Ordinary Thinking

Objective Questions

Gas Laws

1.	The	temperature of a gas at p	ressu	re P and volume V is $27^{\circ}C$.							
	Kee	ping its volume constant if i	ts te	mperature is raised to 927° <i>C</i> ,							
	ther	its pressure will be		[MP PMT 1985]							
	(a)	2 <i>P</i>	(b)	3 P							
	(c)	4 <i>P</i>	(d)	6 <i>P</i>							
2.	4 m dou	oles of an ideal gas is at 0° <i>C</i> . ble its volume, then its final t	At co empe	onstant pressure it is heated to rature will be							
	(a)	0° <i>C</i>	(b)	273° <i>C</i>							
	(c)	546° <i>C</i>	(d)	136.5° <i>C</i>							
3.	Eve	ery gas (real gas) behaves as an ideal gas									
		[CPMT 1997; RPMT 2000; MP PET 2001]									
	(a)	a) At high temperature and low pressure									
	(b)	(b) At low temperature and high pressure									
	(c)	(c) At normal temperature and pressure									
	(d)	None of the above									
4.	Boy	e's law holds for an ideal gas during									
				[AFMC 1994; KCET 1999]							
	(a)	Isobaric changes	(b)	Isothermal changes							
	(c)	Isochoric changes	(d)	Isotonic changes							
5.	S.I. 1	unit of universal gas constant	is								
		[M	INR 19	188; MP PMT 1994; UPSEAT 1999]							
	(a)	<i>cal</i> /° <i>C</i>	(b)	J/mol							
	(c)	$J mol^{-1} K^{-1}$	(d)	J/kg							
6.	Mol	ecules of a gas behave like		[] & K CET 2000]							
	(a)	Inelastic rigid sphere									
	(b) Perfectly elastic non-rigid sphere										

- (c) Perfectly elastic rigid sphere
- (d) Inelastic non-rigid sphere

	Objective Question
Comm	unication
In short wave communicat frequencies will be reflected electron density 10 [.] per <i>m</i>	on waves of which of the follow back by the ionospheric layer, ha
	(h) 10 441/-
(a) $2 MHz$ (c) $12 MHz$	(d) 18 MHz
In an amplitude modulate <i>cycle/second</i> , the appropriate	d wave for audio frequency of carrier frequency will be
(a) 50 cycles/sec	(b) 100 cycles/sec
(c) 500 cycles/sec	(d) 50.000 <i>cvcles/sec</i>
AM is used for broadcasting	because
(a) It is more noise immun	e than other modulation systems
(b) It requires less trans systems	nitting power compared with c
(c) Its use avoids receiver c	omplexity
(d) No other modulation bandwidth faithful tran	system can provide the neces mission
Range of frequencies allotted	for commercial FM radio broadcast
(a) 88 to 108 <i>MHz</i>	(b) 88 to 108 <i>kHz</i>
(c) 8 to 88 MHz	(d) 88 to 108 <i>GHz</i>
The velocity factor of a tran the medium is 2.6, the value	smission line x . If dielectric constant of x is
(a) 0.26	
(a) 0.26	(b) 0.02
(c) 2.0 The process of superimposin the carrier wave is known as	(d) 0.2 g signal frequency (<i>i.e.</i> audio wave [AIIMS 1987]
(a) Transmission	(b) Reception
(c) Modulation	(d) Detection
Long distance short-wave rad	io broadcasting uses
C C	[AFMC 1
(a) Ground wave	(b) Ionospheric wave
(c) Direct wave	(d) Sky wave
A step index fibre has a relative the critical angle at the corec	tive refractive index of 0.88%. Wh ladding interface
	[Manipal 2
(a) 60°	(b) 75°
(c) 45°	(d) None of these
The characteristic impedance	of a coaxial cable is of the order of
(a) 50 Ω	(b) 200 Ω
(c) 270 Ω	(d) None of these
In which frequency range, sp	ace waves are normally propagated
(a) HF	(b) VHF

11.	If μ and μ are the refractive indi	ces of the materials of core and
	cladding of an optical fibre, then the the can be minimised by having	ne loss of light due to its leakage BVP 2003]
	(a) $\mu > \mu$ (b) $\mu < \mu$
	(c) $\mu = \mu$	d) None of these
12.	Through which mode of propagati from one place to another []	on, the radio waves can be sent IPMER 2003]
	(a) Ground wave propagation	
	(b) Sky wave propagation	
	(c) Space wave propagation	
	(d) All of them	
13.	A laser beam of pulse power 10° <i>wa</i> <i>cm</i> . The energy flux in <i>watt/ cm</i> at	<i>tt</i> is focussed on an object are 10 ⁺ the point of focus is
	$(a) 10^{\circ} \qquad ((a) 10^{\circ}) (a) (a$	b) 10*
14	(c) IO ² (c)	a) 10°
14.	capacitor and 10 μ H inductor is	y a tank circuit containing I <i>nF</i> [AFMC 2003]
	(a) 1592 <i>Hz</i> (1	b) 1592 <i>MHz</i>
	(c) 1592 <i>kHz</i> (4	d) 159.2 <i>Hz</i>
15.	Broadcasting antennas are generally	[AFMC 2003]
	(a) Omnidirectional type (b) Vertical type
	(c) Horizontal type (4	d) None of these
16.	For television broadcasting, the freq	uency employed is normally
	(a) 30-300 <i>MHz</i> (b) 30-300 <i>GHz</i>
	(c) 30-300 <i>KHz</i> (4	d) 30-300 <i>Hz</i>
17.	The radio waves of frequency 300 /	<i>MHz</i> to 3000 <i>MHz</i> belong to
	(a) HighNikelp92tilcy band	
	(b) Very high frequency band	
	(c) Ultra high frequency band	
18	(d) Super high frequency band	cuit only when its length is
10.	(a) $\frac{\lambda}{2}$	
	(b) $\frac{\lambda}{\lambda}$	
	4	
	(d) $\frac{\lambda}{2}$ or integral multiple of $\frac{\lambda}{2}$	
19.	Maximum useable frequency (MUF) in F-region layer is x, when the
	critical frequency is 60 <i>MHz</i> and th	ne angle of incidence is 70°. Then
	x is	[Himachal PMT 2003]
	(a) 150 <i>MHz</i> (b) 170 <i>MHz</i>
	(c) 175 <i>MHz</i> (d) 190 <i>MHz</i>
20.	The electromagnetic waves of frequ	ency 2 MHz to 30 MHz are
	(a) In ground wave propagation	
	(b) In sky wave propagation	
	(c) In microwave propagation	
	(d) In [CPMT 2003]	
21.	A laser is a coherent source because	e it contains
		[IIPMER 2002]
	(a) Many wavelengths	Un men 2003]

(b) Uncoordinated wave of a particular wavelength

	(c)	Coordinated wave of many	wavel	engths
	(d)	Coordinated waves of a par	ticula	r wavelength
22.	The	attenuation in optical fibre	is mai	nly due to
				[AFMC 2003]
	(a)	Absorption		
	(b)	Scattering		
	(c)	Neither absorption nor scat	ttering	
	(d)	Both (a) and (b)		
23.	The tow	maximum distance upto er of height <i>h</i> can be receive	which d is pi	TV transmission from a TV roportional to
				[AIIMS 2003]
	(a)	h	(b)	h
	(c)	h.	(d)	h
24.	A la	ser beam is used for carrying	g out s	surgery because it
				[AIIMS 2003]
	(a)	Is highly monochromatic	(b)	Is highly coherent
	(c)	Is highly directional	(d)	Can be sharply focussed
25.	Lase	er beams are used to measur	e long	distances because
				[DCE 2002, 03]
	(a)	They are monochromatic		
	(b)	They are highly polarised		
	(c)	They are coherent		
	(d)	They have high degree of p	arallel	ism
26.	An vari	oscillator is producing FM ation of 10 <i>kHz</i> . What is the	wave modu	s of frequency 2 <i>kHz</i> with a lating index
				[DCE 2004]
	(a)	0.20	(b)	5.0
	(c)	0.67	(d)	1.5
27.	The min	maximum peak to peak volt imum peak to peak voltage i	age of s 8 <i>m</i>	an AM wire is 24 <i>mV</i> and the <i>V</i> . The modulation factor is
	(a)	10%	(b)	20%
	(c)	25%	(d)	50%
28.	Sinu is a proo freq	usoidal carrier voltage of free mplitude modulated by sim ducing 50% modulation. uencies in <i>kHz</i> are	quency usoida The	 1.5 MHz and amplitude 50 V l voltage of frequency 10 kHz lower and upper side-band
	(a)	1490, 1510	(b)	1510, 1490
	(c)	$\frac{1}{1490}, \frac{1}{1510}$	(d)	$\frac{1}{1510}, \frac{1}{1490}$
29.	Wha	at is the modulation index of	an ov	er modulated wave
	(a)	1	(b)	Zero
	(c)	< 1	(d)	> 1
30.	Basi	cally, the product modulator	is	
	(a)	An amplifier	(b)	A mixer
	(c)	A frequency separator	(d)	A phase separator
31.	If <i>f</i> freq	and <i>f</i> represent the carrier uency modulations respectiv	wave ely, th	frequencies for amplitude and en

(a) $f_a > f_f$ (b) $f_a < f_f$

(c) $f_a \approx f_f$

- $f_a \approx f_f$ (d) $f_a \ge f_f$
- Which of the following is the disadvantage of FM over AM
 - (a) Larger band width requirement
- (b) Larger noise

32.

34.

- $(c) \quad \text{Higher modulation power} \\$
- (d) Low efficiency
- **33.** If a number of sine waves with modulation indices *n*, *n*, *n*, modulate a carrier wave, then total modulation index (*n*) of the wave is
 - (a) n + n + 2(n + n)

(b)
$$\sqrt{n_1 - n_2 + n_3}$$
.....

(c)
$$\sqrt{n_1^2 + n_2^2 + n_3^2}$$
.....

(d) None of these

An AM wave has 1800 *watt* of total power content, For 100% modulation the carrier should have power content equal to

- (a) 1000 *watt* (b) 1200 *watt*
- (c) 1500 *watt* (d) 1600 *watt*
- 35. The frequency of a FM transmitter without signal input is called
 - (a) Lower side band frequency
 - (b) Upper side band frequency
 - (c) Resting frequency
 - (d) None of these
- 36. What type of modulation is employed in India for radio transmission
 - (a) Amplitude modulation (b) Frequency modulation
 - (c) Pulse modulation (d) None of these
- **37.** When the modulating frequency is doubled, the modulation index is halved and the modulating voltage remains constant, the modulation system is
 - (a) Amplitude modulation (b) Phase modulation
 - (c) Frequency modulation (d) All of the above
- **38.** An antenna is a device
 - (a) That converts electromagnetic energy into radio frequency signal
 - (b) That converts radio frequency signal into electromagnetic energy
 - (c) That converts guided electromagnetic waves into free space electromagnetic waves and vice-versa
 - (d) None of these
- **39.** While tuning in a certain broadcast station with a receiver, we are actually
 - (a) Varying the local oscillator frequency
 - $(b) \ \ \, \mbox{Varying the frequency of the radio signal to be picked up}$
 - (c) Tuning the antenna
 - (d) None of these
- 40. Indicate which one of the following system is digital
 - (a) Pulse position modulation
 - (b) Pulse code modulation

Communication 1627

	(c) Pulse width modulation	49.	Audio signal cannot
	(d) Pulse amplitude modulation		
41.	In a communication system, noise is most likely to affect the signal		(a) The signal has
	(a) At the transmitter		(b) The signal cann
	(b) In the channel or in the transmission line		(c) The transmittir
	(b) in the channel of in the transmission line		(d) The transmittin
	(c) In the information source		(e) The signal is no
	(d) At the receiver	50.	In which of the follo
42.	The waves used in telecommunication are		(a) Forest density
	(a) IR (b) UV		(c) Wetland mappi
	(c) Microwave (d) Cosmic rays	51.	For sky wave propa minimum electron d
13.	In an FM system a 7 <i>kHz</i> signal modulates 108 <i>MHz</i> carrier so tha frequency deviation is 50 <i>kHz</i> . The carrier swing is	t	(a) ~ 1.2 × 10° m°
	(a) 7.143 (b) 8		(c) $\sim 10^{\circ} m^{\circ}$
	(c) 0.71 (d) 350	52	What should be th
4.	Consider telecommunication through optical fibres. Which of the	2	interface of an optic
•	following statements is not true [AIEEE 2003]		the core and the clas
	(a) Optical fibres may have homogeneous core with a suitable cladding	2	(a) $\sin^{-1}(n/n)$
	(b) Optical fibres can be of graded refractive index		(a) $\sin(n_2/n_1)$
	(c) Optical fibres are subject to electromagnetic interference from outside	1	(c) $\left[\tan^{-1} \frac{n_2}{n_1} \right]$
	(d) Optical fibres have extremely low transmission loss		
45.	The phenomenon by which light travels in an optical fibres is		
	(a) Reflection (b) Refraction		UT
	(c) Total internal reflection (d) Transmission		
16 .	Television signals on earth cannot be received at distances greater than 100 <i>km</i> from the transmission station. The reason behind this is that [DCE 1995]	r s 1.	A sky wave with a earth's atmosphere a
	 (a) The receiver antenna is unable to detect the signal at a distance greater than 100 km 	2	for <i>D</i> -region is 400
	(b) The TV programme consists of both audio and video signals		(a) 60°
	(c) The TV signals are less powerful than radio signals		(c) 30°
	(d) The surface of earth is curved like a sphere	2.	In a diode AM-detecte
17 .	Advantage of optical fibre [DCE 2005]	pF. A carrier signal of
	(a) High bandwidth and EM interference		(a) Yes
	(b) Low bandwidth and EM interference		(b) No
	(c) High band width, low transmission capacity and no EM interference	١	(c) Information is a(d) None of these
	(d) High bandwidth, high data transmission capacity and no EA interference	1 3.	Consider an optical Suppose only 1% o
48.	In frequency modulation [Kerala PMT 2005]	channel bandwidth
	 (a) The amplitude of modulated wave varies as frequency of carrier wave (b) The formula of the constraint of the	r	can be accommoda bandwidth of 8 <i>kHz</i>
	 (b) The frequency of modulated wave varies as amplitude o modulating wave (c) The standard control of the standard control o	f	(a) 4.8×10^{-10}
	(c) The amplitude of modulated wave varies as amplitude o carrier wave	r A	(c) $0.2 \times 10^{\circ}$
		14	

(d) The frequency of modulated wave varies as frequency of modulating wave

The frequency of modulated wave varies as frequency of carrier (e) wave

be transmitted because

[Kerala PMT 2005]

- more noise
- not be amplified for distance communication
- ng antenna length is very small to design
- ig antenna length is very large and impracticable
- ot a radio signal
- wing remote sensing technique is not used
 - (b) Pollution
 - (d) Medical treatment ng
- gation of a 10 MHz signal, what should be the ensity in ionosphere

[AIIMS 2005]

(a)	\sim 1.2 \times 10° m	(b)	~ 10° <i>m</i> °
(c)	~ 10 [°] <i>m</i> [°]	(d)	~ 10° <i>m</i> °

ne maximum acceptance angle at the aircore cal fibre if n and n are the refractive indices of dding, respectively

[AIIMS 2005]

a)
$$\sin^{-1}(n_2 / n_1)$$
 (b) $\sin^{-1}\sqrt{n_1^2 - n_2^2}$
c) $\left[\tan^{-1}\frac{n_2}{n_1}\right]$ (d) $\left[\tan^{-1}\frac{n_1}{n_2}\right]$

ที่นี้เcal Thinking

Objective Questions

frequency 55 MHz is incident on D-region of at 45[.]. The angle of refraction is (electron density electron/cm)

[Haryana PMT 2003]

(a)	60°	(b)	45°
(c)	30°	(d)	15°

- or, the output circuit consist of $R = 1k\Omega$ and C = 10F 100 kHz is to be detected. Is it good
 - not sufficient
 - communication system operating at λ -800 nm. f the optical source frequency is the available for optical communication. How many channels ted for transmitting audio signals requiring a
 - (b) 48
 - (d) 4.8×10^{9}
 - A photodetector is made from a semiconductor $\ln Ga As$ with E =0.73 eV. What is the maximum wavelength, which it can detect
 - (a) 1000 nm (b) 1703 nm
 - (c) 500 nm (d) 173 nm
- 4.

Communication 1629

5.	A transmitter supplies 9 power radiated when mode	<i>kW</i> to the aerial when unmodulated. The ulated to 40% is	Read the o	the assertion ptions given l	and reason carefu pelow:
	(a) 5 <i>kW</i>	(b) 9.72 <i>kW</i>	(a)	If both ass	sertion and reason
	(c) 10 <i>kW</i>	(d) 12 <i>kW</i>	(\mathbf{L})		n of the assertion.
6.	The antenna current of an	AM transmitter is 8 A when only carrier	<i>(D)</i>	explanation	n of the assertion.
	is sent but increases to	8.96 <i>A</i> when the carrier is sinusoidally	(c)	If assertion	n is true but reason
	modulated. The percentage	e modulation is	(d) (e)	If the asser If assertion	rtion and reason bo n is false but reason
	(a) 50%	(b) 60%	1	Assertion	· Diode losers
_	(c) 65%	(d) 71%		7336111011	communicatio
7.	The total power content modulation, the power trai	of an AM wave is 1500 <i>W</i> . For 100% nsmitted by the carrier is		Reason	: Diode lasers o
	(a) 500 W	(b) 700 <i>W</i>			
	(c) 750 W	(d) 1000 W	2.	Assertion	: Television sig
8.	The total power content modulation, the power train	of an AM wave is 900 <i>W</i> . For 100% nsmitted by each side band is		Reason	: The ionospho
	(a) 50 W	(b) 100 <i>W</i>			frequencies gi [AllMS 2005
	(c) 150 W	(d) 200 W	3.	Assertion	: In high latitu
9.	The modulation index of a	n FM carrier having a carrier swing of 200			hanging dowr
	<i>kHz</i> and a modulating sign	al 10 <i>kHz</i> is		Reason	: The high ener
	(a) 5	(b) 10			deflected to p
	(c) 20	(d) 25	4	Assartion	· Short wave b
10.	A 500 Hz modulating volt	tage fed into an FM generator produces a	4.	////	waves to a lar
	constant but frequency is will be	raised to 6 kHz then the new deviation		Reason	: Short waves a
	(a) 4.5 <i>kHz</i>	(b) 54 <i>kHz</i>	5.	Assertion	: The electrica
	(c) 27 <i>kHz</i>	(d) 15 <i>kHz</i>			decreases wit
11.	The audio signal used	to modulate 60 sin $(2\pi \times 10^{\circ} t)$ is		Reason	: The high end
	$15 \sin 300\pi$. The depth	of modulation is			rays) coming
	(a) 50%	(b) 40%			the gases pre
	(c) 25%	(d) 15%			decreases wit
12.	The bit rate for a signal, where 16 quantisation level	which has a sampling rate of 8 <i>kHz</i> and ls have been used is	6.	Assertion	: The electrom can travel lor
	(a) 32000 <i>bits/sec</i>	(b) 16000 <i>bits/sec</i>			those of longe
	(c) 64000 <i>bits/sec</i>	(d) 72000 <i>bits/sec</i>		Reason	: Shorter the w
13.	An amplitude modulated saving in power if carrie	wave is modulated to 50%. What is the r as well as one of the side bands are	7.	Assertion	: The surface wave band an
	(a) 70%	(b) 65.4%		Reason	: The surface v
	(c) 94.4%	(d) 25.5%			antenna to re
14.	In AM, the centpercent mo	dulation is achieved when	8.	Assertion	: The television
	(a) Carrier amplitude = s	ignal amplitude		Reason	: The power tr
	(b) Carrier amplitude ≠	signal amplitude			inversely as the
	(c) Carrier frequency = si	ignal frequency	9.	Assertion	: Microwave pr
	(d) Carrier frequency ≠ s	ignal frequency		Reason	: Microwaves which have ve
			10.	Assertion	: Satellite is an
	R Assert	ion & Reason		Reason	: Satellite in po or continuor
		For AIIMS Aspirants	19	A	geostationary
				035611100	

Illy to mark the correct option out of

- are true and the reason is the correct
- are true but reason is not the correct
- is false.
- th are false.
- is true.
- are used as optical sources in optical on.
 - consume less energy.

[AIIMS 2005] gnals are received through sky-wave

- ere reflects electromagnetic waves of reater than a certain critical frequency. 5]
- de one sees colourful curtains of light from high altitudes.
 - rgy charged particles from the sun are polar regions by the magnetic field of [AIIMS 2003]
 - ands are used for transmission of radio ge distance.
 - re reflected by ionosphere

[AIIMS 1994]

- conductivity of earth's atmosphere h altitude. ergy particles (*i.e.* γ -rays and cosmic from outer space and entering our phere cause ionisation of the atoms of esent there and the pressure of gases h increase in altitude.
 - agnetic waves of shorter wavelength nger distances on earth's surface than er wavelengths.
 - vavelength, the larger is the velocity of ntion.
 - wave propagation is used for medium d for television broadcasting.
 - vaves travel directly from transmitting ceiver antenna through atmosphere.
 - n broadcasting becomes weaker with stance.
 - ransmitted from TV transmitter varies ne distance of the receiver
 - opagation is better than the sky wave
 - have frequencies 100 to 300 GHz, ery good directional properties.
 - ideal platform for remote sensing.
- olar orbit can provide global coverage is coverage of the fixed area in configuration.
- lating and demodulating device.

1630 Communication

	Reason	:	lt do	is cum	necessary ent.	for	exact	reproduction	of	а
12.	Assertion	:	A	dish	antenna is	highly	y direct	ional.		

Reason : This is because a dipole antenna is omni directional.

Answers Communication 1 2 d 3 4 5 b а С а 6 C 7 8 d 9 c 10 С с 11 12 13 15 а d b 14 с b 17 16 а C 18 d 19 С 20 b 21 d 23 24 d 25 22 d а d 26 b 27 d 28 29 d 30 b а 31 b 32 а 33 с 34 b 35 с 36 37 38 39 40 а С С а b 41 b 42 С 43 а 44 С 45 с 48 46 d 47 49 d 50 d d b 51 52 b а

Critical Thinking Questions

1	b	2	b	3	a	4	b	5	b
6	d	7	d	8	C	9	b	10	b
11	С	12	a	13	C	14	а		

	R	A٤	ssertion & Reason						
Read i	the assertion	and	For AIIMS Aspirants						
the op	otions given b	elow							
(a)	If both ass explanation	ertio 1 of i	n and reason are true and the reason is the correct the assertion.						
(b)	If both ass explanation	If both assertion and reason are true but reason is not the correct explanation of the assertion.							
(c) (d) (e)	If assertion If the asser If assertion	is ti tion is fa	rue but reason is false. and reason both are false. alse but reason is true.						
Ι.	Assertion	:	In pressure-temperature $(P T)$ phase diagram of water, the slope of the melting curve is found to be negative.						
	Reason	:	lce contracts on melting to water.						
			[A11MS 2005]						
2.	Assertion	:	For gas atom the number of degrees of freedom is 3.						
	Reason	:	$\frac{C_P}{C_V} = \gamma $ [AIIMS 2000]						
3.	Assertion	:	A gas have a unique value of specific heat.						
	Reason	:	Specific heat is defined as the amount of heat required to raise the temperature of unit mass of the substance through unit degree.						
4.	Assertion	:	A gas can be liquified at any temperature by increase of pressure alone.						
	Reason	:	On increasing pressure the temperature of gas decreases.						
5.	Assertion	:	Equal masses of helium and oxygen gases are given equal quantities of heat. There will be a greater rise in the temperature of helium compared to that of oxygen.						
	Reason	:	The molecular weight of oxygen is more than the molecular weight of helium.						
6.	Assertion	:	Absolute zero is the temperature corresponding to zero energy.						
	Reason	:	The temperature at which no molecular motion cease is called absolute zero temperature.						
7.	Assertion	:	The ratio of specific heat gas at constant pressure and specific heat at constant volume for a diatomic gas is more than that for a monatomic gas.						
	Reason	:	The molecules of a monatomic gas have more degree of freedom than those of a diatomic gas.						
8.	Assertion	:	At room temperature, water does not sublimate from water to steam.						
	Reason	:	The critical point of water is much above the room temperature.						
9.	Assertion	:	Specific heat of a gas at constant pressure (C) is greater than its specific heat at constant volume (C) .						
	Reason	:	At constant pressure, some heat is spent in expansion of the gas.						
10.	Assertion	:	The internal energy of a real gas is function of both, temperature and volume.						
	Reason	:	Internal kinetic energy depends on temperature and internal potential energy depends on volume.						

11.	Assertion	:	For an ideal gas, at constant temperature, the product of the pressure and volume is constant.
	Reason	:	The mean square velocity of the molecules is inversely proportional to mass. [AIIMS 1998]
12.	Assertion	:	If a gas container in motion is suddenly stopped, the temperature of the gas rises.
	Reason	:	The kinetic energy of ordered mechanical motion is converted in to the kinetic energy of random motion of gas molecules.
13.	Assertion	:	Internal energy of an ideal gas does not depend upon volume of the gas
	Reason	:	Internal energy of ideal gas depends on temperature of gas.
14.	Assertion	:	At low density, variables of gases <i>P</i> , <i>V</i> and <i>T</i> follows the equation $PV = \mu RT$
	Reason	:	At low density real gases are more closely to ideal gases
15.	Assertion	:	Maxwell speed distribution graph is symmetric about most probable speed
	Reason	:	<i>rms</i> speed of ideal gas, depends upon it's type (monoatomic, diatomic and polyatomic)

Answers

Gas Laws

1	c	2	b	3	а	4	b	5	с
6	С	7	с	8	С	9	а	10	d
11	а	12	d	13	b	14	d	15	C
16	b	17	с	18	а	19	а	20	d
21	С	22	b	23	а	24	а	25	а
26	а	27	С	28	а	29	С	30	С
31	d	32	C	33	а	34	d	35	а
36	а	37	С	38	а	39	а	40	С
41	d	42	b	43	а	44	С	45	а
46	а	47	d	48	d	49	с	50	d
51	С	52	C	53	С	54	b	55	d
56	С	57	С	58	а	59	d	60	а
61	d	62	C	63	d	64	d	65	C
66	b	67	а	68	d	69	d	70	С
71	С	72	C	73	d	74	b	75	C
76	С	77	с	78	а	79	с	80	С
81	b	82	а	83	С	84	b	85	C
86	d	87	с	88	C	89	b	90	а
91	b	92	а	93	а	94	d	95	а
96	C	97	а	98	а	99	c	100	C

Speed of Gas

1	b	2	a	3	c	4	с	5	a
6	а	7	d	8	d	9	а	10	а
11	С	12	d	13	b	14	С	15	а

16	a	17	а	18	d	19	c	20	а
21	d	22	C	23	c	24	a	25	d
26	а	27	b	28	d	29	а	30	b
31	с	32	b	33	d	34	С	35	а
36	b	37	а	38	С	39	d	40	а
41	d	42	а	43	с	44	b	45	b
46	С	47	C	48	b	49	b	50	а
51	b	52	b	53	b	54	d	55	а
56	а	57	C	58	b	59	d	60	а
61	с	62	b	63	b	64	d	65	а
66	b	67	b	68	а				

Degree of Freedom and Specific Heat

1	а	2	C	3	а	4	a	5	C
6	d	7	C	8	b	9	d	10	d
11	C	12	а	13	b	14	d	15	a
16	а	17	a	18	а	19	b	20	а
21	C	22	b	23	С	24	d	25	b
26	d	27	d	28	а	29	b	30	d
31	а	32	C	33	а	34	C	35	а
36	d	37	a	38	а	39	b	40	C
41	b	42	b	43	b	44	d	45	b
46	C	47	C	48	d				

Pressure and Energy

1	с	2	b	3	с	4	d	5	d
6	d	7	d	8	а	9	а	10	b
11	d	12	C	13	C	14	а	15	d
16	d	17	b	18	b	19	С	20	а
21	C	22	b	23	b	24	c	25	а
26	b	27	d	28	d	29	С	30	d
31	a	32	a	33	С	34	C	35	d
36	С	37	а	38	b	39	ac	40	d
41	d	42	b	43	a	44	а	45	а
46	b	47	a	48	a	49	d	50	а
51	С	52	C	53	d	54	С	55	b
56	С	57	d	58	d	59	С	60	С
61	a	62	C	63	С	64	а		

Critical Thinking Questions

1	d	2	d	3	а	4	b	5	a
6	acd	7	b	8	b	9	cd	10	b
11	b	12	bc	13	d	14	d	15	a
16	C	17	d	18	b	19	d	20	d

Kinetic Theory of Gases 627

21	а	22	с	23	b	24	а	25	с
26	С	27	С	28	С	29	d	30	d
31	d	32	b	33	a	34	a	35	d
36	C	37	C	38	d				

Graphical Questions

1	d	2	b	3	C	4	c	5	С
6	С	7	a	8	b	9	a	10	С
11	b	12	C	13	С	14	а	15	b
16	b	17	a	18	а	19	b	20	С
21	а	22	C	23	b	24	b	25	а

Assertion and Reason

1	a	2	b	3	е	4	d	5	b
6	е	7	d	8	а	9	а	10	а
11	b	12	а	13	b	14	а	15	d

Answers and Solutions

Gas Laws

1. (c) Using Charle's law $\frac{P_1}{P_2} = \frac{T_1}{T_2}$

or
$$P_2 = \frac{P_1 T_2}{T_1} = \frac{P(273 + 927)}{(273 + 27)} = 4P_2$$

2. (b)
$$\frac{V_1}{V_2} = \frac{T_1}{T_2} \Rightarrow T_2 = 2 \times T_1 = 2 \times (273 + 0) = 546K$$

$$\Rightarrow T_2 = 273 \times 2 = 546K \Rightarrow 273^{\circ}C \Rightarrow 273^{\circ}C$$

Kinetic Theory of Gases

- 1. An ideal gas has an initial pressure of 3 pressure units and an initial volume of 4 volume units. The table gives the final pressure and volume of the gas (in those same units) in four, processes. Which processes start and end on the same isotherm
 - (a) A
 - (b) *B*
 - (c) *C*
- 2. Suppose ideal gas equation V follows $6VP^3 \perp c\partial nstant$. Initial temperature and volume of the gas are T and V respectively. If gas
 - expand to 27V then its temperature will be come
 - (a) *T* (b) 9*T* (c) 27*T* (d) *T*/9
- **3.** One mole of a monoatomic ideal gas is mixed with one mole of a diatomic ideal gas. The molar specific heat of the mixture at constant volume is

(a)	8	(b)	$\frac{3}{2}R$
(c)	2 <i>R</i>	(d)	2.5 R

- **4.** When the temperature of a gas is raised from $27^{\circ}C$ to $90^{\circ}C$, the percentage increase in the *r.m.s.* velocity of the molecules will be
 - (a) 10% (b) 15%
 - (c) 20% (d) 17.5%
- A gas is enclosed in a closed pot. On keeping this pot in a train moving with high speed, the temperature of the gas
 - (a) Will increase
 - (b) Will decrease
 - (c) Will remain the same
 - $(d) \quad \text{Will change according to the nature of the gas}$
- **6.** Two spherical vessel of equal volume, are connected by *a n* arrow tube. The apparatus contains an ideal gas at one atmosphere and 300K. Now if one vessel is immersed in a bath of constant temperature 600K and the other in a bath of constant temperature 300K. Then the common pressure will be

- **7.** The *r.m.s.* velocity of a gas at a certain temperature is $\sqrt{2}$ times than that of the oxygen molecules at that temperature. The gas can be
 - (a) H_2 (b) He

(c)
$$CH_4$$
 (d) SO_2

8. At what temperature, the mean kinetic energy of O_2 will be the same for H_2 molecules at $-73^{\circ}C$

- **9.** The volume of a gas at pressure $21 \times 10^4 N / m^2$ and temperature $27^{\circ}C$ is 83 *litres.* If R = 8.3 J/mol/K, then the quantity of gas in *gmmole* will be
 - (a) 15 (b) 42
 - (c) 7 (d) 14
- 10. The pressure and temperature of an ideal gas in a closed vessel are

720 *kPa* and 40°*C* respectively. If $\frac{1}{4}$ th of the gas is released from the vessel and the temperature of the remaining gas is raised to

 $353^{\circ}C$, the final pressure of the gas is [EAMCET (Med.) 2000]

- (a) 1440 *kPa* (b) 1080 *kPa*
- (c) 720 *kPa* (d) 540 *kPa*
- An air bubble doubles its radius on raising from the bottom of water reservoir to be the surface of water in it. If the atmospheric pressure is equal to 10 m of water, the height of water in the reservoir is [EAMCET Med.1999]

(a)	10 <i>m</i>	
(b)	20 <i>m</i>	
(c)	70 <i>m</i>	
(d)	80 <i>m</i>	-

- If the *r.m.s.* velocity of a gas at a given temperature (Kelvin scale) is 300 *m/sec*. What will be the *r.m.s.* velocity of a gas having twice the molecular weight and half the temperature on Kelvin scale =
 - (a) 300 *m/sec* (b) 600 *m/sec*
- (c) 75 *m/sec* (d) 150 *m/sec*
- **13.** The ratio of two specific heats $\frac{C_P}{C_V}$ of *CO* is
 - (a) 1.33 (b) 1.40 (c) 1.29 (d) 1.66
- 14. The energy of a *gas/litre* is 300 joules, then its pressure will be
 - (a) $3 \times 10^5 N/m^2$ (b) $6 \times 10^5 N/m^2$

(c)
$$10^5 N/m^2$$
 (d) $2 \times 10^5 N/m^2$

15. Pressure versus temperature graphs of an ideal gas are as shown in figure. Choose the wrong statement

- (c) Density of gas is constant in graph (iii)
- (d) None of these

11.

12.

644 Kinetic Theory of Gases

16.	If pressure of $CO_2 \ \ (\text{real gas})$ in a container is given by		gas is <i>M</i> . The rise in temperature of the gas when the vessel is suddenly stopped is $(\gamma = C_{0} / C_{V})$
	$P = \frac{RT}{2V-b} - \frac{a}{4b^2}$ then mass of the gas in container is		(a) $\frac{Mv^2}{(\gamma - 1)}$ (b) $\frac{Mv^2(\gamma - 1)}{(\gamma - 1)}$
	(a) 11 gm (b) 22 gm		$2R(\gamma+1)$ 2R
	(c) 33 gm (d) 44 gm		(c) $\frac{Mv^2}{(d)}$ (d) $\frac{Mv^2}{(d)}$
17.	A cylinder of fixed capacity 44.8 <i>litre.</i> contains a monatomic gas at standard temperature and pressure. The amount of heat required to cylinder by $10^{\circ}C$ will be.	23.	(c) $2R(\gamma + 1)$ $2R(\gamma + 1)$ Air is filled at 60° <i>C</i> in a vessel of open mouth. The vessel is heated to a temperature <i>T</i> so that 1/4th part of air escapes. Assuming the
	(<i>R</i> = universal gas constant)		volume of the vessel remaining constant, the value of T is
	(a) B (b) $10B$		(a) $80^{\circ}C$ (b) $444^{\circ}C$
	(c) $20R$ (d) $30R$	24.	A partition divides a container having insulated walls into two
18.	A pressure cooker contains air at 1 atm and 30° C. If the safety value		compartments 1 and 11. the same gas fills the two compartments.
	of the cooler blows when the inside pressure ≥ 3 atm. then the		(a) 1:6
	maximum temperature of the air, inside the cooker can be		(b) $6:1$ <i>P</i> , <i>V</i> , <i>T</i> 2 <i>P</i> , 2 <i>V</i> , <i>T</i>
	(a) $90^{\circ}C$ (b) $636^{\circ}C$		(c) $4:1$
	(c) 909°C (d) 363°C		(d) 1:4
19.	One mole of an ideal monatomic gas requires 210 J heat to raise the temperature by 10 K , when heated at constant temperature. If the same gas is heated at constant volume to raise the temperature by 10 K then heat required is	25.	Considering the gases to be ideal, the value of $\gamma = \frac{C_P}{C_V}$ for a gaseous mixture consisting of = 3 moles of carbon dioxide and 2 moles of oxygen will be ($\gamma_{O_2} = 1.4$, $\gamma_{CO_2} = 1.3$)
	[Pb. PET 2000]		
	(a) 238 J (b) 126 J		[UPSEAT 2000; PD. PET 2004] (a) 137 (b) 134
	(c) 210 J (d) 350 J		(c) 1.55 (d) 1.63
20.	From the following $V-T$ diagram we can conclude	26.	A jar has a mixture of hydrogen and oxygen gas in the ratio of 1 : 5.
	$V \uparrow P_2$		The ratio of mean kinetic energies of hydrogen and oxygen
	(a) $P = P$		molecules is [CPMT 1977]
	(b) $P > P$		(a) 1:16 (b) 1:4
	(c) $P < P$		(c) 1:5 (d) 1:1
		27.	Graph between volume and temperature for a gas is shown in
	(d) None of these T_1 T_2 T		figure. If α = volume coefficient of gas = $\frac{1}{272}$ per °C, then what is
21.	A cylinder contains 10 kg of gas at pressure of $10^7~N/m^2$. The		2/3 the volume of gas at a temperature of 819°C
	quantity of gas taken out of the cylinder, if final pressure is		V(litre) ↑
	$2.5 \times 10^6 N/m^2$, will be (Temperature of gas is constant)		(a) $1 \times 10^{-3} m^3$
	[EAMCET 1998; Pb. PMT 1999; 2003; DPMT 199, 2003]		(b) $2 \times 10^{-3} m^3$ 0.75
	(a) 15.2 <i>kg</i> (b) 3.7 <i>kg</i>		(c) $3 \times 10^{-3} m^3$ 0.5
	(c) Zero (d) 7.5 kg		$(1) 4 10^{-3} 3 0.25$
22.	Certain amount of an ideal gas are contained in a closed vessel. The vessel is moving with a constant velocity v . The molecular mass of		(d) $4 \times 10^{\circ} m^{\circ}$ $t^{\circ}C$
	Λ Λ		
	Answers	; an	a Solutions
			(SEI -13)

3.

1. (c) For same isotherm ; $T \rightarrow \text{constant}$

$$\therefore P \propto \frac{1}{V} \Longrightarrow P_1 V_1 = P_2 V_2$$

2. (b)
$$VP^3 = \text{constant} = k \Rightarrow P = \frac{k}{V^{1/3}}$$

Also
$$PV = \mu RT \Rightarrow \frac{k}{V^{1/3}} \cdot V = \mu RT \Rightarrow V^{2/3} = \frac{\mu RT}{k}$$

Hence
$$\left(\frac{V_1}{V_2}\right)^{2/3} = \frac{T_1}{T_2} \Rightarrow \left(\frac{V}{27V}\right)^{2/3} = \frac{T}{T_2} \Rightarrow T_2 = 9 T$$

(c) $(C_V)_{mix} = \frac{\mu_1 C_{V_1} + \mu_2 C_{V_2}}{\mu_1 + \mu_2} = \frac{1 \times \frac{3}{2} R + 1 \times \frac{5}{2} R}{1 + 1} = 2R$
 $\left((C_V)_{mono} = \frac{3}{2} R, \ (C_V)_{di} = \frac{5}{2} R\right)$

4. (a)
$$v_{ms} = \sqrt{\frac{3RT}{M}} \Rightarrow \frac{v_2}{v_1} = \sqrt{\frac{T_2}{T_1}} = \sqrt{\frac{(273+90)}{(273+30)}} = 1.1$$

% increase $= \left(\frac{v_2}{v_1} - 1\right) \times 100 = 0.1 \times 100 = 10\%$

 (c) Temperature of the gas is concerned only with it's disordered motion. It is no way concerned with it's ordered motion.

6. (c)
$$\mu = \mu_1 + \mu_2$$

$$\frac{P(2V)}{RT_1} = \frac{P'v}{RT_1} + \frac{P'V}{RT_2} \Rightarrow \frac{2P}{RT_1} = \frac{P'}{R} \left[\frac{T_2 + T_1}{T_1 T_2} \right]$$

$$P' = \frac{2PT_2}{(T_1 + T_2)} = \frac{2 \times 1 \times 600}{(300 + 600)} = \frac{4}{3} atm$$
7. (c) $v_{ms} \propto \frac{1}{\sqrt{M}} \Rightarrow \frac{v_1}{v_2} = \sqrt{\frac{M_2}{M_1}}$

$$\therefore \frac{1}{\sqrt{2}} = \sqrt{\frac{M_2}{32}} \Rightarrow M_2 = 16. \text{ Hence the gas is } CH_4$$

8. (c) Mean kinetic energy of molecule depends upon temperature only. For O_2 it is same as that of H_2 at the same temperature of $-73^{\circ}C$.

9. (c)
$$PV = \mu RT \Rightarrow \mu = \frac{PV}{RT} = \frac{21 \times 10^4 \times 83 \times 10^{-3}}{8.3 \times 300} = 7$$

10. (b) $P_1 = 720 kpa$, $T_1 = 40^{\circ}C = 273 + 40 = 313K$

 $P \propto mT \Rightarrow \frac{P_2}{P_1} = \frac{m_2}{m_1} \frac{T_2}{T_1} = \frac{3}{4} \times \frac{626}{313} = 1.5$ $\Rightarrow P_2 = 1.5P_1 = 1.5 \times 720 = 1080 kPa$

11. (c) According to Boyle's law $(P_1V_1)_{\text{bottom}} = (P_2V_2)_{\text{top}}$ $(10+h) \times \frac{4}{3}\pi r_1^3 = 10 \times \frac{4}{3}\pi r_2^3$ but $r_2 = 2r_1$ $\therefore (10+h)r_1^3 = 10 \times 8r_1^3 \Rightarrow 10+h=80 \therefore h=70m$

12. (d)
$$v_{ms} = \sqrt{\frac{3RT}{M}} \Rightarrow v_{ms} \propto \sqrt{\frac{T}{M}}$$

 $\frac{v_2}{v_1} = \sqrt{\frac{M_1}{M_2} \times \frac{T_2}{T_1}} = \sqrt{\frac{1}{2} \times \frac{1}{2}} \Rightarrow v_2 = \frac{v_1}{2} = \frac{300}{2} = 150 \text{ m/sec}$
13. (bc) *Co* is diatomic gas, for diatomic gas

(bc) Co is diatomic gas, for diatomic gas
$$C_P = \frac{7}{2} R \text{ and } C_V = \frac{5}{2} R \implies \gamma_{di} = \frac{C_P}{C_V} = \frac{7R/2}{5R/2} = 1.4$$

14. (d) Energy =
$$300 J/litre = 300 \times 10^3 J/m^3$$

 $P = \frac{2}{3}E = \frac{2 \times 300 \times 10^3}{3} = 2 \times 10^5 N/m^2$
15. (c) $\rho = \frac{PM}{RT}$

Density ρ remains constant when P/T or volume remains constant.

In graph (i) Pressure is increasing at constant temperature hence volume is decreasing so density is increasing. Graphs (ii) and (iii) volume is increasing hence, density is decreasing. Note that volume would had been constant in case the straight line in graph (iii) had passed through origin.

16. (b) Vander wall's gas equation for μ mole of real gas

$$\left(P + \frac{\mu^2 a}{V^2}\right)\left(V - \mu b\right) = \mu RT \implies P = \frac{\mu RT}{V - \mu b} - \frac{\mu^2 a}{V^2}$$

on comparing the given equation with this standard equation

we get
$$\mu = \frac{1}{2}$$
. Hence $\mu = \frac{m}{M} \Longrightarrow$ mass of gas
 $m = \mu m = \frac{1}{2} \times 44 = 22gm.$

(d) As we know 1 mol of any ideal gas at STP occupies a volume of 22.4 litres.

Hence number of moles of gas $\mu = \frac{44.8}{22.4} = 2$

Since the volume of cylinder is fixed,

Hence $(\Delta Q)_V = \mu \omega \Delta T$

$$= 2 \times \frac{3}{2} R \times 10 = 30R \qquad \left(\because (C_V)_{mono} = \frac{3}{2} R \right)$$

18. (b) Since volume is constant,

17.

Hence
$$\frac{P_1}{P_2} = \frac{T_1}{T_2} \Rightarrow \frac{1}{3} = \frac{(273+30)}{T_2}$$

 $\Rightarrow T_2 = 909K = 636^{\circ}C$

19. (b) $(\Delta Q)_P = \mu C_P \Delta T$ and $(\Delta Q)_V = \mu C_V \Delta T$

$$\Rightarrow \frac{(\Delta Q)_V}{(\Delta Q)_P} = \frac{C_V}{C_P} = \frac{\frac{3}{2}R}{\frac{5}{2}R} = \frac{3}{5}$$
$$\left[\because (C_V)_{mono} = \frac{3}{2}R, (C_P)_{mono} = \frac{5}{2}R \right]$$
$$\Rightarrow (\Delta Q)_V = \frac{3}{5} \times (\Delta Q)_P = \frac{3}{5} \times 210 = 126 J$$

20. (b) In case of given graph, *V* and *T* are related as V = aT - b, where *a* and *b* are constants.

From ideal gas equation, $PV = \mu RT$

We find
$$P = \frac{\mu RT}{aT-b} = \frac{\mu R}{a-b/T}$$

Since T > T, therefore P < P.

21. (d)
$$PV = mrT \implies P \propto m$$
 [:: *V*, *r*, $T \rightarrow$ constant]

$$\Rightarrow \frac{m_1}{m_2} = \frac{P_1}{P_2} \Rightarrow \frac{10}{m_2} = \frac{10^7}{2.5 \times 10^6} \Rightarrow m = 2.5 \text{ kg}$$

Hence mass of the gas taken out of the cylinder

$$=10-2.5=7.5kg$$
.

22. (b) If *m* is the total mass of the gas then its kinetic energy = $\frac{1}{2}mv^2$

When the vessel is suddenly stopped then total kinetic energy will increase the temperature of the gas. Hence

$$\frac{1}{2}mv^{2} = \mu C_{v}\Delta T = \frac{m}{M}C_{v}\Delta T \qquad [\text{As } C_{v} = \frac{R}{\gamma - 1}]$$
$$\Rightarrow \frac{m}{M}\frac{R}{\gamma - 1}\Delta T = \frac{1}{2}mv^{2} \Rightarrow \Delta T = \frac{Mv^{2}(\gamma - 1)}{2R}.$$

23. (d) For open mouth vessel, pressure is constant. Volume is also given constant

Hence from
$$PV = \mu RT = \left(\frac{m}{M}\right) RT \Rightarrow T \propto \frac{1}{m} \Rightarrow \frac{T_1}{T_2} = \frac{m_2}{m_1}$$

 $\therefore \frac{1}{4}th$ part escapes, so remaining mass in the vessel

$$m_{2} = \frac{3}{4}m_{1} \Rightarrow \frac{(273+60)}{T} = \frac{374m_{1}}{m_{1}}$$

$$\Rightarrow T = 444K = 171^{\circ}C$$
24. (d) $n = \frac{PV}{kT}$ Now, $n' = \frac{(2P)(2V)}{kT} = 4\frac{PV}{kT} = 4n$ or $\frac{n}{n'} = \frac{1}{4}$.
25. (b) $\gamma_{\text{mix}} = \frac{\frac{\mu_{1}\gamma_{1}}{\gamma_{1}-1} + \frac{\mu_{2}\gamma_{2}}{\gamma_{2}-1}}{\frac{\mu_{1}}{\mu_{1}} + \frac{\mu_{2}}{\gamma_{2}}} = \frac{\frac{3 \times 1.3}{(1.3-1)} + \frac{2 \times 1.4}{(1.4-1)}}{\frac{3}{2} + \frac{2}{2}} = 1.33$

$$\frac{\mu_1}{\gamma_1 - 1} + \frac{\mu_2}{\gamma_2 - 1} \quad \frac{5}{(1.3 - 1)} + \frac{2}{(1.4 - 1)}$$

26. (d) In mixture gases will acquire thermal equilibrium (*i.e.*, same temperature) so their kinetic energies will also be same.

27. (b)
$$V_t = V_0(1 + \alpha t) = 0.5 \left(1 + \frac{1}{273} \times 819\right) = 2 \text{ htre} = 2 \times 10^{-3} \text{ m}^3$$