RA	CE # 23	RI	EDOX	CHEMISTRY			
1.	A 5.0 mL solution of H_2O_2 liberates 0.508 g of iodine from an acidified Kl solution. The volume strength of the H_2O_2 solution at STP is approximately						
	(A) 4.00	(B) 4.5	(C) 6.05	(D) 5.5			
2.	A fresh H_2O_2 solution is labeled 11.2 V. This solution has the same concentration as a solution which is						
	(A) 3.4% (wt/wt)	(B) 3.4%(vol/vol)	(C) 3.4%(wt/vol)	(D) None of these			
3.	20 ml of H_2O_2 after acidification with dil H_2SO_4 required 30 ml of $\frac{N}{12}$ KMnO ₄ for complete oxidation. The strength						
	of H_2O_2 solution is nearly. [Molar mass of $H_2O_2 = 34$]						
	(A) 2 g/L	(B) 4 g/L	(C) 8 g/L	(D) 6 g/L			
4.	10 ml of a solution of H_2O_2 labelled .10 volume. just decolorises 100 ml of potassium permangante solution acidified with dilute H_2SO_4 . Calculate the amount of the potassium permanganate in the given solution.						
	(A) 0.1563 gm	(B) 0.563 gm	(C) 5.63 gm	(D) 0.256 gm			
5.	50 ml of an aqueous required 20 ml of 0.1 (A) 25 mL of 0.016M (B) 20 mL of $\frac{M}{30}$ K ₂ (C) 100 mL of 0.008 (D) 10 mL of $\frac{M}{30}$ K ₂	solution of H_2O_2 was added M Na ₂ S ₂ O ₃ solution for con M KMnO ₄ in acidic medium Cr_2O_7 solution in acidic med M KMnO ₄ in acidic mediun Cr_2O_7 solution in acidic mediun	into excess of a solution nplete reaction. The same ium. n.	on of KI in dil. H_2SO_4 . The liberated iodine me amount of H_2O_2 with exactly titrate with			
	50	% Lat	celling of Oleum				
6.	What is the % of free SO ₃ in an oleum sample that is labelled as '104.5% H_3SO_4 '?						
	(A) 30%	(B) 15%	(C) 20%	(D) 25%			
7.	Maximum labelling of oleum is :						
	(A) 109%	(B) 100%	(C) 122.5%	(D) 112%			
8.	What is the % of free SO ₃ in an oleum sample that is labelled as '109% H_2SO_4 '?						
	(A) 30%	(B) 15%	(C) 20%	(D) 40%			
9.	Similar to the % labelling of oleum, a mixture of H_3PO_4 and P_4O_{10} is labelled as $(100 + x)$ % where x is the maximum amount of water which can react with P_4O_{10} present in the mixture. If such a mixture is labelled as 127%. The mass of P_4O_{10} in 100 gm of mixture is :						
	(A) 71 g	(B) 47 g	(C) 83	(D) 35 g			
10.	A sample of oleum is labelled as 104.5%. What amount of pure NaOH is required to neutralize the 100 g of the sample of oleum.						
	(A) 172.2 g	(B) 80 g	(C) 85.3 g	(D) 62 g			

- 11*. Fuming H_2SO_4 (oleum) is a homogenous mixture of H_2SO_4 and SO_3 . Then which of the following statement(s) are correct :
 - (A) If H_2SO_4 and SO_3 are equimolar in an oleum sample, then strength of oleum is 110.11%
 - (B) If H₂SO₄ and SO₃ are having equal masses in an oleum sample, then strength of oleum is 111.25%
 - (C) Strength of an oleum sample may be less than 100%.
 - (D) If strength of oleum is (100 + x) %, then x g of water is to be added to 100 g oleum sample to convert whole of SO₃ to H₂SO₄.
- 12. An oleum sample is labelled as 118 %, Calculate
 - (i) Mass of H_2SO_4 in 100 gm oleum sample.
 - (ii) Maximum mass of H_2SO_4 that can be obtained if 30 gm sample is taken.
 - (iii) Composition of mixture (mass of components) if 40 gm water is added to 30 gm given oleum sample.
- 13. A mixture is prepared by mixing 10 gm H_2SO_4 and 40 gm SO_3 calculate,
 - (a) mole fraction of H_2SO_4 (b) % labelling of oleum

%Availiblity of chlorine in bleaching powder

- 14. 10 gm sample of bleaching powder was dissolved into water to make the solution one litre. To this solution 35 mL of 1.0 M Mohr salt solution was added containing enough H_2SO_4 . After the reaction was complete, the excess Mohr salt required 30 mL of 0.1 M KMnO₄ for oxidation. The % of available Cl₂ approximately is
 - (A) 10% (B) 12.7% (C) 7.1% (D) 22%
- 15. 3.55 gm sample of bleaching powder suspended in H_2O was treated with enough acetic acid and KI solution. Iodine thus liberated required 80ml of 0.2M hypo for titration. Calculate the % of available chlorine.

[Available Chlorine = mass of chlorine liberated/ mass of bleaching powder \times 100]

(A) 20% (B) 16 % (C) 30% (D) 10 %

Hardness of water

16. One litre of a sample of hard water contain 4.44 mg $CaCl_2$ and 1.9 mg of MgCl_2. What is the total hardness in terms of ppm of $CaCO_3$?

(A) 6	(B) 3	(C) 1	(D) 10

17. One litre hard water contains 1 mg $CaCl_2$ and 1 mg $MgSO_4$. Find hardness of water sample (in ppm).

(A) 1.734 ppm (B) 1.934 ppm (C) 1.534 ppm (D) 1.334 ppm

18. Calculate the amount of Ca(OH)₂ required to remove the hardness in 60 litre of pond water, containing 1.62mg of calcium bicarbonate per 100mL of water.

(A) 0.246g	(B) 0.897g	(C) 0.444g	(D) 1.286g
------------	------------	------------	------------

19. If 100 Kg of a hard water sample contains $5g MgSO_4$, find hardness of water (in ppm).

(A) 33.46ppm (B) 52.24ppm (C) 64.26ppm (D) 41.66ppm

Answers

RACE # 23

 1. (B)
 2. (C)
 3. (A)
 4. (C)
 5. (BC)
 6. (C)
 7. (C)
 8. (D)
 9. (A)
 10. (C)

 11. (ABD)
 12. (i)
 20 gm
 (ii)
 35.4gm
 (iii)
 39.6gm
 13. (a)
 0.169
 (b)
 118%

 14. (C)
 15. (B)
 16. (A)
 17. (A)
 18. (C)
 19. (D)