm Q$, $[|Q| = 10^3 \varepsilon_0$ Coulomb where ε_0 is the permittivity (in SI units) of free space] the net electric field at the centre O of the semi-circular arc would be :-
- (D) $(25 \times 10^3 \text{ N/C}) \hat{j}$ $(A)(50\times10^{3} \text{ N/C}) \hat{j}$ (B) $(50 \times 10^3 \text{ N/C}) \hat{i}$ (C) $(25 \times 10^3 \text{ N/C}) \hat{i}$ Two planes of charge with no thickness, A and B, are parallel and vertical. The electric field in 4.

region-1 to the left of plane A has magnitude $\frac{3\sigma}{2\epsilon_0}$ and points to the left. The electric field in region-2

to the right of B has magnitude $\frac{3\sigma}{2\epsilon_0}$ and points to the right. The electric field in region-3 between the

two planes has magnitude $\frac{\sigma}{2\epsilon_0}$ and points to the right. The surface charge density on planes A and B respectively is :-

(A)
$$-\frac{\sigma}{2}, \sigma$$
 (B) $+\frac{\sigma}{2}, \sigma$ (C) $\sigma, -\frac{\sigma}{2}$ (D) $2\sigma, \sigma$

A point charge (+q) of mass m is released from a distance $\left(\frac{R}{2}\right)$ from the 5.

charge other than electrostatic). $k = \frac{1}{4\pi \epsilon_{-}}$

centre of a solid sphere of radius R and charge Q (uniformly charged in volume). The speed of the point charge when it reaches a distance R from the surface of the sphere (there is no interaction between sphere and point

(A) $\sqrt{\frac{7kQq}{16mP}}$ (C) $\sqrt{\frac{5kQq}{16mP}}$ (B) $\sqrt{\frac{7kQq}{4mP}}$ (D) $\sqrt{\frac{3kQq}{4\pi}}$

6 Q. [3 M (-1)]

6. A charge is kept fixed at point A as shown in the figure in a gravity free space. A semicircular ring of linear charge density λ , mass m & radius R is released from rest. Initially centre of semicircular ring coincides with the fixed charge. The initial acceleration of the semicircular ring is :-

(A)
$$\frac{2K\lambda Q}{mR}$$
 (B) $\frac{K\lambda Q}{2mR}$

(C) $\frac{K\lambda Q}{mR}$

5 Q. [4 M (-1)]

Multiple Correct Answer Type

7. If we move in the direction perpendicular to the electric field, work done by the electric field will be zero and surface thus generated is called equipotential surface. Choose the correct matching :-

8. Consider a non-conducting sphere of radius a carrying uniformly distributed charge q surrounded by a

spherical shell of radius 2a. The region between $a \le r \le 2a$ is filled with charge density $\rho = \frac{C}{r}$, where r is the distance from the centre. If the magnitude of electric field in the region $a \le r \le 2a$ is constant, then:

- (A) C = $\frac{q}{2\pi a^2}$
- (B) Magnitude of charge in the volume $a \le r \le 2a$ will be 3q.
- (C) Electric field outside the spherical shell remains constant.

(D) C =
$$\frac{q}{\pi a^2}$$

9. A non-conducting solid sphere of radius 30 cm and relative permittivity 1 has the volume charge density

 $\rho = \left(\frac{5}{2\pi}\mu C/m^3\right) \left(1 - \frac{r}{30\text{cm}}\right), \text{ where } r \text{ (in cm) is the radial distance of any point in the space from the}\right)$

centre of the sphere. Then choose the correct statement(s).

- (A) Density of electric field lines is maximum at r = 25 cm
- (B) Density of electric field lines is maximum at r = 20 cm
- (C) Electrical energy stored in the space r = 30 cm to $r \rightarrow \infty$, is same as that of a solid non-conducting sphere carrying charge of 0.0225 µC and radii 30 cm having uniform volume charge density in the same space r = 30 cm to $r \rightarrow \infty$.
- (D) Variation of magnitude of electric field due to the sphere with respect to radial distance r is rectangular hyperbola in the region r = 30 to $r \rightarrow \infty$.

10. In a solid sphere of radius R = 2m charge density varies as

$$\rho = \frac{A}{r^2} - \frac{B}{r} \qquad \qquad 0 < r \le R$$

where A = 1 C/m and B = 1 C/m². For this sphere

- (A) Flux of electric field linked with a sphere of radius r ($0 < r \le R$), increases as r increases
- (B) Flux of electric field linked with a sphere of radius r $(0 < r \le R)$, first increases and then decreases as r increases
- (C) Magnitude of electric field intensity continuously decreases as r increases from r > 0 to r = R.
- (D) Forces experienced by two point charges placed at distance 3m and 4m from centre of sphere are same.
- 11. The linear charge density on a non conducting ring of radius R is varying with θ as $\lambda = \lambda_0 \cos\theta$:-
 - (A) Electric field at the center of the ring is zero
 - (B) Electric field at center of ring is towards left
 - (C) Electric field on a line perpendicular to the plane of the ring and passing through the center of the ring is zero
 - (D) Electric field on a line perpendicular to the plane of the ring and passing through the center of the ring is non-zero.

Linked Comprehension Type (1 Para × 3Q.) (Single Correct Answer Type)

Paragraph for Question Nos. 12 to 14

[3 M (-1)]

Four charged particles (A, B, C, D), of mass m and charge q each are connected by light silk threads of length d forming a tetrahedron floating in outer space. The thread connecting particles A and B suddenly snaps.

12. Mark the CORRECT statement :-

(A) Displacement of centre of mass of system of particles is $\frac{d}{\sqrt{3}}$

(B) Angular momentum of system about CM is $\frac{4Md^2}{\sqrt{3}}\omega$, where ω is maximum angular velocity of particles about centre of mass.

- (C) When particles attain maximum speed direction of motion of particles C and D is opposite to that of A and B.
- (D) When particles attain maximum speed direction of motion of all the particles is in same direction
- 13. The potential energy of particle A and B when the maximum speed is attained by charged particles :-

(A)
$$U = \frac{q^2}{4\pi \epsilon_0 \left(d\sqrt{2} \right)}$$
(B)
$$U = \frac{q^2}{4\pi \epsilon_0 \left(d\sqrt{3} \right)}$$
(C)
$$U = \frac{q^2}{4\pi \epsilon_0 d} \left(\frac{\sqrt{2} - 1}{\sqrt{2}} \right)$$
(D)
$$U = \frac{q^2}{4\pi \epsilon_0 d} \left(\frac{\sqrt{3} - 1}{\sqrt{3}} \right)$$

14. Maximum speed of particles is :-

(A)
$$v = \sqrt{\frac{q^2}{8\pi \epsilon_0 \text{ md}} \left(\frac{\sqrt{2}-1}{\sqrt{2}}\right)}$$

(B) $v = \sqrt{\frac{q^2}{8\pi \epsilon_0 \text{ md}} \left(\frac{\sqrt{3}-1}{\sqrt{3}}\right)}$
(C) $v = \sqrt{\frac{q^2}{8\pi \epsilon_0 \text{ md}} \left(\frac{1}{\sqrt{2}}\right)}$
(D) $v = \sqrt{\frac{q^2}{8\pi \epsilon_0 \text{ md}} \left(\frac{1}{\sqrt{3}}\right)}$

PHYSICS/Class Test # 14

Matching List Type (4×4)

C

List-I shows different configurations of charge distribution. List-II gives the corresponding expressions 15. of physical quantities mentioned in list-I :-List-II

List-I

(P)

(Q)

(R)

E-4/5

Αq

Four point charges are kept at the vertices of a regular tetrahedron of side R.Total electrostatics energy of the configuration.

B q

Two thin spherical uniformly charged shells having charge q are separated by distance 4R. Total electrostatics energy of the configuration.

A solid non-conducting sphere of radius R having uniform charge q is kept inside a thin spherical non-conducting shell of radius 2R having uniform charge q. Total electrostatics energy of the configuration.

Work done in contracting the sphere having uniform charge q from radius 4R to R

Thin spherical shell shell 4R

q

4R

Thin spherical

(2)
$$\frac{6kq^2}{R}\left(\frac{9}{40}\right)$$

 $\frac{6 \text{kq}^2}{6 \text{R}}$ (3)

$$(4) \qquad \frac{6kq^2}{40R}(3)$$

1Q.[3 M (-1)]

Codes :			
Р	Q	R	S
(A) 1	3	4	2
(B) 4	2	3	1
(C) 3	2	1	4
(D) 1	3	2	4
			CECTION

SECTION-II

1Q.[3(0)]

Numerical Answer Type Question (upto second decimal place)

1. In a 2-D region of x-y space, a uniform electric field exists, given by : E = (2 V/m) (3i + 4j). A charged particle of mass 10^{-2} g and charge 10^{-5} C is fired from the origin with initial velocity 20 m/s, directed along the negative y-direction. Find the minimum speed (in m/s) of the particle during its subsequent motion. Neglect gravity.

SECTION-III

Numerical Grid Type (Ranging from 0 to 9)

3 Q. [4 M (0)]

- 1. Two point charges 2 μ C and 8 μ C are placed at position x = 0 and x = 4 m respectively. The distance of the neutral point form the smaller charge is found to be at x= α/β . Find the value of ($\alpha+\beta$).
- 2. A positive charged particle q_0 , when launched with some velocity \vec{v}_0 in a uniform field is found to deviate by 60° in a certain time, such that its speed is halved. If –ve charged particle $-2q_0$, is launched with the same velocity \vec{v}_0 in the same field then after same time its speed is v_2 . Mass of both particles is

same then $\frac{v_2^2}{v_0^2}$ would be :-

3. Two uniformly charged co-axial, identical rings (Radius R) are fixed as shown. A point charge q_0 is projected with speed V_0 along common axis of rings from large distance. Minimum value of V_0 for

which the charge particle can just pass through both rings is given as $V_0 = \sqrt{\frac{kqq_0}{nmR}}$. Find $n\left(k = \frac{1}{4\pi \epsilon_0}\right)$.

CLASS TEST # 14	ANSWER KEY			
SECTION-I				
Single Correct Answer Type	6 Q. [3 M (-1)]			
1. Ans. (B) 2. Ans. (D) 3. Ans. (C) 4. Ans. (D) 5. Ans	. (B) 6. Ans. (A)			
Multiple Correct Answer Type	5 Q. [4 M (-1)]			
7. Ans. (A,B,C) 8. Ans. (A,B) 9. Ans. (B,C) 10. Ans. (B,C,D) 11. An	is. (B , D)			
Linked Comprehension Type (1 Para × 3Q.) [3 M (-1)]				
(Single Correct Answer Type)				
12. Ans. (C) 13. Ans. (B) 14. Ans. (B)				
Matching List Type (4 × 4)	1Q.[3 M (-1)]			
15. Ans. (D)				
SECTION-II				
Numerical Answer Type Question (upto second decimal place)	1Q.[3(0)]			
1. Ans. 12.00	-			
SECTION-III				
Numerical Grid Type (Ranging from 0 to 9)	3 Q. [4 M (0)]			
1. Ans. 7 2. Ans. 7 3. Ans. 1				