

Angle between two vectors DPP-01

1. Vector \vec{A} is shown in figure. The angle made by \vec{A} with positive X-axis is –

- (1) 30°
- (2) 90°
- (3) 210°
- (4) 60°

2. Vector \vec{A} and \vec{B} are shown in the figure. The angle between vector \vec{A} and \vec{B} is –

- (1) 60°
- (2) 90°
- (3) 30°
- (4) none of these

3. Which of the following is a scalar quantity?

- (1) Electric current
- (2) Electric field
- (3) Acceleration
- (4) Linear momentum

4. Which of the following is a vector?

- (1) Energy
- (2) Power
- (3) Force
- (4) Mass

5. In the adjoining vector diagram, what is the angle between \vec{A} and \vec{B} ? (Given: C =

B/2).

- (1) 30°
- (2) 60°
- (3) 120°
- (4) 150°

X

30°

6. Vectors \vec{A} and \vec{B} are shown in figure. Then angle between these two vectors is

- (1) α
- (2) β
- (3) γ
- (4) Can not find

7. Identify the vector quantity -

- (1) Work
- (2) Time
- (3) Heat
- (4) Angular momentum

8. Identify the scalar quantity -

- (1) Work
- (2) Force
- (3) Acceleration
- (4) Displacement

Answer Key										
Question	1	2	3	4	5	6	7	8		
Answer	3	2	1	3	4	2	4	1		

Angle is always calculated in AC direction

 \therefore Angle made with +ve x axis

 $\theta = 180^\circ + 30^\circ = 210^\circ$

1.

$$\theta = 120^\circ - 30^\circ = 90^\circ$$

3. (1)

Only electric current does not follow law of vector addition.

4. (3)

Only force follows law of vector addition.

5.

(4)

Direction of \vec{A} is along x Direction of \vec{B} is along z Angle b/w \vec{A} and \vec{B} = angle b/w x and z = β

7. (4)

Only angular momentum follows law of vector addition.

8. (1)

Only work does not follow law of vector addition.

6.

Addition of Vectors-Analytical Method DPP-02

A

-> В

Vectors \vec{A} and \vec{B} are shown in figure then diagram representing $\vec{A} + \vec{B}$ is 1.

2. The resultant of two forces, each P, acting at an angle θ is -

(1) 2P sin $\frac{\theta}{2}$ (2) 2Pcos $\frac{\theta}{2}$

(1)

(2)

(3)

(4)

- (3) 2P cos θ
- (4) $P\sqrt{2}$

3. Two forces each of magnitude F have a resultant of the same magnitude F. The angle between the two forces is -

- (1) 45°
- (2) 120°
- (3) 150°
- (4) 60°

4. There are two force vectors, one of 5N and other of 12N, at what angle the two vectors be added to get resultant vector of 17N, 7N and 13N respectively -

- (1) 0°, 180° and 90°
- (2) 0°, 90° and 180°
- (3) 0°, 90° and 90°
- (4) 180°, 0° and 90°

5. Two forces of magnitudes F and $\sqrt{3}$ F act at right angles to each other. Their resultant makes an angle β with F. The value of β is -

- (1) 30°
- (2) 45°
- (3) 60°
- (4) 135°

6. Given : $\vec{R} = \vec{A} + \vec{B}$ and R = A = B. The angle between \vec{A} and \vec{B} is–

- (1) 60°
- (2) 90°
- (3) 120°
- (4) 180°

7. Two forces, each numerically equal to 5 N, are acting as shown in the Fig. Then the resultant is-

- (1) 2.5 N
- (2) 5 N
- (3) 5√3 N
- (4) 10 N.

8. The maximum and minimum resultants of two forces are in the ratio 7 : 3. The ratio of the forces is –

- (1) 4:1
- (2) 5:2
- (3) $\sqrt{7}:\sqrt{3}$
- (4) 49:9

9. Forces F₁ and F₂ act on a point mass in two mutually perpendicular directions. The resultant force on the point mass will be -

- (1) $F_1 + F_2$
- (2) $F_1 F_2$
- (3) $\sqrt{F_1^2 + F_2^2}$
- (4) $F_1^2 + F_2^2$

10. A particle is simultaneously acted by two forces equal to 4N and 5N. The net force on the particle is:

- (1) 7 N
- (2) 5 N
- (3) 1 N
- (4) Between 1N and 9N

Answer	Key
--------	-----

Question	1	2	3	4	5	6	7	8	9	10
Answer	2	2	2	1	3	3	2	2	3	4

1. (2)

From triangle law of vector addition option (2) is correct.

2. (2)

$$\sqrt{P^2 + P^2 + 2P^2 \cos\theta}$$

= $\sqrt{2P^2(1 + \cos\theta)}$
= $P\sqrt{2 \times 2\cos^2\frac{\theta}{2}}$ $\therefore (1 + \cos\theta = 2\cos^2\frac{\theta}{2})$
= $2P\cos\frac{\theta}{2}$

3. (2)

 $F = \sqrt{F^2 + F^2 + 2F^2 \cos\theta}$ $F = F\sqrt{2 + 2\cos\theta}$ $1 = 2 + 2\cos\theta$ $\cos\theta = -\frac{1}{2}$ $\theta = 120^{\circ}$

4. (1)

Max. value of resultant of vector 5N and 12N = 17 N at an angle of 0°. Min. value of resultant of vector 5N and 12N = 7 N at an angle of 180°.

5. (3)

$$\tan \beta = \frac{B \sin \theta}{A + B \cos \theta}$$
$$= \frac{F\sqrt{3} \sin \theta}{F + F\sqrt{3} \cos \theta}$$
$$= \frac{\sqrt{3} \sin \theta}{1 + \sqrt{3} \cos \theta}$$
$$\tan \beta = \frac{\sqrt{3}}{1} \qquad (\theta = 90^{\circ})$$
$$\beta = 60^{\circ}$$

6. (3)

 $R = \sqrt{A^2 + B^2 + 2AB\cos\theta}$ given R = A = B $A^2 = A^2 + A^2 + 2A^2\cos\theta$ $\cos = -1/2$ $\theta = 120^{\circ}$ 7. (2) 120° Resultant = 5N 5 N

8. (2) F₁+F₂

 $\frac{F_1 + F_2}{F_1 - F_2} = \frac{7}{3}$ Applying componendo-dividendo rule $\Rightarrow \frac{F_1}{F_2} = \frac{10}{4} = \frac{5}{2}$

9. (3)

 $\sqrt{F_1^2 + F_2^2 + 2F_1F_2\cos90^\circ}$ [: vectors are perpendicular, $\therefore \theta = 90^\circ$] = $\sqrt{F_1^2 + F_2^2}$

10. (4)

·· Angle b/w vectors is not mentioned

 \div Resultant can be from minimum possible value to maximum possible value

Minimum possible value = 5N - 4N = 1N

Maximum possible value = 5N + 4N = 9N

Properties of Vector Addition & Polygon Law DPP-03

1. If $\vec{R} = \vec{a} + \vec{b}$ and $|\vec{R}| = 5$ units, $|\vec{a}| = 3$ units, $|\vec{b}| = 4$ units. Then angle between \vec{a} and \vec{b} is-

- (1) 0°
- (2) 180°
- (3) 270°
- (4) None of these

2. Two forces of 4 dyne and 3 dyne act upon a body. The resultant force on the body can only be -

- (1) More than 3 dynes
- (2) More than 4 dynes
- (3) Between 3 and 4 dynes
- (4) Between 1 and 7 dynes

3. The resultant of A and B makes an angle α with A and β with B -

- (1) $\alpha < \beta$
- (2) $\alpha < \beta$ if A < B
- (3) $\alpha < \beta$ if A > B
- (4) $\alpha < \beta$ if A = B

4. The resultant of two vectors of magnitudes 3 units and 4 units is $\sqrt{37}$. The angle between the two vectors

- is -
- (1) 0°
- (2) 30°
- (3) 60°
- (4) 90°

5. Two forces, each equal to F, act as shown in figure. Their resultant is -

- (1) $\frac{F}{2}$
- (2) F
- (3) $\sqrt{3}$ F
- (4) $\sqrt{5}$ F

6. In figure, E equals -

- (1) Ā
- (2) [→]B
- (3) $\vec{A} + \vec{B}$
- (4) $-(\overrightarrow{A} + \overrightarrow{B})$

7. A force of 6 kg and another of 8 kg can be applied together to produce the effect of a single force of-

- (1) 1kg
- (2) 11kg
- (3) 15 kg
- (4) 20 kg

8. Two vectors have magnitudes 3 unit and 4 unit respectively. What should be the angle between them if the magnitude of the resultant is -

- (i) 1 unit (ii) 5 unit (iii) 7 unit
- (1) 180°, 90°, 0°
- (2) 80°, 70°, 0°
- (3) 90°, 170°, 50°
- (4) None of these

9. The vector sum of the forces of 10 N and 6 N can be-

- (1) 2 N
- (2) 8 N
- (3) 18 N
- (4) 20 N

10. For the given figure, which option is correct -

- (1) $\vec{A} + \vec{B} = \vec{C}$
- (2) $\overrightarrow{B} + \overrightarrow{C} = \overrightarrow{A}$
- (3) $\vec{C} + \vec{A} = \vec{B}$
- (3) C + A = B
- (4) $\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C}$

 \vec{c} \vec{c} \vec{B} \vec{A}

11. Which pair of the following forces will never give resultant force of 2 N-

- (1) 2 N and 2 N
- (2) 1 N and 1 N
- (3) 1 N and 3 N
- (4) 1 N and 4 N

Answer Key	Answer	r Key
------------	--------	-------

Question	1	2	3	4	5	6	7	8	9	10	11
Answer	4	4	3	3	2	4	2	1	2	3	4

1. (4)

 $\begin{aligned} \left| \vec{R} \right| &= \sqrt{a^2 + b^2 + 2abcos\theta} \\ \Rightarrow 5 &= \sqrt{3^2 + 4^2 + 2 \times 3 \times 4 \times cos\theta} \\ \Rightarrow cos\theta &= 0 \\ \Rightarrow \theta &= 90^\circ \end{aligned}$

2. (4)

Minimum value of resultant force = 4 dyne - 3 dyne = 1 dyneMaximum value of resultant force = 4 dyne + 3 dyne = 7 dyne

3. (3)

Resultant makes smaller angle with vector of greater magnitude and vice-versa.

 $\label{eq:alpha} \begin{array}{l} \label{eq:alpha} \begin{subarray}{c} \end{subarray} \end{subarray} & \end{subarray} \\ \end{subarray} \end{subarray} \end{subarray} \end{subarray} \\ \end{subarray} \end{subarray} \end{subarray} \end{subarray} \\ \end{subarray} \end{subar$

4. (3)

 $\sqrt{37} = \sqrt{3^2 + 4^2 + 2 \times 3 \times 4 \times \cos\theta}$ $\Rightarrow \cos\theta = \frac{1}{2}$ $\Rightarrow \theta = 60^{\circ}$

5. (2)

$$\sqrt{F^2 + F^2 + 2F^2 \cos\theta}$$
$$= \sqrt{F^2 + F^2 + 2F^2 \left(-\frac{1}{2}\right)} \qquad \because \theta = 120^\circ$$
$$= F$$

6.

(4)

From triangle law $-\vec{E} = \vec{A} + \vec{B}$ $\therefore \vec{E} = -(\vec{A} + \vec{B})$

7. (2)

Possible range of resultant Minimum value = 8 kg - 6 kg = 2 kgMaximum value = 8 kg + 6 kg = 14 kgOnly (2) option lies within this range.

8. (1)

(i) Resultant of 3 unit and 4 unit = 1 unit \Rightarrow minimum possible value \therefore Angle b/w the vectors = 180°

- (ii) $5 = \sqrt{3^2 + 4^2 + 2 \times 3 \times 4 \times \cos\theta}$ $\Rightarrow \cos\theta = 0$ $\Rightarrow \theta = 90^{\circ}$
- (iii) Resultant of 3 unit and 4 unit = 7 unit \Rightarrow maximum possible value \therefore Angle b/w the vectors = 0°

9. (2)

Possible range of resultant Minimum value = 10 N - 6 N = 4 NMaximum value = 10 N + 6 N = 16 NOnly option (2) lies within this range.

10. (3)

From triangle law $\vec{B} = \vec{A} + \vec{C}$

11. (4)

If two vectors A and B are given then Range of their resultant can be written as $(A - B) \le R \le (A + B)$.

i.e. $R_{max} = A + B$ and $R_{min} = A - B$

If B = 1 and A = 4 then their resultant will lie in between 3N and 5N. It can never be 2N.

Vector Subtraction, Miscellaneous problems on Vector addition and Subtraction DPP-04

2. Figure shows the vectors \vec{a} , \vec{b} and \vec{c} where \vec{R} is the mid-point of PQ. Then which of the following is correct?

- (1) $\vec{a} + \vec{b} = 2\vec{c}$
- (2) $\vec{a} + \vec{b} = \vec{c}$
- (3) $\vec{a} \vec{b} = 2\vec{c}$
- (4) $\vec{a} \vec{b} = \vec{c}$

3. If the sum of two-unit vectors is a unit vector, then the magnitude of their difference is

- (1) $\sqrt{2}$
- (2) $\sqrt{3}$
- (3) $\frac{1}{\sqrt{2}}$
- (4) $\sqrt{5}$

4. In figure, $\vec{D} - \vec{C}$ equals -

- (1) _A
- (2) $\vec{-A}$
- (3) [→]B
- (∪) *⊇* →
- (4) −B

5. In figure, $\vec{E} + \vec{D} - \vec{C}$ equals -

- (1) $\stackrel{\rightarrow}{A}$
- (2) $2\vec{A} \vec{B}$
- (3) [→]B
- (4) $-\overrightarrow{B}$

6. A truck travelling due north with 20 m/s turns towards west and travels at the same speed. Then the change in velocity is

- (1) 40 m/s north-west
- (2) $20\sqrt{2}$ m/s north-west
- (3) 40 m/s south-west
- (4) $20\sqrt{2}$ m/s south-west

7. Vector \vec{c} in figure represents –

- (1) $\vec{a} + \vec{b}$
- (2) $\vec{a} \vec{b}$
- (3) $\vec{b} \vec{a}$
- (4) $-\vec{a} \vec{b}$

	Answer Key									
Question	1	2	3	4	5	6	7			
Answer	4	1	2	1	4	4	4			

(1)

2.

From triangle law in $\triangle OPR$ $\vec{a} + \vec{PR} = \vec{c} \Rightarrow \vec{PR} = \vec{c} - \vec{a}$ From triangle law in $\triangle ORQ$ $\vec{c} + \vec{RQ} = \vec{b} \Rightarrow \vec{RQ} = \vec{b} - \vec{c}$ $\vec{c} - \vec{a} = \vec{b} - \vec{c}$ [:: $\vec{PR} = \vec{RQ}$, as R is midpoint of PQ] $2\vec{c} = \vec{a} + \vec{b}$

3. (2)

 $1 = \sqrt{1^{2} + 1^{2} + 2\cos\theta}$ $\Rightarrow \cos\theta = -\frac{1}{2}$ Now magnitude of difference of vectors = $\sqrt{1^{2} + 1^{2} - 2\cos\theta}$ $\Rightarrow \sqrt{1^{2} + 1^{2} - 2\left(-\frac{1}{2}\right)}$ $\Rightarrow \sqrt{3}$

From triangle law of vector addition \vec{r}

 $\vec{D} = \vec{A} + \vec{C}$ $\Rightarrow \vec{D} - \vec{C} = \vec{A}$

5. (4)

From triangle law of vector addition $\vec{D} = \vec{A} + \vec{C}$ $\Rightarrow \vec{D} - \vec{C} = \vec{A}$ From triangle law of vector addition $\vec{E} + \vec{B} = -\vec{A}$ $\Rightarrow \vec{E} = -\vec{A} - \vec{B}$ Now, $\vec{E} + \vec{D} - \vec{C}$ $\Rightarrow -\vec{A} - \vec{B} + \vec{A} = -\vec{B}$

6. (4)

Initial velocity, $\vec{u} = 20\hat{j}$ Final velocity, $\vec{v} = -20\hat{i}$ Change in velocity = $\vec{v} - \vec{u} = -20\hat{i} - 20\hat{j}$ North 20 \hat{j} West $-20\hat{i}$ 45° $20\hat{j}$ $-20\hat{j}$

7. (4)

From triangle law of vector addition $-\vec{c} = \vec{a} + \vec{b}$ $\Rightarrow \vec{c} = -(\vec{a} + \vec{b})$ $\Rightarrow \vec{c} = -\vec{a} - \vec{b}$

Resolution of Vectors in 3D-in space DPP-05

1. A vector \vec{A} is rotated through an angle 2π , the magnitude of new vector is -

- (1) 2A
- (2) A
- (3) A/2
- (4) none of these

2. A child pulls a box with a force of 200N at an angle of 30° above the horizontal. Then the horizontal and vertical components of the force are -

- (1) 173 N, 100N
- (2) 86.6N, 100N
- (3) 100N, 86.6N
- (4) 100N, 0N

3. The component of a vector is -

- (1) Its less than or equal to its magnitude
- (2) Always greater than its magnitude
- (3) Always equal to its magnitude
- (4) None of these

4. A displacement vector, at an angle of 30° with y-axis has an x-component of 10 units. Then the magnitude of the vector is -

- (1) 5.0
- (2) 10
- (3) 11.5
- (4) 20

5. A displacement vector \vec{r} has magnitude of 25 m and makes an angle of 210° with the x-axis. Then its y-component is -

- (1) 21.7 m
- (2) -21.7 m
- (3) 12.5 m
- (4) -12.5 m

6. If a unit vector is represented by $0.5\hat{i} + 0.8\hat{j} + c\hat{k}$, then the value of 'c' is -

- (1) 1
- (2) √<u>0.11</u>
- (3) $\sqrt{0.01}$
- (4) √0.39

7. The magnitude of $3\hat{i} + 2\hat{j} + \hat{k}$ is -

- (1) $\sqrt{5}$
- (2) $\sqrt{6}$
- (3) $\sqrt{14}$
- (4) $\sqrt{24}$

Answer Key									
Question	1	2	3	4	5	6	7		
Answer	2	1	1	4	4	2	3		

1. Rotating a vector by angle (θ) does not change is magnitude.

2.

So, Horizontal component Fcos30° \Rightarrow 200 $\times \frac{\sqrt{3}}{2} \Rightarrow$ 173 N Vertical component Fsin30° \Rightarrow 200 $\times \frac{1}{2} \Rightarrow$ 100 N

- **3.** Magnitude of components are $F\cos\theta \& F\sin\theta$, as $\cos\theta < 1 \& \sin\theta < 1$
 - ∴ Magnitude of components < F

4.

6.
$$(0.5)^2 + (0.8)^2 + C^2 = 1$$

 $C^2 = 0.11$
 $C = \sqrt{0.11}$

7.
$$|\vec{r}| = \sqrt{x^2 + y^2 + z^2}$$

 $|\vec{r}| = \sqrt{3^2 + 2^2 + 1^2}$
 $|\vec{r}| = \sqrt{14}$

Multiplication of Vectors by Scalar and Dot product DPP-06

A force $\vec{F} = 3\hat{i} - 2\hat{j} + 4\hat{k}$ displaces a body from a point A(8, -2, -3) to the point B(-2, 0, 6). The work 1. done is

- (1) 1 unit
- (2) 2 units
- (3) 3 units
- (4) 4 units
- If $\vec{P} = 4\hat{i} 2\hat{j} + 6\hat{k}$ and $\vec{Q} = \hat{i} 2\hat{j} 3\hat{k}$, then the angle which $\vec{P} + \vec{Q}$ makes with x-axis is 2.
 - (1) $\cos^{-1}\left(\frac{3}{\sqrt{50}}\right)$
 - (2) $\cos^{-1}\left(\frac{4}{\sqrt{50}}\right)$
 - (3) $\cos^{-1}\left(\frac{5}{\sqrt{50}}\right)$
 - (4) $\cos^{-1}\left(\frac{12}{\sqrt{50}}\right)$

3. Angle that the vector $A = 2\hat{i} + 3\hat{j}$ makes with y-axis is –

- (1) $\tan^{-1} 3/2$
- (2) $\tan^{-1} 2/3$
- (3) $\sin^{-1}\frac{2}{3}$
- (4) $\cos^{-1} 3/2$

The angle between the two vectors $\vec{A} = 3\hat{i} + 4\hat{j} + 5\hat{k}$ and $\vec{B} = 3\hat{i} + 4\hat{j} - 5\hat{k}$ will be – 4.

- (1) 90°
- (2) 0°
- (3) 60°
- (4) 45°

If a vector $(2\hat{i} + 3\hat{j} + 8\hat{k})$ is perpendicular to the vector $-4\hat{i} + 4\hat{j} + \alpha\hat{k}$, then the value of α is-5.

- (1) -1
- (2) $\frac{1}{2}$
- (3) $\frac{-1}{2}$
- (4) 1

Answer Key									
Question	1	2	3	4	5				
Answer	2	3	2	1	3				

1.
$$W = \vec{F} \cdot \Delta \vec{S}$$
$$\Delta \vec{S} = -10\hat{i} + 2\hat{j} + 9\hat{k}$$
$$W = (3\hat{i} - 2\hat{j} + 4\hat{k}) \cdot (-10\hat{i} + 2\hat{j} + 9\hat{k})$$
$$\therefore W = 2 \text{ units}$$

2.
$$\vec{A} = \vec{P} + \vec{Q} = 5\hat{i} - 4\hat{j} + 3\hat{k}$$

 $\vec{B} = \hat{i}$
 $\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta$
 $5 = \sqrt{50} \cos \theta$
 $\theta = \cos^{-1} \left(\frac{5}{\sqrt{50}}\right)$

3.
$$\vec{A} = 2\hat{i} + 3\hat{j}, \vec{B} = \hat{j}$$

 $\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta$
 $3 = \sqrt{13} \cos \theta \quad \cos \theta = \frac{3}{\sqrt{13}}$
 $\therefore \tan \theta = \frac{2}{3}$

$$\therefore \tan \theta = \frac{2}{3}$$
4. $\vec{A} = 3\hat{i} + 4\hat{j} + 5\hat{k}, \vec{B} = 3\hat{i} + 4\hat{j} - 5\hat{k}$
 $\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta$
 $0 = AB \cos \theta$
 $\therefore \theta = 90^{\circ}$

5.
$$\vec{a} \cdot \vec{b} = 0$$
 if $\vec{a} \perp \vec{b}$
 $(2\hat{i} + 3\hat{j} + 8\hat{k}) \cdot (-4\hat{i} + 4\hat{j} + \alpha\hat{k}) = 0$
 $\Rightarrow -8 + 12 + 8\alpha = 0 \Rightarrow \alpha = \frac{-1}{2}$

Application of Dot Product DPP-07

A body constrained to move in y direction is subjected to a force given by $\vec{F} = (-2\hat{i} + 15\hat{j} + 6\hat{k})$ N. What 1. is the work done by this force in moving the body through a distance of 10 m along positive y-axis?

- (1) 190 J
- (2) 160 J
- (3) 150 J
- (4) 200 J

An engine exerts a force $\vec{F} = (20\hat{i} - 3\hat{j} + 5\hat{k})N$ and moves with velocity $\vec{v} = (6\hat{i} + 20\hat{j} - 3\hat{k})$ m/s. The 2. power of the engine (in watt) is -

- (1) 45
- (2) 75
- (3) 20
- (4) 10

If $\vec{A} = 2\hat{i} + 3\hat{j} - \hat{k}$ and $\vec{B} = -\hat{i} + 3\hat{j} + 4\hat{k}$, then projection of \vec{A} on \vec{B} will be -3.

- (1) $\frac{3}{\sqrt{13}}$ (2) $\frac{3}{\sqrt{26}}$ (3) $\sqrt{\frac{3}{26}}$ (4) $\sqrt{\frac{3}{13}}$

The resultant of two forces, one double the other in magnitude, is perpendicular to the smaller of the 4. two forces. The angle between the two forces is -

- (1) 120°
- (2) 60°
- (3) 90°
- (4) 150°

The angle between the vectors $(\vec{i} + \vec{j})$ and $(\vec{j} + \vec{k})$ is -5.

- (1) 90°
- (2) 180°
- (3) 0°
- (4) 60°

There are two vectors $\vec{A} = 2\hat{i} + \hat{j} + \hat{k}$ and $\vec{B} = \hat{i} + 2\hat{j} - 2\hat{k}$ then component of \vec{A} along \vec{B} is -6.

- (1) $\frac{2}{9}(\hat{i}+2\hat{j}-2\hat{k})$
- (2) $\frac{2}{2}(2\hat{i} + \hat{j} + \hat{k})$
- (3) $\frac{2}{2}(\hat{i}+2\hat{j}-2\hat{k})$
- (4) None of these

Work is -7.

- (1) $\vec{F} \times \vec{S}$
- (2) $-\vec{S} \times \vec{F}$ (3) $\vec{F} \cdot \vec{S}$

- (4) $-\overrightarrow{F}.\overrightarrow{S}$
- The velocity of a particle is $\vec{v} = 6\hat{i} + 2\hat{j} 2\hat{k}$. The component of the velocity of a particle parallel to 8. vector $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ in vector form is-
 - (1) $6\hat{i} + 2\hat{j} + 2\hat{k}$
 - (2) $2\hat{i} + 2\hat{j} + 2\hat{k}$
 - (3) $\hat{i}+\hat{j}+\hat{k}$
 - (4) $6\hat{i} + 2\hat{j} 2\hat{k}$

Answer Key									
Question	1	2	3	4	5	6	7	8	
Answer	3	1	2	1	4	1	3	2	

1. (3)

 $W = \vec{F} \cdot \Delta \vec{S}$ $\Delta \vec{S} = 10\hat{J}$ $W = (-2\hat{i} + 15\hat{j} + 6\hat{k}) \cdot (10\hat{j})$ $\therefore W = 150J$

 $: P = \vec{F} \cdot \vec{v} = (20\hat{i} - 3\hat{j} + 5\hat{k}) \cdot (6\hat{i} + 20\hat{j} - 3\hat{k})$ = 120 - 60 - 15 = 45 W

3. (2)

Projection of \vec{A} on $\vec{B} = \frac{\vec{A}.\vec{B}}{B} = \frac{3}{\sqrt{26}}$

4. (1)

 $\vec{P} \cdot (\vec{P} + \vec{Q}) = 0$ $P^{2} + PQ\cos\theta = 0 \text{ and } P = \frac{Q}{2}$ $\therefore P^{2} + 2P^{2}\cos\theta = 0$ or $\cos\theta = -\frac{1}{2} \Rightarrow \theta = 120^{\circ}$

5. (4)

$$\cos \theta = \frac{(1+j).(j+k)}{\sqrt{2}\sqrt{2}}$$

or $\cos \theta = \frac{1}{2} \Rightarrow \theta = 60^{\circ}$

6. (1)

Component of \vec{A} along $\vec{B} = \frac{\vec{A} \cdot \vec{B}}{|\vec{B}|} \cdot \hat{B}$

7. (3)

As we know that, $W = \vec{F} \cdot \vec{S}$

8. (2)

Component of \vec{v} along $\vec{a} = (\vec{v}, \hat{a})$ $= (6\hat{i} + 2\hat{j} - 2\hat{k}) \cdot \frac{(\hat{i}+\hat{j}+\hat{k})}{\sqrt{3}}$ $= \frac{6+2-2}{\sqrt{3}} = \frac{6}{\sqrt{3}} = 2\sqrt{3}$ In vector form = $(2\sqrt{3})\hat{a}$ $= 2\sqrt{3}\frac{(\hat{i}+\hat{j}+\hat{k})}{\sqrt{3}}$ $= 2(\hat{i}+\hat{j}+\hat{k})$

Vector Product DPP-08

What is the value of linear velocity, if $\vec{\omega} = 3\hat{i} - 4\hat{j} + \hat{k}$ and $\vec{r} = 5\hat{i} - 6\hat{j} + 6\hat{k}$? 1.

- (1) $4\hat{i} 13\hat{j} + 6\hat{k}$
- (2) $6\hat{i} 2\hat{j} + 3\hat{k}$
- (3) $6\hat{i} 2\hat{j} + 8\hat{k}c$
- (4) $-18\hat{i} 13\hat{j} + 2\hat{k}$

2. The value of a unit vector in the direction of vector $A = 5\hat{i} - 12\hat{j}$, is

- (1) î
- (2) ĵ
- (3) $(\hat{i} + \hat{j})/13$
- (4) $(5\hat{i} 12\hat{j})/13$

3. A particle is moving on a circular path of radius r with speed v. The change in velocity when the particle moves from P to Q is $(\angle POQ = 40^{\circ})$

- (1) $2v\cos 40^{\circ}$
- (2) 2v sin 40°
- (3) 2v sin 20°
- (4) 2v cos 20°

Which of the following is the unit vector perpendicular to \vec{A} and \vec{B} 4.

- $\widehat{A} \times \widehat{B}$
- Â×Â
- $\frac{A \wedge E}{AB \cos \theta}$ (2)
- $\frac{\overrightarrow{A}\times\overrightarrow{B}}{AB\sin\theta}$ (3)
- $\frac{\overrightarrow{A}\times\overrightarrow{B}}{AB\cos\theta}$ (4)

5. If a particle of mass m is moving with constant velocity v parallel to x-axis in x-y plane as shown in fig. Its angular momentum with respect to origin at any time t will be

- (1) mvbk
- (2) $-mvb\hat{k}$
- (3) mvbî
- (4) mvî

- 6. The position vectors of radius are $2\hat{i} + \hat{j} + \hat{k}$ and $2\hat{i} 3\hat{j} + \hat{k}$ while those of linear momentum are $2\hat{i} + 3\hat{j} \hat{k}$. Then the angular momentum is
 - (1) $2\hat{i} 4\hat{k}$
 - (2) $4\hat{i} + 8\hat{k}$
 - (3) $2\hat{i} 4\hat{j} + 2\hat{k}$
 - (4) $4\hat{i} 8\hat{k}$

7. If a vector \vec{A} is parallel to another vector \vec{B} then the resultant of the vector $\vec{A} \times \vec{B}$ will be equal to

- (1) A
- (3) Zero vector
- (4) Zero

8. The linear velocity of a rotating body is given by $\vec{v} = \vec{\omega} \times \vec{r}$, where $\vec{\omega}$ is the angular velocity and \vec{r} is the radius vector. The angular velocity of a body $\vec{\omega} = \hat{\imath} - 2\hat{\jmath} + 2\hat{k}$ and the radius vector $\vec{r} = 4\hat{\jmath} - 3\hat{k}$, then $|\vec{v}|$ is

- (1) $\sqrt{29}$ units
- (2) $\sqrt{31}$ units
- (3) $\sqrt{37}$ units
- (4) $\sqrt{41}$ units

9. A vector \vec{A} of magnitude $5\sqrt{3}$ units, another vector \vec{B} of magnitude 10 units are inclined to each other at an angle of 30°. The magnitude of the vector product of the two vectors is –

- (1) 1 units
- (2) $5\sqrt{3}$ units
- (3) 75 units
- (4) $25\sqrt{3}$ units

Answer Key											
Question	1	2	3	4	5	6	7	8	9		
Answer	4	4	3	3	2	2	3	1	4		

1. (4)

As we know that

$$\vec{V} = \vec{\omega} \times \vec{r}$$
$$\vec{V} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -4 & 1 \\ 5 & -6 & 6 \end{vmatrix}$$
$$\therefore \vec{V} = -18\hat{i} - 13\hat{j} + 2\hat{k}$$

2. (4)

 $\vec{A} = 5\hat{i} + 12\hat{j}, |\vec{A}| = \sqrt{5^2 + (-12)^2} = \sqrt{25 + 144} = 13$ Unit vector $\hat{A} = \frac{\vec{A}}{|\vec{A}|} = \frac{5\hat{i} - 12\hat{j}}{13}$

3. (3)

 $\Delta v = 2v \sin\left(\frac{\theta}{2}\right) = 2v \sin 20^{\circ}$

4. (3)

Vector perpendicular to A and B, $\vec{A} \times \vec{B} = AB \sin \theta \ \hat{n}$

 \therefore Unit vector perpendicular to A and B

$$\hat{\mathbf{n}} = \frac{\vec{\mathbf{A}} \times \vec{\mathbf{B}}}{AB \sin \theta}$$

5. (2)

We know that, Angular momentum

 $\overrightarrow{L}=\overrightarrow{r}\times\overrightarrow{p}$ in terms of component becomes

$$\vec{L} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x & y & z \\ p_x & p_y & p_z \end{vmatrix}$$

As motion is in x-y plane (z = 0 and $P_z = 0$), so $\vec{L} = \vec{k} (xp_y - yp_x)$

Here x = vt, y = b, $p_x = mv$ and $p_y = 0$

$$\therefore \vec{L} = \vec{k} [vt \times 0 - bmv] = -mvb\hat{k}$$

6. (2)

Radius vector $\vec{r} = \vec{r_2} - \vec{r_1} = (2\hat{i} - 3\hat{j} + \hat{k}) - (2\hat{i} + \hat{j} + \hat{k})$ $\therefore \quad \vec{r} = -4\hat{j}$ Linear momentum $\vec{p} = 2\hat{i} + 3\hat{j} - \hat{k}$ $\vec{L} = \vec{r} \times \vec{p} = (-4\hat{j}) \times (2\hat{i} + 3\hat{j} - \hat{k})$ $= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & -4 & 0 \\ 2 & 3 & -1 \end{vmatrix} = 4\hat{i} + 8\hat{k}$

7. (3)

 $\vec{A} \times \vec{B} = AB \sin \theta \hat{n}$ for parallel vectors $\theta = 0^{\circ}$ or 180° , $\sin \theta = 0$ $\therefore \vec{A} \times \vec{B} = \hat{0}$

8. (1)

$$\begin{split} \vec{V} &= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 2 \\ 0 & 4 & -3 \end{vmatrix} \Rightarrow \vec{V} = -2\hat{i} + 3\hat{j} + 4\hat{k} \\ |\vec{V}| &= \sqrt{(-2)^2 + (3)^2 + (4)^2} \\ |\vec{V}| &= \sqrt{29} \end{split}$$

9. (4)

$$|\vec{A} \times \vec{B}| = |\vec{A}| |\vec{B}| \sin\theta$$
$$|\vec{A} \times \vec{B}| = 5\sqrt{3} \times 10 \times \sin 30^{\circ}$$
$$= 25 \sqrt{3} \text{ units}$$

Application of Vector Product DPP-09

If $\vec{A} \times \vec{B} = \vec{B} \times \vec{A}$, then the angle between A and B is – 1.

- (1) π
- (2) π/3
- (3) π/2
- (4) π/4

The vectors from origin to the points A and B are $\vec{A} = 3\hat{i} - 6\hat{j} + 2\hat{k}$ and $\vec{B} = 2\hat{i} + \hat{j} - 2\hat{k}$ respectively. The 2. area of the triangle OAB will be -

- (1) $\frac{5}{2}\sqrt{17}$ sq. unit
- (2) $\frac{2}{5}\sqrt{17}$ sq. unit
- (3) $\frac{3}{5}\sqrt{17}$ sq. unit
- (4) $\frac{5}{2}\sqrt{17}$ sq. unit

The area of the triangle whose vertices are A (1, -1, 2), B(2, 1, -1) and C (3, -1, 2) is -3.

- (1) 26
- (2) $7\sqrt{13}$
- (3) $\sqrt{13}$
- (4) 8

A vector $\vec{F_1}$ is along the positive x-axis. If its vector product with another vector $\vec{F_2}$ is zero then $\vec{F_2}$ may be -4.

- (1) 4ĵ
- (2) $-(\hat{1} + \hat{j})$
- (3) $(\hat{i} + \hat{k})$
- $(4) 4\hat{1}$

Find out the unit vector perpendicular to both vectors $\hat{i} - \hat{j} + \hat{k}$ and $\hat{i} + \hat{j} + \hat{k}$. 5.

- (1) $\hat{1} + \hat{1}$
- (2) $\frac{-\hat{i}+\hat{k}}{\sqrt{2}}$
- (3) $\hat{j} + \hat{k}$
- (4) $\frac{\hat{1}+\hat{j}}{\sqrt{2}}$

The adjacent sides of a parallelogram are represented by co-initial vectors $2\hat{i} + 3\hat{j}$ and $\hat{i} + 4\hat{j}$. The area of 6. the parallelogram is-

- (1) 5 units along z-axis
- (2) 5 units in x-y plane
- (3) 3 units in x-z plane
- (4) 3 units in y-z plane

7. The torque of the force $\vec{F} = (2\hat{i} - 3\hat{j} + 4\hat{k})N$ acting at the point $\vec{r} = (3\hat{i} + 2\hat{j} + 3\hat{k})$ m about the origin be-

- (1) $6\hat{i} 6\hat{j} + 12\hat{k}$
- (2) $17\hat{i} 6\hat{j} 13\hat{k}$
- (3) $-6\hat{i} + 6\hat{j} 12\hat{k}$
- (4) $-17\hat{i} + 6\hat{j} + 13\hat{k}$

8. If $\vec{A} = \hat{\imath} + 2\hat{\jmath} + 3\hat{k}$, $\vec{B} = -\hat{\imath} + \hat{\jmath} + 4\hat{k}$ and $\vec{C} = 3\hat{\imath} - 3\hat{\jmath} - 12\hat{k}$, then find the angle between the vectors $(\vec{A} + \vec{B} + \vec{C})$ and $(\vec{A} \times \vec{B})$ in degrees.

- (1) 90°
- (2) 45°
- (3) 0°
- (4) 180°

Answer Key	
------------	--

Question	1	2	3	4	5	6	7	8
Answer	1	1	3	4	2	1	2	1

1. (1)

Using property of vector product As we know that $(\vec{A} \times \vec{B}) = -(\vec{B} \times \vec{A})$ As per given in the question $\vec{A} \times \vec{B} = \vec{B} \times \vec{A}$ $(\vec{A} \times \vec{B}) = -(\vec{A} \times \vec{B})$ $2(\vec{A} \times \vec{B}) = 0$ $\therefore \sin \theta = 0$ $\therefore \theta = \pi$

2. (1)

Area of
$$\Delta = \frac{1}{2} |\overrightarrow{OA} \times \overrightarrow{OB}|$$

= $\frac{1}{2} \begin{vmatrix} \hat{1} & \hat{1} & \hat{k} \\ 3 & -6 & 2 \\ 2 & 1 & -2 \end{vmatrix}$
= $\frac{1}{2} |(10\hat{1} + 10\hat{1} + 15\hat{k})| = \frac{1}{2}\sqrt{425} = \frac{5}{2}\sqrt{17}$

3.

(3)

$$\overrightarrow{AB} = \hat{i} + 2\hat{j} - 3\hat{k}$$

$$\overrightarrow{BC} = \hat{i} - 2\hat{j} + 3\hat{k}$$

$$\overrightarrow{AB} \times \overrightarrow{BC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -3 \\ 1 & -2 & 3 \end{vmatrix} = -6\hat{j} - 4\hat{k}$$

$$|\overrightarrow{AB} \times \overrightarrow{BC}| = \sqrt{(-6)^2 + (-4)^2} = \sqrt{52} \text{ unit}$$

$$\therefore \text{ Area of } \Delta = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{BC}| = \sqrt{13} \text{ unit}$$

4. (4)

$$F_1 = F_1 \hat{i} \text{ and } F_1 \hat{i} \times (-4\hat{i}) = 0$$

5. (2)

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = -2\hat{i} + 2\hat{k}$$

here $\vec{a} \times \vec{b}$ is perpendicular to both \vec{a} and \vec{b} unit vector along $\vec{a} \times \vec{b} = \frac{-2\hat{i}+2\hat{k}}{\sqrt{(-2)^2+2^2}}$ $= \frac{-\hat{i}+\hat{k}}{\sqrt{2}}$

(1)
$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ 2 & 3 & 0 \\ 1 & 4 & 0 \end{vmatrix} = \hat{k} (8 - 3) = 5\hat{k}$$

7. (2)

6.

$$\vec{\tau} = \vec{r} \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 2 & 3 \\ 2 & -3 & 4 \end{vmatrix}$$

= 17 $\hat{i} - 6\hat{j} - 13\hat{k}$

8. (1)

Let $\vec{P} = \vec{A} + \vec{B} + \vec{C} = 3\hat{i} - 5\hat{k}$ and $\vec{Q} = \vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ -1 & 1 & 4 \end{vmatrix} = 5\hat{i} - 7\hat{j} + 3\hat{k}$ Angle between $\vec{P} \otimes \vec{Q}$ is given by $\cos\theta = \frac{\vec{P} \cdot \vec{Q}}{PQ} = \frac{15 - 15}{PQ} = 0 \Rightarrow \theta = 90^{\circ}$