

Determinants

PROPERTIES OF DETERMINANTS

(*i*) The value of the determinant remains unchanged, if rows are changed into columns and columns are changed into rows.

e.g. |A'| = |A|

(ii) If $A = [a_{ij}]_{n \times n}$, n > 1 and B be the matrix obtained from A by interchanging two of its rows or columns, then

$$\det\left(B\right) = -\det\left(A\right)$$

- (iii) If two rows (or columns) of a square matrix A are proportional, then |A| = 0.
- (*iv*) |B| = k |A|, where B is the matrix obtained from A, by multiplying one row (or column) of A by k.
- (v) $|kA| = k^n |A|$, where A is a matrix of order $n \times n$.
- (*vi*) If each element of a row (or column) of a determinant is the sum of two or more terms, then the determinant can be expressed as the sum of two or more determinants.

e.g.
$$\begin{vmatrix} a_1 + a_2 & b & c \\ p_1 + p_2 & q & r \\ u_1 + u_2 & v & w \end{vmatrix} = \begin{vmatrix} a_1 & b & c \\ p_1 & q & r \\ u_1 & v & w \end{vmatrix} + \begin{vmatrix} a_2 & b & c \\ p_2 & q & r \\ u_2 & v & w \end{vmatrix}$$

(*vii*) If the same multiple of the elements of any row (or column) of a determinant are added to the corresponding elements of any other row (or column), then the value of the new determinant remains unchanged,

e.g.
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11} + ka_{31} & a_{12} + ka_{32} & a_{13} & ka_{33} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

- (viii) If each element of a row (or column) of a determinant is zero, then its value is zero.
 - (*ix*) If any two rows (or columns) of a determinant are identical, then its value is zero.
 - (x) If r rows (or r columns) become identical, when a is substituted for x, then $(x a)^{r-1}$ is a factor of given determinant.

IMPORTANT RESULTS ON DETERMINANTS

- (i) |AB| = |A| |B|, where A and B are square matrices of the same order.
- (*ii*) $|A^n| = |A|^n$.
- (iii) If A, B and C are square matrices of the same order such that i^{th} columns (or rows) of A is the sum of i^{th} columns (or rows) of B and C and all other columns (or rows) of A, B and C are identical, then |A| = |B| + |C|.
- (*iv*) $|I_n| = 1$, where I_n is identity matrix of order *n*.
- (v) $|O_n| = 0$, where O_n is a zero matrix of order *n*.
- (vi) If $\Delta(x)$ has a 3rd order determinant having polynomials as its elements.
 - (a) If $\Delta(a)$ has 2 rows (or columns) proportional, then (x a) is a factor of $\Delta(x)$.
 - (b) If Δ(a) has 3 rows (or columns) proportional, then (x − a)² is a factor of Δ(x).
- (vii) A square matrix A is non-singular, if $|A| \neq 0$ and singular, if |A| = 0.
- (viii) Determinant of a skew-symmetric matrix of odd order is zero and of even order is a non-zero perfect square.
 - (*ix*) In general, $|B + C| \neq |B| + |C|$.
 - (x) Determinant of a diagonal matrix = Product of its diagonal elements

(xi) If A is a non-singular matrix, then $|A^{-1}| = \frac{1}{|A|} = |A|^{-1}$.

- (*xii*) Determinant of a orthogonal matrix = 1 or -1.
- (xiii) Determinant of a hermitian matrix is purely real.
- (xiv) If A and B are non-zero matrices and AB = O, then it implies |A| = O and |B| = O.

Minors and Cofactors

If $\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$, then the **minor** M_{ij} of the element a_{ij} is the determinant

obtained by deleting the i^{th} row and j^{th} column,

i.e.
$$M_{11} = \text{minor of } a_{11} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$$

The cofactor of the element a_{ij} is $C_{ij} = (-1)^{i+j} M_{ij}$.

Properties of Minors and Cofactors

(*i*) The sum of the products of elements of any row (or column) of a determinant with the cofactors of the corresponding elements of any other row (or column) is zero,

i.e. if $\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$, then $a_{11}C_{31} + a_{12}C_{32} + a_{13}C_{33} = 0$ and so

on.

(*ii*) The sum of the product of elements of any row (or column) of a determinant with the cofactors of the corresponding elements of the same row (or column) in Δ ,

i.e. if
$$A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
, then $|A| = \Delta = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13}$.

(iii) In general, if $|A| = \Delta$, then $|A| = \sum_{i=1}^{n} a_{ij} C_{ij}$ and $(adj A) = \Delta^{n-1}$, where A is a matrix of order $n \times n$.

Applications of Determinants in Geometry

Let the three points in a plane be $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$, then

(i) Area of
$$\triangle ABC = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$

$$= \frac{1}{2} [x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2)]$$
(ii) If the given points are collinear, then $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = 0.$

- (iii) Let two points are $A(x_1, y_1)$, $B(x_2, y_2)$ and P(x, y) be a point on the line joining points A and B, then the equation of line is given by
 - $\begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} = 0.$