20.BINOMIAL EXPONENTIAL & LOGARITHMIC SERIES

1. **BINOMIAL THEOREM**: The formula by which any positive integral power of a binomial (iii) expression can be expanded in the form of a series is known as **BINOMIAL THEOREM**. If $x, y \in R$ and $n \in N$, then ;

$$(x + y)^{n} = {}^{n}C_{0} x^{n} + {}^{n}C_{1} x^{n-1} y + {}^{n}C_{2} x^{n-2}y^{2} + \dots + {}^{n}C_{r} x^{n-r}y^{r} + \dots + {}^{n}C_{n}y^{n} = \sum_{r=0}^{n} {}^{n}C_{r} x^{n-r}y^{r}.$$

This theorem can be proved by Induction .www.MathsBySuhag.com, www.TekoClasses.com **OBSERVATIONS** :(i) The number of terms in the expansion is (n + 1) i.e. one or more than the index .(ii) The sum of the indices of x & y in each term is n (iii) The binomial coefficients of the terms ${}^{n}C_{0}$, ${}^{n}C_{1}$ equidistant from the beginning and the end are equal.

IMPORTANT TERMS IN THE BINOMIAL EXPANSION ARE : 2.

- (i) General term (ii) Middle term(iii) Term independent of x & x(iv) Numerically greatest term
- The general term or the $(r + 1)^{th}$ term in the expansion of $(x + y)^n$ is given by; (i) $T_{r+1} = {}^{n}C_{r} x^{n-r} \cdot y^{r}$
- (ii) The middle term(s) is the expansion of $(x + y)^n$ is (are) :
 - If n is even, there is only one middle term which is given by ; $T_{(n+2)/2} = {}^{n}C_{n/2} \cdot x^{n/2} \cdot y^{n/2}$ If n is odd, there are two middle terms which are : **(a)**
 - **(b)** $T_{(n+1)/2}$ & $T_{[(n+1)/2]+1}$
- Term independent of x contains no x; Hence find the value of r for which the exponent of x is zero. (iii)
- To find the Numerically greatest term is the expansion of $(1 + x)^n$, $n \in N$ find (iv)
 - $\frac{T_{r+1}}{T_r} = \frac{{}^nC_r x^r}{{}^nC_{r-1} x^{r-1}} = \frac{n-r+1}{r} x$. Put the absolute value of x & find the value of r Consistent with the inequality $\frac{\dot{T}_{r+1}}{T_r} > 1.$

Note that the Numerically greatest term in the expansion of $(1 - x)^n$, x > 0, $n \in N$ is the same as the greatest term in $(1 + x)^n$.

- 3.If $(\sqrt{A} + B)^n = I + f$, where I & n are positive integers, n being odd and 0 < f < 1, then (I + f). $f = K^n$ where $A - B^2 = K > 0 \& \sqrt{A} - B < 1$.
- If n is an even integer, then $(I + f)(1 f) = K^n$.
- **BINOMIAL COEFFICIENTS :** (i) $C_0 + C_1 + C_2 + \dots + C_n = 2^n$ $C_0 + C_2 + C_4 + \dots = C_1 + C_3 + C_5 + \dots = 2^{n-1}$ 4. **(ii)**
- $C_0^2 + C_1^2 + C_2^2 + \dots + C_n^2 = {}^{2n}C_n = \frac{(2n)!}{n! n!}$ (iii)
- (2n)! $C_0.C_r + C_1.C_{r+1} + C_2.C_{r+2} + ... + C_{n-r}.C_n = -$ (iv) (n+r)(n-r)!**REMEMBER :** (i) $(2n)! = 2^n \cdot n! [1, 3, 5, ..., (2n-1)]$ BINOMIAL THEOREM FOR NEGATIVE OR FRACTIONAL INDICES 5.
- If $n \in Q$, then $(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \dots \infty$ Provided |x| < 1.

Note : (i)When the index n is a positive integer the number of terms in the expansion of $(1 + x)^n$ is finite i.e. (n + 1) & the coefficient of successive terms are : ${}^{n}C_{0}, {}^{n}C_{1}, {}^{n}C_{2}, {}^{n}C_{3}.... {}^{n}C_{n}$

When the index is other than a positive integer such as negative integer or fraction, the number of (ii) terms in the expansion of $(1 + x)^n$ is infinite and the symbol ⁿC_r cannot be used to denote the Coefficient of the general term.

- Following expansion should be remembered (|x| < 1). (a) $(1 + x)^{-1} = 1 - x + x^2 - x^3 + x^4 - \dots \infty$ (b) $(1 - x)^{-1} = 1 + x + x^2 + x^3 + x^4 + \dots \infty$ (c) $(1 + x)^{-2} = 1 - 2x + 3x^2 - 4x^3 + \dots \infty$ (d) $(1 - x)^{-2} = 1 + 2x + 3x^2 + 4x^3 + \dots \infty$ (iv)
 - may find it convinient to expand in powers of $\frac{1}{x}$, which then will be small.
- **APPROXIMATIONS** : $(1 + x)^n = 1 + nx + \frac{n(n-1)}{1.2}x^2 + \frac{n(n-1)(n-2)}{1.2.3}x^3 \dots$ 6.

If x < 1, the terms of the above expansion go on decreasing and if x be very small, a stage may be reached when we may neglect the terms containing higher powers of x in the expansion. Thus, if x be so small that its squares and higher powers may be neglected then $(1 + x)^n = 1 + nx$, approximately. This is an approximate value of $(1 + x)^n$.

7. EXPONENTIAL SERIES :www.MathsBySuhag.com, www.TekoClasses.com

(i)
$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \infty$$
; where x may be any

(ii)
$$a^{x} = 1 + \frac{x}{1!} ln a + \frac{x^{2}}{2!} ln^{2} a + \frac{x^{3}}{3!} ln^{3} a + \dots \infty$$
 where a

Note: (a)
$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots \infty$$

(b) e is an irrational number lying between 2.7 & 2.8. Its value correct upto 10 places of decimal is 2.7182818284.

(c)
$$e + e^{-1} = 2\left(1 + \frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + \dots \right)$$
 (d) $e - e^{-1} = 2\left(1 + \frac{1}{3!} + \frac{1}{5!} + \frac{1}{7!} + \dots \right)$
(e) Logarithms to the base 'e' are known as the Napierian system, so named after Napier, their inventor. They

(e) are also called Natural Logarithm. 8. LOGARITHMIC SERIES :

(i)
$$ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots \infty$$
 where $-1 < x$

(ii)
$$ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} + \dots \infty \text{ where } -1 \le 1$$

(iii)
$$ln \frac{(1+x)}{(1-x)} = 2\left(x + \frac{x^3}{3} + \frac{x^5}{5} + \dots \right) |x| < 1$$

REMEMBER : (a)
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \ln 2$$
 (b)
(c) $\ln 2 = 0.693$ (c)

The expansions in ascending powers of x are only valid if x is 'small'. If x is large i.e. |x| > 1 then we

 γ real or complex & $e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{2}$

$$\leq 1$$

≤ x < 1

 $e^{ln x} = x$ b)

ln10 = 2.303**d**)