CHEMISTRY

1. Predict expression for α in terms of K_{eq} and concentration C :

$$A_{2}B_{3} (aq) := 2A^{3+}(aq) + 3B^{2-} (aq)$$

$$(1^{*}) \left(\frac{K_{eq}}{108C^{4}}\right)^{1/5} \qquad (2) \left(\frac{K_{eq}}{5C^{4}}\right)^{1/5} \qquad (3) \left(\frac{4K_{eq}}{5C^{4}}\right)^{1/5} \qquad (4) \left(\frac{9K_{eq}}{5C^{4}}\right)^{1/5}$$
Sol. $A_{2}B_{3} (aq) := 2A^{3+}(aq) + 3B^{2-} (aq)$

$$C$$

$$C(1-\alpha) \qquad 2C\alpha \qquad 3C\alpha$$

$$K_{eq} = \frac{(2C\alpha)^{2}(3C\alpha)^{3}}{C}$$

$$K_{eq} = 108C^{4}\alpha^{5}$$

$$\alpha = \left(\frac{K_{eq}}{108C^{4}}\right)^{1/5}$$

2. Radius of first orbit of hydrogen atom is 51 pm. Determine the radius of 5^{th} orbit of Li^{2+}

Sol. $r_{\rm H} = 51 \text{ pm}$

$$(r_{\rm H}^{2+})_5 = (r_{\rm H})_1 \times \frac{n^2}{Z} = 51 \times \frac{5^2}{3} = 425 \text{ pm}$$

How many moles of Ba₃(PO₄)₂ will be formed by the reaction of 5 moles of BaCl₂ and 3 moles of Na₃(PO₄).

Ans.

 $\frac{5}{3}$

Sol. 3 $BaCl_2 + 2Na_3 PO_4 \longrightarrow Ba_3(PO_4)_2 + 6NaCl$

5 mole 3 mole

Moles of Ba₃(PO₄)₂ = $\frac{5}{3}$

4. In which of the following pairs of elements electron gain enthalpy difference is highest ? (1) Cl, Ar (2) Cl, Ne (3) F, Ar (4) F, Ne

```
Ans. (2)
```

Sol. Chlorine has most negative ΔH_{eg} (-349 kJ/mole) whereas Neon has most positive ΔH_{eg} (116 kJ/mole)

5. In an ionic solid element Y crystallises in ccp lattice and element X occupy $\frac{1}{3}$ rd of tetrahedral void.

Find formula of ionic solid.

Ans. X_2Y_3

Sol. For 1 unit cell,

No. of particles

X
$$\frac{1}{3} \times 8$$

4

- Y
- $\therefore \quad \text{Formula of Ionic solid} = X_{8/3}Y_4 = X_2Y_3$
- 6. The value of \log_{10} K for a reaction A \implies B is (Given $\Delta H^{\circ}_{298K} = -54.67 \text{ kJmol}^{-1}$ $\Delta S^{\circ}_{298K} = 10 \text{ kJmol}^{-1}$ and R = 8.314 JK⁻¹mol⁻¹ 2.303 × 8.314 × 298 = 5705) Ans. 10 Sol. $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ $= -54.07 \times 1000 - 298 \times 10$ = -57050 $\Delta G^{\circ} = -2.303 \text{ RTlog}_{10}$ K

 $\log K = 10$

7. Determine the amount of urea (NH_2CONH_2) to be added in 1000 g of water to decrease its vapour presssure by 25%.

Sol. $\frac{P^{\circ} - P_{S}}{P^{\circ}} = \frac{n}{N+n} = \frac{1}{4}$ $\Rightarrow 4n = N+n$

n =
$$\frac{N}{3} = \left(\frac{1000}{18}\right) \times \frac{1}{3}$$

∴ Amount of urea is $\frac{(1000)}{18 \times 3} \times 60 = \frac{10000}{9}$ gm
≈ 1111.1 gram

8. Which of the following slows down the process of setting of the cement ?Ans. Gypsum

- **9.** Number of ambidentate ligands in given complex [M(en)(SCN)₄] :
- Ans. 4
- **Sol.** SCN^{-} is an ambidentate ligand S & N both are donor atom.

10.	$2[\operatorname{Au}(\operatorname{CN})_2]^- + \operatorname{Zn} \longrightarrow [\operatorname{Zn}(\operatorname{CN})_4]^{2-} + 2\operatorname{Au} \downarrow$			
	(A) Redox reaction		(C) Displacement reaction	
	(B) Combination reaction		(D) Decomposition reaction	
	(1*) A & B	(2) B only	(3) A & D	(4) B & D
Sol.	$2[Au(CN)_2]^- + Zn -$	$\longrightarrow [Zn(CN)_4]^{2-} + 2Au\downarrow$		

It is a redox, displacement reaction.

- 11. A \Rightarrow Spin only magnetic moment of $[Fe(CN)_6]^{-3}$ is 1.73 B.M. and $[Fe(H_2O)_6]^{+3}$ is 5.92 B.M. R \Rightarrow In both cases Fe have +3 oxidation state
- Ans. Both A & R are correct but R is not the correct explanation
- **Sol.** $[Fe(CN)_6]^{-3}$: Fe⁺³: 3d⁵ with S.F.L

$$\Rightarrow$$
 n = 1

Magnetic moment = 1.73 B.M

 $[Fe(H_2O)_6]^{+3} Fe^{+3} : 3d^5 \text{ with W.F.L}$

$$\Rightarrow$$
 n = 5

Magnetic moment =
$$5.92$$
 B.M

- **12.** Assertion: Radius of H^+ is 1.5×10^{-3} pm Reason: H^+ cannot exist independently
- Sol. Both assertion and reason are correct but reason is not a correct explanation of assertion.

13. Oxidation number of Mo in Ammonophosphomolybdate

Ans. 6

Sol. $(NH_4)_3 PMo_{12}O_{40} \text{ or } (NH_4)_3 PO_4.12MoO_3$ +3 + 5 +12x - 80 = 0 12x = 80 - 812x = 72x = 6

14. Which of following are reducing and oxidising agent respectively.

(1) Eu^{+2} , Ce^{+4}	(2) Ce^{+3} , Ce^{+4}
(3) Eu^{+4} , Eu^{+2}	(4) Tb^{+2} , Ce^{2+}

- Ans. (1)
- **Sol.** $Eu^{2+} \longrightarrow Eu^{3+} + e^{-}$ $Eu^{2+} \longrightarrow$ Good reducing agent

 -10^{4+} 0^{3+}

$$e^- + Ce^{4+} \longrightarrow Ce^{3+}$$

Ce⁴⁺ is a good oxidising agent

15.	Column-I	Column-II
	$(P) N_2O_5$	(i) N–N bond
	$(Q) N_2 O$	(ii) N–O–N bond
	$(R) N_2O_4$	(iii) N=N / N≡N bond
	$(S) NO_2$	(iv) N=O bond

Ans. P - (ii), Q - (iii), R - (i), S - (iv)

16. Polymer which is named as orlon

(1) Polyamide	(2) Polyacrylonitrile
---------------	-----------------------

(3) Polycarbamate

(4) Polyethene

Ans. (2)

17. $\underbrace{\bigcirc \quad \text{CONH}_2 \quad \underbrace{\text{Br}_2/\text{KOH}}_{\text{COOCH}_3} \xrightarrow{\text{Br}_2/\text{KOH}}_{\Delta} \text{Major product}}_{(1) \quad \bigcirc \quad \bigcirc \quad (2) \quad \bigcirc \quad \overset{\text{NH}}{\longrightarrow} \quad (3) \quad \bigcirc \quad \bigcirc \quad (4) \quad \bigcirc \quad \bigcirc \quad (4) \quad \bigcirc \quad \bigcirc \quad (4) \quad (4) \quad \bigcirc \quad (4) \quad$

Ans. (2)

- 18. Column I
 - (i) Vitamin A
 - (ii) Vitamin C (Ascorbic acid)
 - (iii) Riboflavin
 - (iv) Thiamine
 - (1) $i \rightarrow c$, $ii \rightarrow d$, $iii \rightarrow a$, $iv \rightarrow b$
 - (3) $i \rightarrow d$, $ii \rightarrow c$, $iii \rightarrow b$, $iv \rightarrow a$
- Ans. (2)
- **19.** Photochemical smog found mainly in
 - (1) Industrial area
 - (3) Hilly area of Himachal

- Column II
- (a) Beri-beri
- (b) Cheilosis
- (c) Xerophthalmia
- (d) Scurvy
- (2) i \rightarrow c, ii \rightarrow d, iii \rightarrow b, iv \rightarrow a
- (4) $i \rightarrow c$, $ii \rightarrow b$, $iii \rightarrow d$, $iv \rightarrow a$
- (2) Marshy place(4) Cold humid climate

Ans. (1)

20.	Column I (Chemical reactions)	Column II (Enzymes used)	
	(i) Glucose \rightarrow CO ₂ + Ethanol	(a) Pepsin	
	(ii) Sucrose \rightarrow Glucose + Fructose	(b) Diastase	
	(iii) Starch \rightarrow Maltose	(c) Zymase	
	(iv) Protein \rightarrow Amino acids	(d) Invertase	
	(1) $i \rightarrow c$, $ii \rightarrow d$, $iii \rightarrow b$, $iv \rightarrow a$	(2) $i \rightarrow d$, $ii \rightarrow c$, $iii \rightarrow b$, $iv \rightarrow a$	
	(3) $i \rightarrow c$, $ii \rightarrow d$, $iii \rightarrow a$, $iv \rightarrow b$	(4) $i \rightarrow c$, $ii \rightarrow b$, $iii \rightarrow d$, $iv \rightarrow a$	
	(1)		

Ans. (1)

21. How many bromo products are formed when ethane is reacted with excess of Br₂ on heating?Ans. (9)

22. Match the following with the correct name of reaction

(P) Gattermann Koch reaction
(Q) Hell Volhard Zelinsky
(R) Iodoform reaction

23. CH₃CH₂-Br $\xrightarrow{\text{Nal}}$ CH₃-CH₂-I + NaBr

Which of the following statement is correct?

- (1) Acetic acid solvent can take in above reaction.
- (2) NaI is soluble in acetone but NaBr is precipitate in acetone
- (3) NaI is precipitated in acetone but NaBr is soluble in acetone
- (4) When acetone is taken in solvent transition state is highly polar

Ans. (2)

