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Determinants

Chapter

PROPERTIES OF DETERMINANTS

 (i) The value of the determinant remains unchanged, if rows are 
changed into columns and columns are changed into rows.

  e.g.          |A′| = |A|

 (ii) If A = [aij]n × n, n > 1 and B be the matrix obtained from A by 
interchanging two of its rows or columns, then

   det (B) = – det (A)

 (iii) If two rows (or columns) of a square matrix A are proportional, then 
| A | = 0.

 (iv) | B | = k | A |, where B is the matrix obtained from A, by multiplying 
one row (or column) of A by k.

 (v) | kA | = kn | A |, where A is a matrix of order n × n.

 (vi) If each element of a row (or column) of a determinant is the sum of 
two or more terms, then the determinant can be expressed as the sum 
of two or more determinants.

  e.g. 
1 2 1 2

1 2 1 2

1 2 1 2

a a b c a b c a b c
p p q r p q r p q r
u u v w u v w u v w

+
+ = +
+

 (vii) If the same multiple of the elements of any row (or column) of a 
determinant are added to the corresponding elements of any other 
row (or column), then the value of the new determinant remains 
unchanged,
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  e.g.  
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 (viii) If each element of a row (or column) of a determinant is zero, then 
its value is zero.

 (ix) If any two rows (or columns) of a determinant are identical, then its 
value is zero.

 (x) If r rows (or r columns) become identical, when a is substituted for 
x, then (x – a)r–1 is a factor of given determinant.

IMPORTANT RESULTS ON DETERMINANTS

 (i) | AB | = | A | | B |, where A and B are square matrices of the same 
order.

 (ii) | An | = |A |n.

 (iii) If A, B and C are square matrices of the same order such that ith 
columns (or rows) of A is the sum of ith columns (or rows) of B and 
C and all other columns (or rows) of A, B and C are identical, then 
| A | = | B | + | C |.

 (iv) | In | = 1, where In is identity matrix of order n.

 (v) | On | = 0, where On is a zero matrix of order n.

 (vi) If D(x) has a 3rd order determinant having polynomials as its 
elements.

 (a) If D(a) has 2 rows (or columns) proportional, then (x – a) is a 
factor of D(x).

 (b) If D(a) has 3 rows (or columns) proportional, then (x – a)2 is a 
factor of D(x).

 (vii) A square matrix A is non-singular, if | A | ≠ 0 and singular, if | A | = 0.

 (viii) Determinant of a skew-symmetric matrix of odd order is zero and of 
even order is a non-zero perfect square.

 (ix) In general, | B + C | ≠ | B | + | C |.

 (x) Determinant of a diagonal matrix = Product of its diagonal elements

 (xi) If A is a non-singular matrix, then | A–1 | = 1
| |A

 = | A |–1.



 (xii) Determinant of a orthogonal matrix = 1 or – 1.

 (xiii) Determinant of a hermitian matrix is purely real.

 (xiv) If A and B are non-zero matrices and AB = O, then it implies 
| A | = O and |B| = O.

Minors and Cofactors

If D = 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

, then the minor Mij of the element aij is the determinant 

obtained by deleting the ith row and jth column,

i.e. M11 = minor of a11 = 22 23

32 33

a a
a a

The cofactor of the element aij is Cij = (– 1)i + j Mij.

Properties of Minors and Cofactors

 (i) The sum of the products of elements of any row (or column) of a 
determinant with the cofactors of the corresponding elements of any 
other row (or column) is zero,

  i.e. if D = 
11 12 13

21 22 23

31 32 33

a a a
a a a
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, then a11C31 + a12C32 + a13C33 = 0 and so 

on.

 (ii) The sum of the product of elements of any row (or column) of a 
determinant with the cofactors of the corresponding elements of the 
same row (or column) in D,

  i.e. if A = 
11 12 13

21 22 23

31 32 33

a a a
a a a
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, then | A | = D = a11C11 + a12C12 + a13C13.

 (iii) In general, if | A | = D, then | A | = 
1

n

ij ij
i

a C
=
∑  and (adj A) = Dn – 1, where 

A is a matrix of order n × n.



Applications of Determinants in Geometry
Let the three points in a plane be A(x1, y1), B(x2, y2) and C(x3, y3), then

 (i) Area of DABC = 
1 1

2 2

3 3

1
1 1
2
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            = 
1
2

[x1 (y2 – y3) + x2 (y3 – y1) + x3 (y1 – y2)]

 (ii) If the given points are collinear, then 
1 1

2 2
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1
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x y
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 = 0.

 (iii) Let two points are A(x1, y1), B(x2, y2) and P(x, y) be a point on the 
line joining points A and B, then the equation of line is given by 

1 1

2 2

1
1
1

x y
x y
x y

 = 0.
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