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Application of Integrals

Teaching Points

e The area bouned by the curve y = F(x) above the x-axis and between the lines x = a, x = b is given by
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e If the curve between the lines x = a, x = b lies below the x-axis, then the required area is given
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e The area bounded by curve y = F(x), x-axis and between lines
X = a, X = b to given by
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e The area bounded by the curve x = F(y) above the y-axis and the lines y = c, y = d is given by
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e If the curve between the lines y = ¢, y = d lies below the y-axis (to the left of y-axis) then the area is given
by
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e The area bounded by curve x = F(y), y-axis and between lines
y=candy=dis gives by
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o If 0 £ g(x) £ f(x), the area of region bounded between curves and ordinates x = a and x = b is given by
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e When we find the area bounded by the curves y = f(x) and y = g(x) and after drawing the graphs the
shaded region is of such type.
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We find the x-cordinate of their point of inter-sections. Let for point A and B the values of x are a and b.

Then Required Area = -[[f(t) o(x)]dx

Note : If the power of ‘X’ is even in the given curve then the graph of the curve is symmetric about y-axis. If

equation of curve contains only even power of ‘y’ then the graph is symmertic about x-axis. If curve
contains even power in both X’ and ‘y’ then graph is symmetric about both axis.

Question for Practice

Q1. Find the common area bounded by the circles .\'j + _1‘3 =4 and (1 - 2)2 + _1—’2 =4
Q2. Using integration find area of region bounded by the triangle whsoe vertices are

(a) (-1, 0), (1,3)and (3, 2)

(b) (-2, 2) (0, 5) and (3, 2)

Q3. Using integration find the area bounded by the lines.

(i) x+2y=2,y—x=1and2x+y-7=0



(i)y=4x+5,y=5-xand 4y —x=5.

Q4. Find the area of the region :(’b 1) ¥ 1 R f l

Q5. Find the area of the region bounded by
y2=xandlinex+y=2

Q6. Find the area enclosed by the curve y = sin x between x = 0 and x = 311/2 and x-axis.

Q7. Find the area bounded by semicircley = 425 — X~ and x-axis.

xl] .

w

Q8. Find area of region given by [(X. V) 1 X~ < y <

I

Q9. Find area of smaller region bounded by ellipse  © 4 and straight line 2x + 3y = 6.
Q10. Find the area of region bounded by the curve x2 = 4y and line x = 4y — 2.

Q11. Using integration find the area of region in first quadrant enclosed by x-axis the line X = \/:3 ¥
and the circle x2 + y2 = 4.

Q12. Draw a rough sketch of the region |( xX. v ) X+ b <4 <x+ ¥ | and find its area.
Q13. Find the smaller of two areas bounded by the curve y = |x] and x2 + y2 = 8.

Q14. Find the area lying above x-axis and included between the circle x2 + y2 = 8x and the parabola y2 =
4x.

Q15. Using integration find the area enclosed by the curve y = cos x, y = sin x and x-axis in the interval
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Q16. Sketch the graph y = |x — 5|. Evaluate
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