CONTINUITY **DPP - 1**

- If the function $f(x) = \begin{cases} (\cos x)^{1/x}, x \neq 0 \\ k, x = 0 \end{cases}$ is continuous at x = 0, then the value of k is
 - (A) 1
- (B) -1 (C) 0 (D) e
- $\text{If the function } f(x) = \begin{cases} 1 + \sin\frac{\pi x}{2} \text{ for } -\infty < x \leq 1 \\ \text{ax + b} & \text{for } 1 < x < 3 \\ 6 \tan\frac{x\pi}{12} & \text{for } 3 \leq x < 6 \end{cases} \text{ is continuous in the interval } (-\infty \text{, 6}) \text{ then the }$ 2.
 - values of a and b are respectively
 - (A) 0,2
- (B) 1, 1
- (C) 2, 0
- (D) 2, 1

- 3. If $f(x) = \begin{cases} \frac{x^2 4x + 3}{x^2 1}, & \text{for } x \neq 1 \\ 2, & \text{for } x = 1 \end{cases}$, then
 - (A) $\lim_{x \to 1^{-}} f(x) = 2$

- (B) $\lim_{x\to 1^{-}} f(x) = 3$
- (C) f(x) is discontinuous at x = 1 (D) None of these
- The function defined by $f(x) = \begin{cases} x^2 + e^{\frac{1}{2-x}} \end{cases}^{-1}$, $x \ne 2$, is continuous from right at the point $x \ne 2$, $x \ne 2$ 4.
 - x = 2, then to
 (A) 0 (B) 1/4 (C) -1/4 (D) None of these

- The function $f(x) = \frac{1-\sin x + \cos x}{1+\sin x + \cos x}$ is not defined at $x = \pi$. The value of $f(\pi)$, so that f(x) is 5. continuous is
- (C) -1
- (D) 1

- 6. Statement 1
 - $f(x) = [x]^2 5[x] + 3$. 1 > x > 4. where [] represents the greatest integer function is not continuous at x = 2 and 3 but is bounded.

and

Statement 2

- A continuous function in a closed interval I is bounded.
- (A) S-1 is correct, S-2 is correct and correct explanation of S-1
- (B) S-1 is correct, S-2 is correct but not correct explanation of S-1
- (C) S-1 is correct, S-2 is false
- (D) S-1 is false, S-2 is correct

For the function $f(x) = \frac{1}{1}$, $x \ne 2$ which of the following holds? 7. $x + 2^{(x-2)}$

- (A) f(2) = 1/2 and f is continuous at x = 2
- (B) $f(2) \neq 0$, 1/2 and f is continuous at x = 2
- (C) f can not be continuous at x = 2
- (D) f(2) = 0 and f is continuous at x = 2

The function $f(x) = \frac{4-x^2}{4x-x^3}$, is 8.

- (A) discontinuous at only one point in its domain
- (B) discontinuous at two points in its domain
- (C) discontinuous at three points in its domain
- (D) continuous everywhere in its domain

Multiple Type

9. Let $f(x) = \frac{1-\sin x}{(\pi-2x)^2}$. $\frac{\ln(\sin x)}{\ln(1+\pi^2-4\pi x+4x^2)}$ $x \neq \frac{\pi}{2}$. Value of $f(\frac{\pi}{2})$ so that the function is continuous at $x = \pi/2$ is less than

- (A) 1/16

- (B) 1/32 (C) -1/64 (D) 1/128

Let $f(x) = [x^2 - x + 1]$ where [] denotes the greatest integer function. Then, in (0, 2), f(x) is 10. discontinuous at the point

- (A) $\frac{1+\sqrt{5}}{2}$ (B) $\frac{1-\sqrt{5}}{2}$
- (C) 1
- (D) Both (A) and (B)

The points of discontinuity of $y = \frac{1}{u^2 + u - 2}$ where $u = \frac{1}{x - 1}$ is 1.

(A) $\frac{1}{2}$, 1, 2 (B) $\frac{-1}{2}$, 1, -2 (C) $\frac{1}{2}$, -1, 2 (D) None of these

The function $f(x) = \frac{\log(1 + ax) - \log(1 - bx)}{x}$ is not defined at x = 0. The value which should be 2. assigned to f at x = 0 so that it is continuous at x = 0, is o fat x = 0 so that it is continuous at x = 0, is

(B) a + b (C) log a + log b (D) log a - log b(A) a = b

Let f(x) be defined for all x > 0 and be continuous. Let f(x) satisfy $f\left(\frac{x}{y}\right) = f(x) - f(y)$ for all x, 3. y and f(e) = 1, then

- (A) f(x) = In x (B) f(x) is bounded (C) $f\left(\frac{1}{x}\right) \to 0$ as $x \to 0$ (d) $xf(x) \to 1$ as $x \to 0$

Lef $f(x) = [x]\sin\left(\frac{\pi}{[x+1]}\right)$, where [.] denotes the greatest integer function. The domain of f is...... and the points of discontinuity of f in the domain are (A) $[x \in R] \ x \in [-1, 0), I - \{0]$ (B) $\{x \in R] \ x \notin [1, 0)\}, I - \{0\}$ (C) $\{x \in R] \ x \notin [-1, 0)\}, I - \{0\}$ (D) None of these

The set of all points of discontinuity of the inverse of $f(x) = \frac{e^{-} - e^{-}}{e^{x} + e^{-x}}$ is 5.

- (A) φ

- (B) $(-\infty, -1]$ (C) $[1, \infty)$ (D) R (-1, 1)

Let $f(x) = \begin{cases} x \frac{e^{[x]+|x|} - 4}{[x]+|x|}, & x \neq 0 \\ 3 & x = 0 \end{cases}$

Where [] denotes the greatest integer function. Then,

- (A) f(x) is discontinuous at x = 0 (B) f(x) is continuous at x = 0 (C) f(x) is left continuous at x = 0 (D) f(x) is right continuous at x = 0

 $-4\sin x + \cos x$ for $x \le -\frac{\pi}{2}$ If $f(x) = \begin{cases} a \sin x + b & \text{for } -\frac{\pi}{2} < x < \frac{\pi}{2} \text{ is continuous then} \end{cases}$ $\cos x + 2$ for $x \ge \frac{\pi}{2}$

- (A) a = -1, b = 3 (B) a = 1, b = -3 (C) a = 1, b = 3 (D) a = -1, b = -3

$$\sin\left(\frac{a-x}{2}\right)\tan\left[\frac{\pi x}{2a}\right] \text{ for } x > a$$
8.
$$f(x) = \begin{bmatrix} (-x)^{2} \end{bmatrix}$$

8.
$$f(x) = \begin{bmatrix} \sin\left(\frac{a-x}{2}\right)\tan\left[\frac{\pi x}{2a}\right] & \text{for } x > a \\ \left[\cos\left(\frac{\pi x}{2a}\right)\right] & \text{for } x < a \end{bmatrix}$$

where [x] is the greatest integer function of x, and a > 0, then

- (A) $f(a^{-}) < 0$
- (B) f has a removable discontinuity at x = a
- (C) f has an irremovable discontinuity at x = a
- (D) $f(a^+) > 0$

Multiple Type

9. Let [x] be the greatest integer less than or equals to x. Then, at which of the following points (s) the function $f(x) = x\cos(\pi(x + [x]))$ is discontinuous? (A) x = -1 (B) x = 1 (C) x = 0 (D) x = 2

(A)
$$x = -1$$

(B)
$$x = 1$$

$$(C) x = 0$$

(D)
$$x = 2$$

Column - II

10. Column - I

(A) If
$$f(x) = \begin{cases} \frac{a+3\cos x}{x^2}, & x < 0 \\ b\tan\left(\frac{\pi}{[x+3]}\right)x \ge 0 \end{cases}$$
 (P) $|a+b| = 0$

is continuous at x = 0, then

(Q)
$$|a-b| = 2$$

(where [*] denotes the greatest integer function)

(B) If
$$f(x) = \begin{cases} -2\sin x, & -\pi \le x \le -\pi/2 \\ a\sin x + b, & -\pi/2 < x < \pi/2 \\ \cos x, & \pi/2 \le x \le \pi \end{cases}$$

(R)
$$|a + 2b| = 1$$

is continuous in $[-\pi, \pi]$, then

(S)
$$|a+2b|=4$$

(C) If
$$f(x) = \begin{cases} (3/2)^{(\cot 3x)/\cot 2x)}, & 0 < x < \pi/2 \\ b + 3, & x = \pi/2 \end{cases}$$

$$(1 + |\cos x|)^{\frac{a|\tan x|}{b}}, & \frac{\pi}{2} < x < \pi$$

is continuous at $x = \frac{\pi}{2}$, then

(T)
$$[a - 2b] = -2$$

(where [*] denotes the greatest integer function)

CONTINUITY DPP - 3

If
$$f(x) = \frac{x^2 - bx + 25}{x^2 - 7x + 10}$$
 for $x \ne 5$ and f is continuous at $x = 5$, then $f(5)$ has the value equal to

- (A) 0
- (B) 5
- (C) 10
- (D) 25

Consider the function
$$f(x) = \begin{bmatrix} 1-x, & 0 \le x \le 1 \\ x+2, & 1 < x < 2 \\ 4-x, & 2 \le x \le 4 \end{bmatrix}$$
 Find $a = \underset{x \to 1}{\text{Lim}} f(f(x))$ and $b = \underset{x \to 2}{\text{Lim}} f(f(x))$

- (A) a = does not exist & b = 0 (B) a = 1 & b = does not exist
- (C) a = does not exist & b = 0 (D) a = 1 & b = 4

3. On the interval
$$I = [-2, 2]$$
, function $f(x) = \begin{cases} (x+1)e^{-\left[\frac{1}{|x|} + \frac{1}{x}\right]} & (x \neq 0) \\ 0 & (x = 0) \end{cases}$, then which of the following

is in correct

- (A) is continuous for all values of $x \in I$
- (B) is continuous for $x \in I (0)$
- (C) assumes all intermediate values from f(-2) & f(2)
- (D) has a maximum value equal to 3/e.

4. Consider
$$f(x) = \begin{bmatrix} x[x]^2 \log_{(1+x)} 2 & for -1 < x < 0 \\ \frac{\ln (e^{x^2} + 2\sqrt{\{x\}})}{\tan \sqrt{x}} & for 0 < x < 1 \end{bmatrix}$$

where [*] & {*} are the greatest integer function & fractional part function respectively, then

- (A) $f(0) = ln \ 2 \Rightarrow f$ is continuous at x = 0 (B) $f(0) = 2 \Rightarrow f$ is continuous at x = 0
- (C) $f(0) = e^2 \Rightarrow f$ is continuous at x = 0 (D) f has an irremovable discontinuity at x = 0

Let
$$f: R \to R$$
 be a continuous onto function satisfying $f(x) + f(-x) = 0$, $\forall x \in R$. If $(-3) = 2$ and $f(5) = 4$ in $[-5, 5]$, then the equation $f(x) = 0$ has

- (A) exactly three real roots
- (B) exactly two real roots

(C) atleast five real roots

(D) atleast three real roots

6. Consider the function
$$f(x) = \begin{bmatrix} \frac{x}{[x]} & \text{if } 1 \le x < 2 \\ 1 & \text{if } x = 2 \end{bmatrix}$$

$$\sqrt{6-x} \quad \text{if } 2 < x \le 3$$

Where [x] denotes step up function then at x = 2 function

- (A) has missing point removable discontinuity
- (B) has isolated point removable discontinuity
- (C) has non removable discontinuity finite type
- (D) is continuous
- If f(x) = 1/(2 x), then the points of discontinuity of the composite function y = f(f(f(x))) are (A) 2, 3/4 (B) 1, 2 (C) 2, 3 (D) 2, 3/2

MULTIPLE CORRECT

8.
$$\lim_{x \to \infty} \frac{1 - (2\sin x)^{2n}}{1 + (2\sin x)^{2n}}$$
 is continuous at $x =$

(A) $\pi/6$ (B) $\pi/4$ (C) $\pi/2$ (D) None of these

9. Function whose jump (non-negative difference of LHL & RHL) of discontinuity is greater than or equal to one is/are

(A)
$$f(x) = \begin{cases} \frac{(e^{1/x} + 1)}{(e^{1/x} - 1)}; & x < 0 \\ \frac{(1 - \cos x)}{x}; & x > 0 \end{cases}$$
 (B) $g(x) = \begin{cases} \frac{(x^{1/3} - 1)}{(x^{1/2} - 1)}; & x < 1 \\ \frac{\ln x}{x - 1}; & \frac{1}{2} < x < 1 \end{cases}$

(C)
$$u(x) = \begin{cases} \frac{\sin^{-1} 2x^{2}}{\tan^{-1} 3x^{2}}; & x \in \left[0, \frac{1}{2}\right] \\ \frac{|\sin x|}{x^{2}}; & x < 0 \end{cases}$$
 (D) $v(x) = \begin{cases} \log_{3}(x+2) & ; & x > 2 \\ \log_{1/2}(x^{2}+5); & x < 2 \end{cases}$

Integer Type

10. Let $f(x) = \csc 2x + \csc 2^2x + \csc 2^3x + \dots + \csc 2^nx$, $x \hat{I}\left(0, \frac{\pi}{2}\right)$ and $g(x) = f(x) + \cot 2^nx$.

$$\text{If } H(x) = \begin{cases} (\cos x)^{g(x)} + (\sec x)^{\cos ecx} & \text{if } x > 0 \\ p & \text{if } x = 0 \\ \frac{e^x + e^{-x} - 2\cos x}{x\sin x} & \text{if } x < 0 \end{cases} . \text{ Find the value of p, if possible to make the function }$$

$$H(x) \text{ continuous at } x = 0.$$