

Quadratic Equation and Inequations (Inequalities)

Section-A: JEE Advanced/ IIT-JEE

$$\frac{\left[k+\left(n-\frac{k(k+1)}{2}\right)-1\right]!}{\left[n-\frac{k(k+1)}{2}\right]!(k-1)!}$$

8.
$$(a, b, c)$$

32. (a)

$$\underline{\mathbf{E}}$$
 1. $\frac{3}{2}$

3.
$$\frac{5}{4}$$

3.
$$\frac{5}{4}$$
 4. $a^{-1/2}, a^{-4/3}$ 7. 3

$$q(r-p)^2 - p(r-p)(s-q) + (s-q)^2$$
; $(q-s)^2 = (r-p)(ps-qr)$ 10. $[-1,2) \cup [3,\infty)$

11.
$$m \in \left(-\infty, \frac{-15}{2}\right) \cup (30, \infty)$$
 12. $x = 1, y = 0, z = 0, w = 0$ 16. $[-1, 1) \cup (2, 4]$

12.
$$x = 1, y = 0, z = 0, w = 0$$

16.
$$[-1, 1) \cup (2, 4]$$

17.
$$\pm 2, \pm \sqrt{2}$$

18.
$$\{a \pm a\sqrt{2}, -a \pm a\sqrt{6}\}$$

17.
$$\pm 2$$
, $\pm \sqrt{2}$ 18. $\{a \pm a\sqrt{2}, -a \pm a\sqrt{6}\}$ 19. $(-2, -1) \cup \left(-\frac{2}{3}, -\frac{1}{2}\right)$

20.
$$-4, -1-\sqrt{3}$$

24.
$$\alpha^2 \beta$$
, $\alpha \beta^2$ **25.** $a > 1$

25.
$$a > 1$$

Section-B: JEE Main/ AIEEE

(c)

Section-A

Advanced/ IIT-J

A. Fill in the Blanks

$$(x-1)(x-2)(x-3)...(x-100)$$
= $x^{100} - (1+2+3+...+100)x^{99} + (...)x^{98} + ...$
Here coeff. of $x^{99} = -(1+2+3+...+100)$

$$=\frac{-100\times101}{2}=-5050$$
.

2. As p and q are real; and one root is
$$2 + i \sqrt{3}$$
, other should

be
$$2 - i \sqrt{3}$$

Then
$$p = -(\text{sum of roots}) = -4$$
,
 $q = \text{product of roots} = 4 + 3 = 7$.

3. The given equation is
$$x^2 - 3kx + 2e^{2lnk} - 1 = 0$$

Or
$$x^2 - 3kx + (2k^2 - 1) = 0$$

Here product of roots =
$$2k^2 - 1$$

$$\therefore 2k^2 - 1 = 7 \Rightarrow k^2 = 4 \Rightarrow k = 2, -2$$

Now for real roots we must have $D \ge 0$

$$\Rightarrow 9k^2 - 4(2k^2 - 1) \ge 0 \Rightarrow k^2 + 4 \ge 0$$

Which is true for all k. Thus k = 2, -2

But for k = -2, $\ln k$ is not defined

- \therefore Rejecting k = -2, we get k = 2.
- 4. \therefore x = 1 reduces both the equations to 1 + a + b = 0
 - \therefore 1 is the common root. for a + b = -1
 - \therefore Numerical value of a + b = 1

5.
$$\log_7 \log_5 (\sqrt{x+5} + \sqrt{x}) = 0$$

$$\Rightarrow \log_5(\sqrt{x+5}+\sqrt{x})=1$$

$$\Rightarrow \sqrt{x+5} + \sqrt{x} = 5 \Rightarrow x+5 = 25 + x - 10\sqrt{x}$$

$$\Rightarrow$$
 2 = \sqrt{x} \Rightarrow x = 4 which satisfies the given equation.

Given x < 0, v < 06.

$$x+y+\frac{x}{y}=\frac{1}{2}$$
 and $(x+y).\frac{x}{y}=-\frac{1}{2}$

Let
$$x+y=a$$
 and $\frac{x}{y}=b$ (1)

$$\therefore \text{ We get } a+b=\frac{1}{2} \text{ and } ab=-\frac{1}{2}$$

Solving these two, we get $a + \left(-\frac{1}{2a}\right) = \frac{1}{2}$

$$\Rightarrow 2a^2 - a - 1 = 0 \Rightarrow a = 1, -1/2 \Rightarrow b = -1/2, 1$$

$$\therefore$$
 (1) $\Rightarrow x+y=1$ and $\frac{x}{y}=-\frac{1}{2}$

or
$$x + y = \frac{-1}{2}$$
 and $\frac{x}{y} = 1$ But $x, y < 0$

$$\therefore x + y < 0 \implies x + y = \frac{-1}{2}$$
 and $\frac{x}{y} = 1$

On solving, we get x = -1/4 and y = -1/4.

7. We have

$$x_1 + x_2 + \dots + x_k = n$$
 (1)

where $x_1 \ge 1, x_2 \ge 2, x_3 \ge 3, \dots, x_k \ge k$; all integers

Let
$$y_1 = x_1 - 1, y_2 = x_2 - 2, \dots, y_k = x_k - k$$

so that $y_1, y_2, ..., y_k \ge 0$

Substituting the values of x_1, x_2, \dots, x_k in equation .. (1)

We get
$$y_1 + y_2 + ... y_k = n - (1 + 2 + 3 ... + k)$$

$$=n-\frac{k(k+1)}{2} \qquad \dots (2)$$

Now keeping in mind that number of solutions of the equation

$$\alpha + 2\beta + 3\gamma + \dots + q\theta = n$$

for $\alpha, \beta, \gamma, \dots \theta \in I$ and each is ≥ 0 , is given by coeff of x^n in

$$(1+x+x^2+.....)(1+x^2+x^4+.....)$$

$$(1+x^3+x^6+.....)$$
 $(1+x^q+x^{2q}+.....)$

We find that no. of solutions of equation (2)

= coeff of
$$x^{n-\frac{k(k+1)}{2}}$$
 in $(1+x+x^2+.....)^k$
NOTE THIS STEP

= coeff of
$$x^{n-\frac{k(k+1)}{2}}$$
 in $(1-x)^{-k}$

= coeff of
$$x^{n-\frac{k(k+1)}{2}}$$
 in $(1+{}^kC_1x+{}^{k+1}C_2x^2)$

$$+^{k+2}C_3x^3 + \dots = \sum_{n-\frac{k(k+1)}{2}}^{k+\left(n-\frac{k(k+1)}{2}\right)-1}C_{n-\frac{k(k+1)}{2}}$$

$$= \frac{\left[k + \left(n - \frac{k(k+1)}{2}\right) - 1\right]!}{\left[n - \frac{k(k+1)}{2}\right]!(k-1)!}.$$

8.
$$|x-2|^2+|x-2|-2=0$$

Case 1. $x \ge 2$

$$\Rightarrow (x-2)^2 + (x-2) - 2 = 0$$

$$\Rightarrow x^2 - 3x = 0 \Rightarrow x(x-3) = 0$$

$$\Rightarrow x = 0, 3 \text{ (0 is rejected as } x \ge 2)$$

$$\Rightarrow x = 3$$
(1)

Case 2. x < 2

$$\{-(x-2)\}^2 - (x-2) - 2 = 0$$

$$\Rightarrow x^2 + 4 - 4x - x = 0 \Rightarrow (x-1)(x-4) = 0$$

$$\Rightarrow$$
 x = 1, 4 (4 is rejected as x < 2)

$$\Rightarrow x = 1$$
(2)

Therefore, the sum of the roots is 3 + 1 = 4.

B. True/False

1. Consider n numbers, namely 1, 2, 3, 4,n.

KEY CONCEPT: Now using A.M. > G.M. for distinct numbers, we get

$$\frac{1+2+3+4....+n}{n} > (1.2.3.4.n)^{1/n}$$

$$\frac{n(n+1)}{n} < n^{1/n} < n^{1/n} < n^{1/n}$$

$$\Rightarrow \frac{n(n+1)}{2n} > (n!)^{1/n} \Rightarrow (n!)^{1/n} < \frac{n+1}{2} \therefore True.$$

 $2x^2 + 3x + 1 = 0 \Rightarrow x = -1, -1/2$ both are rational Statement is FALSE.

f(x) = (x-a)(x-c) + 2(x-b)(x-d).

f(a) = +ve; f(b) = -ve; f(c) = -ve; f(d) = +ve

- There exists two real and distinct roots one in the interval (a, b) and other in (c, d). Hence, (True).
- 4. Consider $N = n_1 + n_2 + n_3 + \dots + n_n$, where N is an even number. Let k numbers among these p numbers be odd, then p - kare even numbers. Now sum of (p - k) even numbers is even and for N to be an even number, sum of k odd numbers must be even which is possible only when k is even.
 - The given statement is false.
- $P(x).Q(x) = (ax^2 + bx + c)(-ax^2 + bx + c)$ 5.
 - \Rightarrow $D_1 = b^2 4ac$ and $D_2 = b^2 + 4ac$ clearly, $D_1 + D_2 = 2b^2 \ge 0$
 - atleast one of D₁ and D₂ is (+ ve). Hence, atleast two real roots.

Thus, (True)

6. As x and y are positive real numbers and m and n are positive

$$\therefore \frac{1+x^{2n}}{2} \ge (1 \times x^{2n})^{1/2} \text{ and } \frac{1+y^{2m}}{2} \ge (1 \times y^{2m})^{1/2}$$

{For two +ve numbers A.M. \geq G.M.}

$$\Rightarrow \left(\frac{1+x^{2n}}{2}\right) \ge x^n \qquad \dots (1)$$

and
$$\left(\frac{1+y^{2m}}{2}\right) \ge y^m$$
(2)

Multiplying (1) and (2), we get

$$\frac{(1+x^{2n})(1+y^{2m})}{4} \ge x^n y^m \implies \frac{1}{4} \ge \frac{x^n y^m}{(1+x^{2n})(1+y^{2m})}$$

Hence the statement is false.

C. MCQs with ONE Correct Answer

1. (c) ℓ , m, n are real, $\ell \neq m$ Given equation is

$$(\ell - m)x^2 - 5(\ell + m)x - 2(\ell - m) = 0$$

$$D = 25(\ell + m)^2 + 8(\ell - m)^2 > 0, \ell, m \in R$$

- :. Roots are real and unequal.
- (d) The given equations are 2.

$$x + 2y + 2z = 1$$
(1
and $2x + 4y + 4z = 9$ (2

Subtracting (1) \times (2) from (2), we get 0 = 7 (not possible)

- ∴ No solution.
- (a) $u = x^2 + 4y^2 + 9z^2 6yx 3zx 2xy$ 3.

$$= \frac{1}{2} [2x^2 + 8y^2 + 18z^2 - 12yz - 6zx - 4xy]$$

$$= \frac{1}{2} [(x^2 - 4xy + 4y^2) + (4y^2 + 9z^2 - 12yz) + (x^2 + 9z^2 - 6zx)]$$

$$= \frac{1}{2}[(x-2y)^2 + (2y-3z)^2 + (3z-x)^2] \ge 0$$

- \therefore u is always non-negative.
- (c) As a, b, c > 0, a, b, c should be real (note that order relation is not defined in the set of complex numbers)
- Roots of equation are either real or complex conjugate. Let α , β be the roots of $ax^2 + bx + c = 0$, then

$$\alpha + \beta = -\frac{b}{a} = -ve$$
, $\alpha \beta = \frac{c}{a} = +ve$

- Either both α , β are ve (if roots are real) or both α , β have – ve real parts (if roots are complex conjugate)
- **(b)** The given equation is

$$(x-b)(x-c) + (x-a)(x-c) + (x-a)(x-b) = 0$$

$$\Rightarrow$$
 $3x^2 - 2(a+b+c)x + (ab+bc+ca) = 0$

Discriminant = $4(a+b+c)^2 - 12(ab+bc+ca)$

$$=4[a^2+b^2+c^2-ab-bc-ca]$$

$$=2[(a-b)^2+(b-c)^2+(c-a)^2] \ge 0 \ \forall a,b,c$$

- :. Roots of given equation are always real.
- **(b)** Let $y = 2 \log_{10} x \log_x 0.01$

$$= 2 \log_{10} x - \frac{\log_{10} 0.01}{\log_{10} x} = 2 \log_{10} x + \frac{2}{\log_{10} x}$$

$$=2\left[\log_{10}x + \frac{2}{\log_{10}x}\right]$$

[Here $x > 1 \Rightarrow \log_{10} x > 0$]

Now since sum of a real + ve number and its reciprocal is always greater than or equal to 2.

- $y \ge 2 \times 2 \Rightarrow y \ge 4$, \therefore Least value of y is 4.
- (c) As $(x^2 + px + 1)$ is a factor of $ax^3 + bx + c$, we can 7. assume that zeros of $x^2 + px + 1$ are α , β and that of $ax^3 + bx + c$ be α , β , γ so that

$$\alpha + \beta = -p$$
 (i)
 $\alpha \beta = 1$ (ii)

and
$$\alpha + \beta + \gamma = 0$$
 (iii)

$$\alpha\beta + \beta\gamma + \gamma\alpha = \frac{b}{a}$$
 (iv)

$$\alpha \beta \gamma = \frac{-c}{a}$$
 (v)

Solving (ii) and (v) we get $\gamma = -c/a$.

Also from (i) and (iii) we get $\gamma = p$

 $p = \gamma = -c/a$

Using equations (i), (ii) and (iv) we get

$$1+\gamma(-p)=\frac{b}{a}$$

$$\Rightarrow 1 + \left(-\frac{c}{a}\right)\left(\frac{c}{a}\right) = \frac{b}{a} \qquad \text{(using } \gamma = p = -c/a\text{)}$$

$$\Rightarrow 1 - \frac{c^2}{a^2} = \frac{b}{a} \Rightarrow a^2 - c^2 = ab$$

(c) is the correct answer.

- 8. (a) $|x|^2 3|x| + 2 = 0$
 - **Case I** : x < 0 then |x| = -x
 - $\Rightarrow x^2 + 3x + 2 = 0 \Rightarrow (x+1)(x+2) = 0$ x = -1, -2 (both acceptable as < 0)
 - Case II: x > 0 then |x| = x
 - $\Rightarrow x^2 3x + 2 = 0 \Rightarrow (x 1)(x 2) = 0$ x = 1, 2 (both acceptable as > 0)
 - .. There are 4 real solutions.
- 9. (c) Let the distance of school from A = x
 - .. The distance of the school form B = 60 xTotal distance covered by 200 students

$$= 2[150x + 50(60 - x)] = 2[100x + 3000]$$

This is min., when x = 0

- \therefore school should be built at town A.
- 10. **(b)** if p = 5, q = 3, r = 2 max (p, q) = 5; max (p, q, r) = 5
 - $\Rightarrow \max(p,q) = \max(p,q,r)$
 - : (a) is not true. Similarly we can show that (c) is not true.

Also min
$$(p,q) = \frac{1}{2}(p+q-|p-q|)$$

Let p < q then LHS = p

and R.H.S.
$$=\frac{1}{2}(p+q-q+p)=p$$

Similarly, we can prove that (b) is true for q < p too.

11. (d) Given expression $x^{12} - x^9 + x^4 - x + 1 = f(x)$ (say)

For
$$x < 0$$
 put $x = -y$ where $y > 0$

then we get $f(x) = v^{12} + v^9 + v^4 + v + 1 > 0$ for y > 0

For
$$0 < x < 1$$
, $x^9 < x^4 \implies -x^9 + x^4 > 0$

Also 1-x > 0 and $x^{12} > 0$

- $\Rightarrow x^{12} x^9 + x^4 + 1 x > 0 \Rightarrow f(x) > 0$
 - For x > 1

$$f(x) = x(x^3 - 1)(x^8 + 1) + 1 > 0$$

So f(x) > 0 for $-\infty < x < \infty$.

12. (a) Given equation is $x - \frac{2}{x-1} = 1 - \frac{2}{x-1}$

Clearly $x \ne 1$ for the given eq. to be defined. If

 $x-1 \neq 0$, we can cancel the common term $\frac{-2}{x-1}$ on

both sides to get x = 1, but it is not possible. So given eq. has no roots.

- \therefore (a) is the correct answer.
- 13. (c) Given that $a^2 + b^2 + c^2 = 1$ (1) We know $(a + b + c)^2 \ge 0$
 - $\Rightarrow a^2 + b^2 + c^2 + 2ab + 2bc + 2ca \ge 0$
 - \Rightarrow 2 (ab + bc + ca) \geq -1 [Using (1)]
 - $\Rightarrow ab + bc + ca \ge -1/2 \qquad(2)$

Also we know that

$$\frac{1}{2} \Big[(a-b)^2 + (b-c)^2 + (c-a)^2 \Big] \ge 0$$

- $\Rightarrow a^2 + b^2 + c^2 ab bc ca \ge 0$
- $\Rightarrow ab+bc+ca \le 1$ [Using (1)](2) Combining (2) and (3), we get

$$-1/2 \le ab + bc + ca \le 1$$
 : $ab + bc + ca \in [-1/2,1]$

- :. (c) is the correct answer.
- 14. (a) First of all for $\log (x-1)$ to be defined, x-1 > 0

$$\Rightarrow x > 1$$
(1)

Now, $\log_{0.3}(x-1) \le \log_{0.09}(x-1)$

$$\Rightarrow \log_{0.3}(x-1) < \log_{(0.3)}^{2}(x-1)$$

- $\Rightarrow \log_{0.3}(x-1) < \frac{1}{2}\log_{0.3}(x-1)$
- $\Rightarrow 2 \log_{0.3}(x-1) < \log_{0.3}(x-1)$
- $\Rightarrow \log_{0.3}(x-1)^2 < \log_{0.3}(x-1)$
- \Rightarrow $(x-1)^2 > (x-1)$ **NOTE THIS STEP**

[The inequality is reversed since base lies between 0 and 1]

- $\Rightarrow (x-1)^2 (x-1) > 0 \Rightarrow (x-1) (x-2) > 0 \dots (2)$ Combining (1) and (2) we get x > 2
- $\therefore x \in (2,\infty)$
- 15. (d) From the first method,

$$q = \alpha \beta, r = \alpha^4 + \beta^4 \qquad \dots (3)$$

Product of the roots of the equation

$$x^2-4qx+(2q^2-r)=0$$

$$=2q^{2}-r=2\alpha^{2}\beta^{2}-\alpha^{4}-\beta^{4}=-(\alpha^{2}-\beta^{2})^{2}$$
 [From (3)]

= - (positive quantity) = - ve quantity

- \Rightarrow one root is positive and other is negative.
- 16. (d) **KEY CONCEPT**: If $f(\alpha)$ and $f(\beta)$ are of opposite signs then there must lie a value γ between α and β such that $f(\gamma) = 0$.

a, b, c are real numbers and $a \neq 0$.

As α is a root of $a^2x^2 + bx + c = 0$

$$\therefore a^2\alpha^2 + b\alpha + c = 0 \qquad \dots (1)$$

Also β is a root of $a^2x^2 - bx - c = 0$:.

$$a^2\beta^2 - b\beta - c = 0 \qquad(2)$$

Now, let $f(x) = a^2x^2 + 2bx + 2c$

Then $f(\alpha) = a^2 \alpha^2 + 2b \alpha + 2c = a^2 \alpha^2 + 2(b \alpha + c)$

 $= a^2 \alpha^2 + 2(-a^2 \alpha^2)$ [Using eq. (1)]

 $=-a^2\alpha^2$.

and $f(\beta) = a^2\beta^2 + 2b\beta + 2c$

$$= a^2\beta^2 + 2(b\beta + c)$$

$$= a^2 \beta^2 + 2(a^2 \beta^2)$$
 [Using eq. (2)]

 $=3a^2\beta^2 > 0.$

Since $f(\alpha)$ and $f(\beta)$ are of opposite signs and γ is a root of equation f(x) = 0

 \therefore γ must lie between α and β

Thus $\alpha < \gamma < \beta$ (d) is the correct option.

17. (a) The given eq. is $\sin(e^x) = 5^x + 5^{-x}$ We know 5^x and 5^{-x} both are +ve real numbers using

$$AM \ge GM : 5^x + \frac{1}{5^x} \ge 2 \implies 5^x + 5^{-x} \ge 2$$

R.H.S. of given eq. ≥ 2

While sin $e^x \in [-1,1]$ i.e. LHS $\in [-1,1]$

- The equation is not possible for any real value of x. Hence (a) is the correct answer.
- 18. (c) α , β are roots of the equation (x-a)(x-b) = c, $c \neq 0$
 - $(x-a)(x-b)-c=(x-\alpha)(x-\beta)$
 - \Rightarrow $(x-\alpha)(x-\beta)+c=(x-a)(x-b)$
 - \Rightarrow roots of $(x-\alpha)(x-\beta)+c=0$ are a and b.
 - (c) is the correct option.
- 19. (a) We have

$$y = 5x^2 + 2x + 3 = 5\left(x + \frac{1}{5}\right)^2 + \frac{14}{5} > 2, \ \forall x \in R$$

while $y = 2 \sin x \le 2, \forall x \in R$

- \Rightarrow The two curves do not meet at all.
- **(b)** For real roots $q^2 4pr \ge 0$ 20.

$$\Rightarrow \left(\frac{p+r}{2}\right)^2 - 4pr \ge 0 \qquad (\because p, q, r \text{ are in A.P.})$$

$$\Rightarrow p^2 + r^2 - 14pr \ge 0 \Rightarrow \frac{p^2}{r^2} - 14\frac{p}{r} + 1 \ge 0$$

$$\Rightarrow \left(\frac{p}{r} - 7\right)^2 - 48 \ge 0 \Rightarrow \left|\frac{p}{r} - 7\right| \ge 4\sqrt{3}$$

21. (c) For the equation $px^2 + qx + 1 = 0$ to have real roots

$$D \ge 0$$
 $\Rightarrow q^2 \ge 4p$

If p = 1 then $q^2 \ge 4 \implies q = 2, 3, 4$

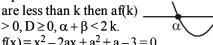
If
$$p = 2$$
 then $q^2 \ge 8 \implies q = 3, 4$

If
$$p = 3$$
 then $q^2 \ge 12 \implies q = 4$

If
$$p = 4$$
 then $q^2 \ge 16 \implies q = 4$

- \therefore No. of req. equations = 7.
- (a) KEY CONCEPT: If both 22.

roots of a quadratic equation $ax^2 + bx + c = 0$ are less than k then af(k)



 $f(x) = x^2 - 2ax + a^2 + a - 3 = 0$,

$$f(3) > 0, \alpha + \beta < 6, D \ge 0.$$

 $\Rightarrow a^2 - 5a + 6 > 0, a < 3, -4a + 12 \ge 0$

- $\Rightarrow a < 2 \text{ or } a > 3, a < 3, a < 3 \Rightarrow a < 2.$
- 23. **(b)** Given c < 0 < b and $\alpha + \beta = -b$...(1) $\alpha\beta = c$...(2)

From (2), $c < 0 \Rightarrow \alpha\beta < 0 \Rightarrow$ either α is -ve or β is -ve and second ;quantity is positive.

from (1), $b > 0 \Rightarrow -b < 0 \Rightarrow \alpha + \beta < 0 \Rightarrow$ the sum is negative

⇒ modules of nengative quantity is > modulus of positive quantity but $\alpha < \beta$ is given. Therefore, it is clear that α is negative and β is positive and modulus of α is greater than modulus of $\beta \Rightarrow \alpha < 0 < \beta < |\alpha|$

(a) As A.M. \geq G.M. for positive real numbers, we get

$$\frac{(a+b)+(c+d)}{2} \ge \sqrt{(a+b)(c+d)} \Rightarrow M \le 1$$

(Putting values)
Also
$$(a+b)(c+d) > 0$$
 [:. a,b,c,d>0]

$$0 \le M \le 1$$

25. (d) The given equation is (x-a)(x-b)-1=0, b>a.

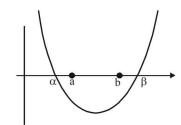
or
$$x^2 - (a+b)x + ab - 1 = 0$$

Let
$$f(x) = x^2 - (a+b)x + ab - 1$$

Since coeff. of x^2 i.e. 1 > 0, \therefore it represents upward parabola, intersecting x - axis at two points. (corresponding to two real roots, D being +ve). Also $f(a) = f(b) = -1 \implies$ curve is below x-axis at a and b

 \Rightarrow a and b both lie between the roots.

Thus the graph of given eqⁿ is as shown.



from graph it is clear that one root of the equation lies in $(-\infty, a)$ and other in (b, ∞) .

(c) Let α , α^2 be the roots of $3x^2 + px + 3$.

$$\therefore$$
 $\alpha + \alpha^2 = -p/3$ and $\alpha^3 = 1$

 $\Rightarrow (\alpha-1)(\alpha^2+\alpha+1)=0 \Rightarrow \alpha=1 \text{ or } \alpha^2+\alpha=-1$ If $\alpha = 1$, p = -6 which is not possible as p > 0

If
$$\alpha^2 + \alpha = -1 \implies -p/3 = -1 \implies p = 3$$
.

(a) We have 27.

$$\frac{(a_1 + a_2 + \dots + a_{n-1} + 2a_n)}{n} \ge (a_1 a_2 \dots a_{n-1} 2a_n)^{1/n}$$

[Using A.M.
$$\geq$$
 G.M.]

$$\Rightarrow a_1 + a_2 + a_3 + \dots + a_{n-1} + 2a_n \ge n(2c)^{1/n}$$

 $\Rightarrow a_1 + a_2 + a_3 + \dots + a_{n-1} + 2a_n \ge n(2c)^{1/n}$ **28. (b)** For x < -2, |x+2| = -(x+2) and the inequality

$$x^2 + x + 2 + x > 0 \implies (x+1)^2 + 1 > 0$$

which is valid $\forall x \in R \text{ but } x < -2$

$$\therefore x \in (-\infty, -2) \qquad \dots (1)$$

For $x \ge 2$, |x+2| = x+2 and the inequality becomes

$$x^2 - x - 2 + x > 0 \Rightarrow x^2 > 2 \Rightarrow x > \sqrt{2} \text{ or } x < -\sqrt{2}$$

i.e.,
$$x \in (-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)$$

but $x \ge -2 \Rightarrow x \in [-2, -\sqrt{2}) \cup (\sqrt{2}, \infty)$...(2)

From (1) and (2)

$$x \in (-\infty, -2) \cup [-2, -\sqrt{2}) \cup (\sqrt{2}, \infty)$$

- $\Rightarrow x \in (-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)$
- **29.** (a) Let $a = \sqrt{x^2 + x}$ and $b = \frac{\tan^2 \alpha}{\sqrt{x^2 + x}}$

then using AM \geq GM, we get $\frac{a+b}{2} \geq \sqrt{ab}$

$$\Rightarrow a+b \ge 2\sqrt{ab}$$

$$\Rightarrow \sqrt{x^2 + x} + \frac{\tan^2 \alpha}{\sqrt{x^2 + x}} \ge 2\sqrt{\tan^2 \alpha} = 2\tan \alpha$$

$$[:: \alpha \in (0, \pi/2)]$$

30. (b) KEY CONCEPT: $f(x) = ax^2 + bx + c$ has same sign as that of a if D < 0.

$$x^{2} + 2ax + 10 - 3a > 0 \forall x$$

$$\Rightarrow D < 0 \Rightarrow 4a^2 - 4(10 - 3a) < 0 \Rightarrow a^2 + 3a - 10 < 0$$

$$\Rightarrow$$
 $(a+5)(a-2) < 0 \Rightarrow a \in (-5,2)$

31. (a) $x^2 + px + q = 0$

Let roots be α and α^2

$$\Rightarrow \alpha + \alpha^2 = -p, \alpha\alpha^2 = q \Rightarrow \alpha = q^{1/3}$$

$$\therefore$$
 $(q)^{1/3} + (q^{1/3})^2 = -p$

Taking cube of both sides, we get

$$q+q^2+3q(q^{1/3}+q^{2/3})=-p^3$$

$$\Rightarrow q+q^2-3pq=-p^3 \Rightarrow p^3+q^2-q(3p-1)=0$$

32. (a) : a, b, c are sides of a triangle and $a \neq b \neq c$

$$|a-b| < |c| \Rightarrow a^2 + b^2 - 2ab < c^2$$
 Similarly, we have

$$b^2 + c^2 - 2bc < a^2 : c^2 + a^2 - 2ca < b^2$$

On adding, we get

$$a^2 + b^2 + c^2 < 2(ab + bc + ca)$$

$$\Rightarrow \frac{a^2 + b^2 + c^2}{ab + bc + ca} < 2 \qquad \dots (1)$$

: Roots of the given equation are real

$$\therefore (a+b+c)^2 - 3\lambda(ab+bc+ca) \ge 0$$

$$\Rightarrow \frac{a^2 + b^2 + c^2}{ab + bc + ca} \ge 3\lambda - 2 \qquad \dots (2)$$

From (1) and (2), we get $3\lambda - 2 < 2 \Rightarrow \lambda < \frac{4}{3}$

33. (d) As α , β are the roots of $x^2 - px + r = 0$

$$\therefore \quad \alpha + \beta = p \qquad \dots (1)$$
and $\alpha\beta = r \qquad \dots (2)$

Also $\frac{\alpha}{2}$, 2β are the roots of $x^2 - qx + r = 0$

$$\therefore \quad \frac{\alpha}{2} + 2\beta = q \quad \text{or} \quad \alpha + 4\beta = 2q \qquad \dots (3)$$

Solving (1) and (3) for α and β , we get

$$\beta = \frac{1}{3} (2q - p)$$
 and $\alpha = \frac{2}{3} (2q - q)$

Substituting values of α and β , in equation (2),

we get
$$\frac{2}{9}(2p-q)(2q-p) = r$$
.

34. (b) Given that $\alpha + \beta = -p$ and $\alpha^3 + \beta^3 = q$

$$\Rightarrow (\alpha + \beta)^3 - 3\alpha\beta (\alpha + \beta) = q$$

$$\Rightarrow -p^3 - 3\alpha\beta (-p) = q \Rightarrow \alpha\beta = \frac{p^3 + q}{3p}$$

Now for required quadratic equation,

sum of roots =
$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta}$$

$$=\frac{(\alpha+\beta)^2-2\alpha\beta}{\alpha\beta}=\frac{p^2-2\left(\frac{p^3+q}{3p}\right)}{\frac{p^3+q}{3p}}$$

$$= \frac{3p^3 - 2p^3 - 2q}{p^3 + q} = \frac{p^3 - 2q}{p^3 + q}$$

and product of roots = $\frac{\alpha}{\beta} \cdot \frac{\beta}{\alpha} = 1$

$$\therefore \quad \text{Required equation is} \quad x^2 - \left(\frac{p^3 - 2q}{p^3 + q}\right) x + 1 = 0$$

or
$$(p^3 + q)x^2 - (p^3 - 2q)x + (p^3 + q) = 0$$

35. (c) We have
$$(2x)^{\ln 2} = (3y)^{\ln 3}$$

 $\Rightarrow \ln 2 \cdot \ln 2x = \ln 3 \cdot \ln 3y$

$$\Rightarrow \ln 2. \ln 2x = \ln 3. (\ln 3 + \ln y) \qquad ...(1)$$
Also given $3^{\ln x} = 2^{\ln y}$

$$\Rightarrow \ell nx. \ell n3 = \ell ny. \ell n2 \Rightarrow \ell ny = \frac{\ell nx.\ell n3}{\ell n2}$$

Substituting this value of ℓ ny in equation (1), we get

36. (c)
$$\therefore \alpha, \beta$$
 are the roots of $x^2 - 6x - 2 = 0$
 $\therefore \alpha^2 - 6\alpha - 2 = 0$

$$\Rightarrow \alpha^{10} - 6\alpha^9 - 2\alpha^8 = 0$$

\Rightarrow \alpha^{10} - 2\alpha^8 = 6\alpha^9 \qquad \text{...(1)}

Similarly
$$\beta^{10} - 2\beta^8 = 6\beta^9$$
 ...(2)

From equation (1) and (2)

$$\alpha^{10} - \beta^{10} - 2(\alpha^8 - \beta^8) = 6(\alpha^9 - \beta^9)$$

$$\Rightarrow a_{10} - 2a_8 = 6a_9 \Rightarrow \frac{a_{10} - 2a_8}{2a_9} = 3$$

(b) Let α be the common root of given equations, then $\alpha^2 + b\alpha - 1 = 0$

nd
$$\alpha^2 + \alpha + b = 0$$

and $\alpha^2 + \alpha + b = 0$ Subtracting (2) from (1), we get

$$(b-1)\alpha - (b+1) = 0$$

or
$$\alpha = \frac{b+1}{b-1}$$

Substituting this value of α in equation (1), we get

$$\left(\frac{b+1}{b-1}\right)^2 + b\left(\frac{b+1}{b-1}\right) - 1 = 0 \text{ or } b^3 + 3b = 0$$

$$\Rightarrow b = 0, i\sqrt{3}, -i\sqrt{3}$$

Quadratic equation with real coefficients and purely 38. (d) imaginary roots can be considered as

$$p(x) = x^2 + a = 0$$
 where $a > 0$ and $a \in R$
The $p[p(x)] = 0 \Rightarrow (x^2 + a)^2 + a = 0$
 $\Rightarrow x^4 + 2ax^2 + (a^2 + a) = 0$

$$\Rightarrow x^2 = \frac{-2a \pm \sqrt{4a^2 - 4a^2 - 4a}}{2}$$

$$\Rightarrow x^2 = -a \pm \sqrt{a} i$$

$$\Rightarrow x = \sqrt{-a \pm \sqrt{a} i} = \alpha \pm i\beta$$
 where $\alpha, \beta \neq 0$

 $\therefore p[p(x)] = 0$ has complex roots which are neither purely real nor purely imaginary.

39. (c) $x^2 - 2x \sec \theta + 1 = 0 \Rightarrow x = \sec \theta \pm \tan \theta$ and $x^2 + 2x \tan \theta - 1 = 0 \Rightarrow x = -\tan \theta \pm \sec \theta$

$$\therefore -\frac{\pi}{6} < \theta < -\frac{\pi}{12}$$

$$\Rightarrow \sec \frac{\pi}{6} > \sec \theta > \sec \frac{\pi}{12}$$

and
$$-\tan\frac{\pi}{6} < \tan\theta < -\frac{\tan\pi}{12}$$

also
$$\tan \frac{\pi}{12} < -\tan \theta < \tan \frac{\pi}{6}$$

 α_1, β_1 are roots of $x^2 - 2x \sec \theta + 1 = 0$ and $\alpha_1 > \beta_1$

$$\therefore \alpha_1 = \sec \theta - \tan \theta \text{ and } \beta_1 = \sec \theta + \tan \theta$$

$$\alpha_2$$
, β_2 are roots of $x^2 + 2x \tan \theta - 1 = 0$ and $\alpha_2 > \beta_2$

$$\therefore \alpha_2 = -\tan \theta + \sec \theta, \ \beta_2 = -\tan \theta - \sec \theta$$

$$\therefore \alpha_1^2 + \beta_2 = \sec \theta - \tan \theta - \tan \theta - \sec \theta = -2\tan \theta$$

- D. MCQs with ONE or MORE THAN ONE Correct
- (c,d) Let $y = \frac{(x-a)(x-b)}{(x-c)}$

$$\Rightarrow (x-c)y = x^2 - (a+b)x + ab$$

$$\Rightarrow x^2 - (a+b+y)x + ab + cy = 0$$

Here,
$$\Delta = (a+b+y)^2 - 4(ab+cy)$$

$$= y^2 + 2y(a+b-2c) + (a-b)^2$$

Since x is real and y assumes all real values.

 \therefore $\Delta \ge 0$ for all real values of y

$$\Rightarrow y^2 + 2y(a+b-2c) + (a-b)^2 \ge 0$$

Now we know that the sign of a quad is same as of coeff of y^2 provided its descriminant $B^2 - 4AC < 0$

This will be so if, $4(a+b-2c)^2-4(a-b)^2<0$

or
$$4(a+b-2c+a-b)(a+b-2c-a+b) < 0$$

$$\Rightarrow 16(a-c)(b-c) < 0$$

$$\Rightarrow 16(c-a)(c-b) < 0 \qquad \dots (1)$$

If a < b then from inequation (1), we get $c \in (a, b)$

$$\Rightarrow a < c < b$$

or If a > b then from inequation (1) we get, $c \in (b, a)$

$$\Rightarrow b < c < a \text{ or } a > c > b$$

Thus, we observe that both (c) and (d) are the correct answer.

2. (a, d) KEY CONCEPT: Wavy curve method:

Let
$$f(x) = (x-\alpha_1)(x-\alpha_2)...(x-\alpha_n)$$

To find sign of f(x), plot $\alpha_1, \alpha_2, \dots \alpha_n$ on number line in ascending order of magnitude. Starting from right extreme put + ve, –ve signs alternately. f(x) is positive in the intervals having + ve sign and negative in the intervals having -ve sign.

We have,

$$f(x) = \frac{2x-1}{2x^3+3x^2+x} = \frac{2x-1}{x(2x+1)(x+1)}$$

NOTE THIS STEP: Critical points are x = 1/2, 0, -1/2, -1On number line by wavy method, we have

For f(x) > 0, when

$$x \in (-\infty, -1) \cup (-1/2, 0) \cup (1/2, \infty)$$

Clearly S contains $(-\infty, -3/2)$ and (1/2, 3)

(b) Given that a, b, c are distinct +ve numbers. The 3. expression whose sign is to be checked is (b+c-a)(c+a)(a-b)(a+b-c)-abc.

As this expression is symmetric in a, b, c, without loss of generality, we can assume that a < b < c.

Then
$$c - a = +$$
 ve and $c - b = +$ ve

$$\therefore$$
 $b+c-a=+$ ve and $c+a-b=+$ ve

But a + b - c may be + ve or – ve.

Case I: If a + b - c = + ve then we can say that a, b, c, are such that sum of any two is greater than the 3rd. Consider x = a + b - c,y = b + c - az = c + a - bthen x, y, z all are + ve.

and then
$$a = \frac{x+z}{2}$$
, $b = \frac{y+x}{2}$, $c = \frac{z+y}{2}$

Now we know that A.M. > G.M. for distinct real numbers

$$\therefore \frac{x+y}{2} > \sqrt{xy}, \frac{y+z}{2} > \sqrt{yz}, \frac{z+x}{2} > \sqrt{zx}$$

$$\Rightarrow \left(\frac{x+y}{2}\right)\left(\frac{y+z}{2}\right)\left(\frac{z+x}{2}\right) > xyz$$

$$\Rightarrow abc > (a+b-c)(b+c-a)(c+a-b)$$

$$\Rightarrow (b+c-a)(c+a-b)(a+b-c)-abc<0$$

Case II: If a+b-c = -ve then

$$(b+c-a)(c+a-b)(a+b-c)-abc$$

$$= (+ve)(+ve)(-ve) - (+ve)$$

$$= (-ve) - (+ve) = (-ve)$$

$$\Rightarrow (b+c-a)(c+a-b)(a+b-c) < abc$$

Hence in either case given expression is -ve.

4. (b) Given that a, b, c, d, p are real and distinct numbers

$$(a^2+b^2+c^2)p^2-2(ab+bc+cd)p+(b^2+c^2+d^2) \le 0$$

$$\Rightarrow (a^2p^2 + b^2p^2 + c^2p^2) - (2abp + 2bcp + 2cdp)$$

$$+(b^2+c^2+d^2) \le 0$$

$$\Rightarrow (a^2p^2 - 2abp + b^2) + (b^2p^2 - 2bcp + c^2) + (c^2p^2 - 2cdp + d^2) \le 0$$

$$\Rightarrow$$
 $(ap-b)^2 + (bp-c)^2 + (cp-d)^2 \le 0$

Being sum of perfect squares, LHS can never be -ve, therefore the only possibility is

$$(ap-b)^2 + (bp-c)^2 + (cp-d)^2 = 0$$

Which is possible only when each term is zero individually

$$ap - b = 0$$
; $bp - c = 0$; $cp - d = 0$

$$\Rightarrow \frac{b}{a} = p; \frac{c}{b} = p; \frac{d}{c} = p \Rightarrow \frac{b}{a} = \frac{c}{b} = \frac{d}{c} = p$$

 $\Rightarrow a,b,c,d$ are in G.P.

(a, b, c) The given equation is, $x^{\frac{3}{4}(\log_2 x)^2 + \log_2 x - \frac{5}{4}} = \sqrt{2}$ For x > 0, taking log on both sides to the base x, we get

$$\frac{3}{4}(\log_2 x)^2 + (\log_2 x) - \frac{5}{4} = \log_x \sqrt{2} = \frac{1}{2}\log_x 2$$

Let $\log_2 x = y$, then we get, $\frac{3}{4}y^2 + y - \frac{5}{4} = \frac{1}{2y}$

$$\Rightarrow 3v^3 + 4v^2 - 5v - 2 = 0$$

$$\Rightarrow$$
 $(y-1)(y+2)(3y+1) = 0 \Rightarrow y = 1,-2,-1/3$

$$\Rightarrow \log_2 x = 1, -2, -1/3 \Rightarrow x = 2, 2^{-2}, 2^{-1/3}$$

$$\Rightarrow x = 2, \frac{1}{4}, \frac{1}{2^{1/3}}$$
 (All accepted as > 0)

There are three real solution in which one is irrational.

(d) Let x_1, x_2, \dots, x_n be the n +ve numbers 6. According to the question, $x_1 x_2 x_3 \dots x_n = 1$...(1) We know for +ve no.'s $A.M. \ge G.M.$

$$\Rightarrow \frac{x_1 + x_2 + \dots + x_n}{n} \ge \sqrt[n]{x_1 x_2 \dots x_n}$$

$$\Rightarrow \frac{x_1 + x_2 + \dots + x_n}{n} \ge 1$$
 [Using eq. (1)]

$$\Rightarrow x_1 + x_2 + ... + x_n \ge n$$

 \Rightarrow $x_1 + x_2 + ... + x_n \ge n$. (a) We have $240 = 2^4 .3.5$. 7. Divisors of 240 are

Out of these divisors just 4 divisors viz., 2, 6, 10, 30 are of the form 4n + 2.

8. (a, b, c) $3^{x} = 4^{x-1} \Rightarrow x \log 3 = 2(x-1) \log 2$

$$\Rightarrow x = \frac{2 \log 2}{2 \log 2 - \log 3} \Rightarrow x = \frac{2 \log_3 2}{2 \log_3 2 - 1} = \frac{2}{2 - \log_2 3}$$

Also
$$x = \frac{1}{1 - \frac{1}{2} \log_2 3} = \frac{1}{1 - \log_4 3}$$

(a, d) $\alpha x^2 - x + \alpha = 0$ has distinct real roots.

$$\therefore$$
 D>0 \Rightarrow 1-4 α^2 >0

$$\Rightarrow \alpha \in \left(-\frac{1}{2}, \frac{1}{2}\right)$$
 ...(i)

Also
$$|x_1 - x_2| < 1$$

 $\Rightarrow (x_1 - x_2)^2 < 1 \Rightarrow (x_1 + x_2)^2 - 4x_1x_2 < 1$

$$\Rightarrow \frac{1}{\alpha^2} - 4 < 1 \Rightarrow \frac{1}{\alpha^2} < 5 \text{ or } \alpha^2 > \frac{1}{5}$$

$$\Rightarrow \alpha \in \left(-\infty, -\frac{1}{\sqrt{5}}\right) \cup \left(\frac{1}{\sqrt{5}}, \infty\right) \qquad ...(ii)$$

Combining (i) and (ii)

$$S = \left(-\frac{1}{2}, -\frac{1}{\sqrt{5}}\right) \cup \left(\frac{1}{\sqrt{5}}, \frac{1}{2}\right)$$

$$\therefore$$
 Subsets of S can be $\left(-\frac{1}{2}, -\frac{1}{\sqrt{5}}\right)$ and $\left(\frac{1}{\sqrt{5}}, \frac{1}{2}\right)$.

E. Subjective Problems

1.
$$4^x - 3^{x-1/2} = 3^{x+1/2} - \frac{(2^2)^x}{2}$$

$$\Rightarrow$$
 $4^x - \frac{3^x}{\sqrt{3}} = 3^x \sqrt{3} - \frac{4^x}{2}$

$$\Rightarrow \frac{3}{2} \cdot 4^x = 3^x \left(\sqrt{3} + \frac{1}{\sqrt{3}} \right) \Rightarrow \frac{3}{2} \cdot 4^x = 3^x \frac{4}{\sqrt{3}}$$

$$\Rightarrow \frac{4^{x-1}}{4^{1/2}} = \frac{3^{x-1}}{\sqrt{3}} \Rightarrow 4^{x-3/2} = 3^{x-3/2}$$

$$\Rightarrow \left(\frac{4}{3}\right)^{x-3/2} = 1 \Rightarrow x - \frac{3}{2} = 0 \Rightarrow x = 3/2$$

2. RHS =
$$(m-1, n+1) + x^{m-n-1}(m-1, n)$$

$$=\frac{(1-x^{m-1})(1-x^{m-2})...(1-x^{m-n-1})}{(1-x)(1-x^2)...(1-x^{n+1})}$$

$$+x^{m-n-1} \left[\frac{(1-x^{m-1})(1-x^{m-2})...(1-x^{m-n})}{(1-x)(1-x^2)...(1-x^n)} \right]$$

$$=\frac{(1-x^{m-1})(1-x^{m-2})...(1-x^{m-n})}{(1-x)(1-x^2)...(1-x^n)}$$

$$\left[\frac{1-x^{m-n-1}}{1-x^{n+1}} + x^{m-n-1}\right]$$

$$\left[\frac{1 - x^{m-n-1} + x^{m-n-1} - x^m}{1 - x^{n+1}}\right]$$

$$=\frac{\left(1-x^{m}\right)\left(1-x^{m-1}\right)...\left(1-x^{m-n}\right)}{\left(1-x\right)\left(1-x^{2}\right)...\left(1-x^{n}\right)\left(1-x^{n+1}\right)}$$

$$= (m, n+1) = L.H.S.$$
 Hence Proved

3.
$$\sqrt{x+1} = 1 + \sqrt{x-1}$$

Squaring both sides, we get

$$x+1=1+x-1+2\sqrt{x-1} \implies 1=2\sqrt{x-1}$$
.

$$\Rightarrow 1=4(x-1)$$

$$\Rightarrow x = 5/4$$

4. Given a > 0, so we have to consider two cases: $a \ne 1$ and a = 1. Also it is clear that x > 0and $x \ne 1$, $ax \ne 1$, $a^2x \ne 1$.

Case I: If $a > 0, \neq 1$

then given equation can be simplified as

$$\frac{2}{\log_a x} + \frac{1}{1 + \log_a x} + \frac{3}{2 + \log_a x} = 0$$

Putting $\log_a x = y$, we get

$$2(1+y)(2+y)+y(2+y)+3y(1+y)=0$$

$$\Rightarrow$$
 $6y^2 + 11y + 4 = 0 \Rightarrow y = -4/3 \text{ and } -1/2$

$$\Rightarrow \log_a x = -4/3$$
 and $\log_a x = -1/2$

$$\Rightarrow$$
 $x = a^{-4/3}$ and $x = a^{-1/2}$

Case II : If a = 1 then equation becomes

 $2 \log_x 1 + \log_x 1 + 3 \log_x 1 = 6 \log_x 1 = 0$

which is true $\forall x > 0, \neq 1$

Hence solution is if $a = 1, x > 0, \neq 1$

if
$$a > 0, \neq 1$$
; $x = a^{-1/2}, a^{-4/3}$

5. Let
$$x = \frac{\sqrt{26-15\sqrt{3}}}{5\sqrt{2}-\sqrt{38+5\sqrt{3}}}$$

$$\Rightarrow x^2 = \frac{26 - 15\sqrt{3}}{50 + 38 + 5\sqrt{3} - 10\sqrt{76 + 10\sqrt{3}}}$$

$$\Rightarrow x^2 = \frac{26 - 15\sqrt{3}}{88 + 5\sqrt{3} - 10\sqrt{75 + 1 + 10\sqrt{3}}}$$

$$\Rightarrow x^2 = \frac{26 - 15\sqrt{3}}{88 + 5\sqrt{3} - 10\sqrt{(5\sqrt{3})^2 + (1)^2 + 2 \times 5\sqrt{3} \times 1}}$$

$$\Rightarrow x^2 = \frac{26 - 15\sqrt{3}}{88 + 5\sqrt{3} - 10\sqrt{(5\sqrt{3} + 1)^2}}$$

$$=\frac{26-15\sqrt{3}}{3(26-15\sqrt{3})}=\frac{1}{3}$$
, which is a rational number.

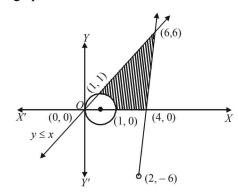
6.
$$x^2 + y^2 - 2x \ge 0 \Rightarrow x^2 - 2x + 1 + y^2 \ge 1$$

 \Rightarrow $(x-1)^2 + y^2 \ge 1$ which represents the boundary and exterior region of the circle with centre at (1,0) and radius as 1. For $3x-y \le 12$, the corresponding equation is 3x-y=12; any two points on it can be taken as (4, 0), (2, -6). Also putting (0, 0) in given inequation, we get $0 \le 12$ which is true

 \therefore given inequation represents that half plane region of line 3x - y = 12 which contains origin.

For $y \le x$, the corresponding equation y = x has any two points on it as (0, 0) and (1, 1). Also putting (2, 1) in the given inequation, we get $1 \le 2$ which is true, so $y \le x$ represents that half plane which contains the points (2, 1). $y \ge 0$ represents upper half cartesian plane.

Combining all we find the solution set as the shaded region in the graph.



7. There are two parts of this question $(5x-1) < (x+1)^2$ and $(x+1)^2 < (7x-3)$ Taking first part

$$(5x-1) < (x+1)^2 \implies 5x-1 < x^2 + 2x + 1$$

$$\Rightarrow x^2 - 3x + 2 > 0 \Rightarrow (x-1)(x-2) > 0$$

$$+$$
 $+$ $+$ $+$ $+$ $+$ (using wavy method)

$$\Rightarrow x < 1 \text{ or } x > 2$$
(1)

Taking second part

$$(x+1)^{2} < (7x-3) \Rightarrow x^{2} - 5x + 4 < 0$$

$$\Rightarrow (x-1)(x-4) < 0$$

$$\xrightarrow{+} \xrightarrow{-} \xrightarrow{+} \text{(using wavy method)}$$

$$\begin{array}{c|cccc} & & & & & & \\ \hline -\infty & 1 & 4 & +\infty & \text{(using wavy method)} \\ \Rightarrow & 1 < x < 4 & & \dots \end{array}$$

Combining (1) and (2) [taking common solution], we get 2 < x < 4 but x is an integer therefore x = 3.

8.
$$\therefore$$
 α , β are the roots of $x^2 + px + q = 0$

$$\therefore \alpha + \beta = -p, \quad \alpha\beta = q$$

$$\therefore$$
 γ, δ are the roots of $x^2 + rx + s = 0$

$$\therefore \gamma + \delta = -r, \gamma \delta = s$$

Now,
$$(\alpha - \gamma)(\alpha - \delta)(\beta - \gamma)(\beta - \delta)$$

=
$$[\alpha^2 - (\gamma + \delta)\alpha + \gamma\delta][\beta^2 - (\gamma + \delta)\beta + \gamma\delta]$$

$$= [\alpha^2 + r\alpha + s][\beta^2 + r\beta + s]$$

[:
$$\alpha$$
, β are roots of $x^2 + px + q = 0$

$$\therefore \alpha^2 + p\alpha + q = 0 \text{ and } \beta^2 + p\beta + q = 0]$$

$$= [(r-p)\alpha + (s-q)][(r-p)\beta + (s-q)]$$

$$= (r-p)^2 \alpha \beta + (r-p)(s-q)(\alpha+\beta) + (s-q)^2$$

$$= q(r-p)^2 - p(r-p)(s-q) + (s-q)^2$$

Now if the equations $x^2 + px + q = 0$ and $x^2 + rx + s = 0$ have a common root say α , then $\alpha^2 + p\alpha + q = 0$ and $\alpha^2 + r\alpha + s = 0$

$$\Rightarrow \frac{\alpha^2}{ps-qr} = \frac{\alpha}{q-s} = \frac{1}{r-p}$$

$$\Rightarrow \alpha^2 = \frac{ps - qr}{r - p}$$
 and $\alpha = \frac{q - s}{r - p}$

 \Rightarrow $(q-s)^2 = (r-p)(ps-qr)$ which is the required condition.

9. Given that $n^4 < 10^n$ for a fixed + ve integer $n \ge 2$.

To prove that $(n + 1)^4 < 10^{n+1}$

Proof: Since
$$n^4 < 10^n \implies 10n^4 < 10^{n+1}$$
(1)

So it is sufficient to prove that $(n+1)^4 < 10n^4$

Now
$$\left(\frac{n+1}{n}\right)^4 = \left(1 + \frac{1}{n}\right)^4 \le \left(1 + \frac{1}{2}\right)^4 \ [\because n \ge 2]$$
$$= \frac{81}{16} < 10$$

$$\Rightarrow (n+1)^4 < 10n^4$$

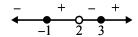
$$^{4} < 10n^{4}$$
 (2)

From (1) and (2), $(n+1)^4 < 10^{n+1}$

10.
$$y = \sqrt{\frac{(x+1)(x-3)}{(x-2)}}$$

y will take all real values if $\frac{(x+1)(x-3)}{(x-2)} \ge 0$

By wavy method



$$x \in [-1,2) \cup [3,\infty)$$

[2 is not included as it makes denominator zero, and hence y an undefined number.]

The given equations are 3x + my - m = 0 and 2x - 5y - 20 = 0Solving these equations by cross product method, we get

$$\frac{x}{-20m-5m} = \frac{y}{-2m+60} = \frac{1}{-15-2m}$$
 NOTE THIS STEP

$$\Rightarrow x = \frac{25m}{2m+15}, y = \frac{2m-60}{2m+15}$$

For
$$x > 0 \Rightarrow \frac{25m}{2m+15} > 0$$

$$\Rightarrow m < -\frac{15}{2} \text{ or } m > 0 \qquad \dots(1)$$

For
$$y > 0 \Rightarrow \frac{2(m-30)}{2m+15} > 0$$

$$\Rightarrow m < -\frac{15}{2} \text{ or } m > 30 \qquad \dots(2)$$

Combining (1) and (2), we get the common values of m as follows:

$$m < -\frac{15}{2}$$
 or $m > 30$ \therefore $m \in \left(-\infty, \frac{-15}{2}\right) \cup (30, \infty)$

12. The given system is

$$x + 2y + z = 1$$
(1)

$$2x-3y-\omega=2 \qquad(2)$$

where $x, y, z, \omega \ge 0$

Multiplying eqn. (1) by 2 and subtracting from (2), we get

$$7y + 2z + \omega = 0 \implies \omega = -(7y + 2z)$$

Now if y, z > 0, $\omega < 0$ (not possible)

If
$$y = 0$$
, $z = 0$ then $x = 1$ and $\omega = 0$.

 \therefore The only solution is x = 1, y = 0, z = 0, $\omega = 0$.

13.
$$e^{\sin x} - e^{-\sin x} - 4 = 0$$

Let
$$e^{\sin x} = y$$
 then $e^{-\sin x} = 1/y$

$$\therefore$$
 Equation becomes, $y - \frac{1}{y} - 4 = 0$

$$\Rightarrow y^2 - 4y - 1 = 0 \Rightarrow y = 2 + \sqrt{5}, 2 - \sqrt{5}$$

But y is real +ve number,

$$\therefore v \neq 2 - \sqrt{5} \implies y = 2 + \sqrt{5}$$

$$\Rightarrow e^{\sin x} = 2 + \sqrt{5} \Rightarrow \sin x = \log_e(2 + \sqrt{5})$$

But
$$2+\sqrt{5}>e \Rightarrow \log_e(2+\sqrt{5})>\log_e e$$

$$\Rightarrow \log_e(2+\sqrt{5}) > 1$$

Hence, $\sin x > 1$

Which is not possible.

- :. Given equation has no real solution.
- **14.** For any square there can be at most 4, neighbouring squares.

	q				
P	d	r		i !	
	S			 	
				i L	

Let for a square having largest number d, p, q, r, s be written then

According to the question,

$$p+q+r+s=4d$$

$$\Rightarrow (d-p)+(d-q)+(d-r)+(d-s)=0$$

Sum of four +ve numbers can be zero only if these are zero individually

$$\therefore d-p=0=d-q=d-r=d-s$$

$$\Rightarrow$$
 $p=q=r=s=d$

 \Rightarrow all the numbers written are same.

Hence Proved.

15. Let α , β be the roots of eq. $ax^2 + bx + c = 0$

According to the question, $\beta = \alpha^n$

Also

$$\alpha + \beta = -b/a$$
; $\alpha\beta = c/a$

$$\alpha\beta = \frac{c}{a} \Rightarrow \alpha.\alpha^n = \frac{c}{a} \Rightarrow \alpha = \left(\frac{c}{a}\right)^{\frac{1}{n+1}}$$

then
$$\alpha + \beta = -b/a \implies \alpha + \alpha^n = \frac{-b}{a}$$

or
$$\left(\frac{c}{a}\right)^{\frac{1}{n+1}} + \left(\frac{c}{a}\right)^{\frac{n}{n+1}} = \frac{-b}{a}$$

$$\Rightarrow a \cdot \left(\frac{c}{a}\right)^{\frac{1}{n+1}} + a \cdot \left(\frac{c}{a}\right)^{\frac{n}{n+1}} + b = 0$$

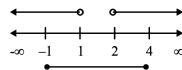
$$\Rightarrow a^{\frac{n}{n+1}}c^{\frac{1}{n+1}} + a^{\frac{1}{n+1}}c^{\frac{n}{n+1}} + b = 0$$

$$\Rightarrow (a^{n}c)^{\frac{1}{n+1}} + (ac^{n})^{\frac{1}{n+1}} + b = 0$$

Hence Proved.

16.
$$x^2 - 3x + 2 > 0$$
, $x^2 - 3x - 4 \le 0$

$$\Rightarrow (x-1)(x-2) > 0 \text{ and } (x-4)(x+1) < 0$$



$$\Rightarrow x \in (-\infty, 1) \cup (2, \infty) \text{ and } x \in [-1, 4]$$

$$\therefore$$
 Common solution is $[-1, 1) \cup (2, 4]$

The given equation is

$$(5+2\sqrt{6})^{x^2-3} + (5-2\sqrt{6})^{x^2-3} = 10$$
(1)

Let
$$(5+2\sqrt{6})^{x^2-3} = y$$
(2)

then
$$(5-2\sqrt{6})^{x^2-3} = \left(\frac{(5-2\sqrt{6})(5+2\sqrt{6})}{5+2\sqrt{6}}\right)^{x^2-3}$$

$$= \left(\frac{25 - 24}{5 + 2\sqrt{6}}\right)^{x^{2-3}} = \left(\frac{1}{5 + 2\sqrt{6}}\right)^{x^{2-3}} = \frac{1}{y} \text{ (Using (2))}$$

$$\therefore$$
 The given equation (1) becomes $y + \frac{1}{y} = 10$

$$\Rightarrow y^2 - 10y + 1 = 0 \Rightarrow y = \frac{10 \pm \sqrt{100 - 4}}{2} = \frac{10 \pm 4\sqrt{6}}{2}$$

$$\Rightarrow$$
 $y = 5 + 2\sqrt{6}$ or $5 - 2\sqrt{6}$

Consider, $v = 5 + 2\sqrt{6}$

$$\Rightarrow \left(5 + 2\sqrt{6}\right)^{x^{2-3}} = \left(5 + 2\sqrt{6}\right)$$

$$\Rightarrow x^2 - 3 = 1 \Rightarrow x^2 = 4 \Rightarrow x = +2$$

Again consider

$$y = 5 - 2\sqrt{6} = \frac{1}{5 + 2\sqrt{6}} = (5 + 2\sqrt{6})^{-1}$$

$$\Rightarrow (5+2\sqrt{6})^{x^{2-3}} = (5+2\sqrt{6})^{-1} \Rightarrow x^2-3=-1$$

$$\Rightarrow x^2 = 2 \Rightarrow x = \pm \sqrt{2}$$

Hence the solutions are $2, -2, \sqrt{2}, -\sqrt{2}$.

18. The given equation is,

$$x^2 - 2a |x - a| - 3a^2 = 0$$

Here two cases are possible.

Case I :
$$x - a > 0$$
 then $|x - a| = x - a$

∴ Eq. becomes

$$x^2 - 2a(x-a) - 3a^2 = 0$$

or
$$x^2 - 2ax - a^2 = 0 \implies x = \frac{2a \pm \sqrt{4a^2 + 4a^2}}{2}$$

$$\Rightarrow x = a \pm a\sqrt{2}$$

Case II:
$$x - a < 0$$
 then $|x - a| = -(x - a)$

$$\therefore \text{ Eq. becomes}$$

$$x^2 + 2a(x-a) - 3a^2 = 0$$

or
$$x^2 + 2ax - 5a^2 = 0 \implies x = \frac{-2a \pm \sqrt{4a^2 + 20a^2}}{2}$$

 $\Rightarrow x = \frac{-2a \pm 2a\sqrt{6}}{2} \Rightarrow x = -a \pm a\sqrt{6}$

Thus the solution set is $\{a \pm a\sqrt{2}, -a \pm a\sqrt{6}\}\$

19. We are given $\frac{2x}{2x^2+5x+2} > \frac{1}{x+1}$

$$\Rightarrow \frac{2x}{2x^2 + 5x + 2} - \frac{1}{x + 1} > 0$$

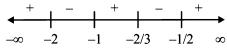
$$\Rightarrow \frac{2x^2 + 2x - 2x^2 - 5x - 2}{(2x^2 + 5x + 2)(x + 1)} > 0$$

$$\Rightarrow \frac{-3x-2}{(2x+1)(x+1)(x+2)} > 0 \Rightarrow \frac{(3x+2)}{(x+1)(x+2)(2x+1)} < 0$$

$$\Rightarrow \frac{(3x+2)(x+1)(x+2)(2x+1)}{(x+1)^2(x+2)^2(2x+1)^2} < 0$$

$$\Rightarrow$$
 $(3x+2)(x+1)(x+2)(2x+1)<0$ (1

NOTE THIS STEP: Critical pts are x = -2/3, -1, -2, -1/2On number line



Clearly Inequality (1) holds for,

$$x \in (-2, -1) \cup (-2/3, -1/2)$$

[as
$$x \neq -2, -1, -2/3, -1/2$$
]

20. The Given equation is,

$$|x^2+4x+3|+2x+5=0$$

Now there can be two cases.

Case I:
$$x^2 + 4x + 3 \ge 0 \implies (x+1)(x+3) \ge 0$$

$$\Rightarrow x \in (-\infty, -3] \cup [-1, \infty)$$
(i)

Then given equation becomes

$$\Rightarrow x^2 + 6x + 8 = 0$$

$$\Rightarrow$$
 $(x+4)(x+2)=0 \Rightarrow x=-4,-2$

But x = -2 does not satisfy (i), hence rejected

 \therefore x = -4 is the sol.

Case II: $x^2 + 4x + 3 < 0$

$$\Rightarrow (x+1)(x+3) < 0$$

$$\Rightarrow x \in (-3, -1)$$
(ii)

Then given equation becomes,

$$-(x^2+4x+3)+2x+5=0$$

$$\Rightarrow -x^2 - 2x + 2 = 0 \Rightarrow x^2 + 2x - 2 = 0$$

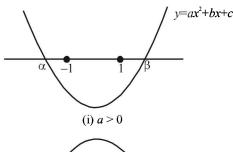
$$\Rightarrow x = \frac{-2 \pm \sqrt{4+8}}{2} \Rightarrow x = -1 + \sqrt{3}, -1 - \sqrt{3}$$

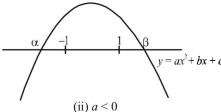
Out of which $x = -1 - \sqrt{3}$ is sol.

Combining the two cases we get the solutions of given equation as $x = -4, -1 - \sqrt{3}$.

21. Given that for $a, b, c \in R$, $ax^2 + bx + c = 0$ has two real roots α and β , where $\alpha < -1$ and $\beta > 1$. There may be two cases depending upon value of a, as shown below.

In each of cases (i) and (ii) af(-1) < 0 and af(1) < 0





 $\Rightarrow a(a-b+c) < 0 \text{ and } a(a+b+c) < 0$

Dividing by a^2 (> 0), we get

$$1 - \frac{b}{a} + \frac{c}{a} < 0$$
(1)

and

$$1 + \frac{b}{a} + \frac{c}{a} < 0$$
(2)

Combining (1) and (2) we get

$$1+\left|\frac{b}{a}\right|+\frac{c}{a}<0$$
 or $1+\frac{c}{a}+\left|\frac{b}{a}\right|<0$ Hence Proved.

22.
$$a^2 = p^2 + s^2, b^2 = (1-p)^2 + q^2$$

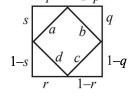
 $c^2 = (1-q)^2 + (1-r)^2, d^2 = r^2 + (1-s)^2$
 $\therefore a^2 + b^2 + c^2 + d^2 = \{p^2 + (1-p)^2\} + \{q^2 - (1-q)^2\} + \{r^2 + (1-r)^2\} + \{s^2 + (1-s)^2\}$

where p, q, r, s all vary in the interval [0, 1].

Now consider the function

$$y^2 = x^2 + (1-x)^2$$
, $0 \le x \le 1$,

$$2y\frac{dy}{dx} = 2x - 2(1 - x) = 0$$



$$\Rightarrow$$
 $x = \frac{1}{2}$ which $\frac{d^2y}{dx^2} = 4$ i.e.+ive

Hence y is minimum at $x = \frac{1}{2}$ and its minimum

value is $\frac{1}{4} + \frac{1}{4} = \frac{1}{2}$.

Clearly value is maximum at the end pts which is 1.

:. Minimum value of
$$a^2 + b^2 + c^2 + d^2 = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 2$$

and maximum value is 1+1+1+1=4. Hence proved.

23. We know that,

$$(\alpha - \beta)^2 = [(\alpha + \delta) - (\beta + \delta)]^2$$

$$\Rightarrow \frac{b^2}{a^2} - \frac{4c}{a} = \frac{B^2}{A^2} - \frac{4C}{A} \Rightarrow \frac{4ac - b^2}{a^2} = \frac{4AC - B^2}{A^2}$$

[Here
$$\alpha + \beta = -\frac{b}{a}$$
, $\alpha\beta = \frac{c}{a}$,

$$(\alpha + \delta) (\beta + \delta)$$

$$=-\frac{B}{A}$$
 and $(\alpha + \delta)(\beta + \delta) = \frac{C}{A}$

Hence proved.

24. Divide the equation by a^3 , we get

$$x^2 + \frac{b}{a} \cdot \frac{c}{a} \cdot x + \left(\frac{c}{a}\right)^3 = 0$$

$$\Rightarrow x^2 - (\alpha + \beta) \cdot (\alpha \beta) x + (\alpha \beta)^3 = 0$$

$$\Rightarrow x^2 - \alpha^2 \beta x - \alpha \beta^2 x + (\alpha \beta)^3 = 0$$

$$\Rightarrow x(x-\alpha^2\beta)-\alpha\beta^2(x-\alpha^2\beta)=0$$

$$\Rightarrow (x - \alpha^2 \beta) (x - \alpha \beta^2) = 0$$

 $\Rightarrow x = \alpha^2 \beta$, $\alpha \beta^2$ which is the required answer.

25. The given equation is,

$$x^2 + (a-b)x + (1-a-b) = 0, a, b \in R$$

For this eqⁿ to have unequal real roots $\forall b$

$$\Rightarrow (a-b)^2 - 4(1-a-b) > 0$$

$$\Rightarrow a^2 + b^2 - 2ab - 4 + 4a + 4b > 0$$

$$\Rightarrow b^2 + b(4-2a) + a^2 + 4a - 4 > 0$$

Which is a quadratic expression in b, and it will be true

 $\forall b \in R$ if discriminant of above eqⁿ less than zero.

i.e.,
$$(4-2a)^2 - 4(a^2+4a-4) < 0$$

$$\Rightarrow$$
 $(2-a)^2 - (a^2 + 4a - 4) < 0$

$$\Rightarrow$$
 4-4a+a²-a²-4a+a<0

$$\Rightarrow$$
 $-8a+8<0$

$$\Rightarrow a > 1$$

26. Given that a, b, c are positive real numbers. To prove that $(a+1)^7(b+1)^7(c+1)^7 > 7^7a^4b^4c^4$

Consider L.H.S. =
$$(1+a)^7 \cdot (1+b)^7 \cdot (1+c)^7$$

$$= [(1+a)(1+b)(1+c)]^7$$

$$[1+a+b+c+ab+bc+ca+abc]^7$$

$$> [a+b+c+ab+bc+ca+abc]^7$$
(1

Now we know that AM \geq GM using it for +ve no's a, b, c, ab, bc, ca and abc, we get

$$\frac{a+b+c+ab+bc+ca+abc}{7} \ge (a^4b^4c^4)^{1/7}$$

$$\Rightarrow (a+b+c+ab+bc+ca+abc)^7 \ge 7^7 (a^4b^4c^4)a$$

From (1) and (2), we get

$$[(1+a)(1+b)(1+c)]^7 > 7^7a^4b^4c^4$$

Hence Proved. **27.** Roots of $x^2 - 10cx - 11d = 0$ are a and b

$$\Rightarrow a+b=10c \text{ and } ab=-11d$$

Similarly c and d are the roots of $x^2 - 10ax - 11b = 0$

$$\Rightarrow c + d = 10a$$
 and $cd = -11b$

$$\Rightarrow a+b+c+d=10 (a+c)$$
 and $abcd=121 bd$

$$\Rightarrow b+d=9(a+c)$$
 and $ac=121$

Also we have $a^2 - 10 ac - 11d = 0$ and $c^2 - 10ac - 11b = 0$

$$\Rightarrow a^2 + c^2 - 20ac - 11(b+d) = 0$$

$$\Rightarrow$$
 $(a+c)^2-22\times 121-99 (a+c)=0$

$$\Rightarrow a+c=121 \text{ or } -22$$

For a + c = -22, we get a = c

rejecting this value we have a + c = 121

$$a+b+c+d=10 (a+c)=1210$$

H. Assertion & Reason Type Questions

- **(b)** As $a, b, c, p, q \in R$ and the two given equations have 1. exactly one common root
 - ⇒ Either both equations have real roots

$$\Rightarrow$$
 Either $\Delta_1 \ge 0$ and $\Delta_2 \ge 0$ or $\Delta_1 \le 0$ and $\Delta_2 \le 0$

$$\Rightarrow p^2 - q \ge 0 \text{ and } b^2 - ac \ge 0$$

or
$$p^2 - q \le 0$$
 and $b^2 - ac \le 0$

$$\Rightarrow (p^2 - q)(b^2 - ac) \ge 0$$

: Statement 1 is true.

Also we have
$$\alpha\beta = q$$
 and $\frac{\alpha}{\beta} = \frac{c}{a}$

$$\therefore \frac{\alpha\beta}{\alpha/\beta} = \frac{q}{c} \times a \implies \beta^2 = \frac{qa}{c}$$

As
$$\beta \neq 1$$
 or $-1 \Rightarrow \beta^2 \neq 1 \Rightarrow \frac{qa}{c} \neq 1$ or $c \neq qa$

Again, as exactly one root α is common, and $\beta \neq 1$

$$\therefore \alpha + \beta \neq \alpha + \frac{1}{\beta} \Rightarrow \frac{-2b}{a} \neq -2p \Rightarrow b \neq ap$$

: Statement 2 is correct.

But Statement 2 is not a correct explanation of Statement 1.

I. Integer Value Correct Type

(7) The given system of equations is 1.

$$3x - y - z = 0$$

$$-3x + z = 0$$

$$-3x + 2y + z = 0$$

Let x = p where p is an integer, then y = 0 and z = 3p

But
$$x^2 + v^2 + z^2 \le 100 \implies p^2 + 9p^2 \le 100$$

$$\Rightarrow$$
 $p^2 \le 10 \Rightarrow p = 0, \pm 1, \pm 2 \pm 3$

i.e. p can take 7 different values.

Number of points (x, y, z) are 7.

(2) The given equation is

$$x^2 - 8kx + 16(k^2 - k + 1) = 0$$

Both the roots are real and distinct

$$D > 0 \implies (8k)^2 - 4 \times 16(k^2 - k + 1) > 0$$

Both the roots are greater than or equal to 4 \cdot

$$\therefore \quad \alpha + \beta > 8 \quad \text{and} \quad f(4) \ge 0$$

$$\Rightarrow k > 1$$
 ...(ii)

and
$$16-32k+16(k^2-k+1) \ge 0$$

$$\Rightarrow k^2 - 3k + 2 \ge 0 \Rightarrow (k-1)(k-2) \ge 0$$

$$\Rightarrow k \in (-\infty, 1] \cup [2, \infty)$$
 ...(iii)

Combining (i), (ii) and (iii), we get $k \ge 2$ or the smallest value of k = 2.

3. (8) $\therefore a > 0, \therefore a^{-5}, a^{-4}, 3a^{-3}, 1, a^{8}, a^{10} > 0$ Using $AM \ge GM$ for positive real numbers we get

$$\frac{\frac{1}{a^5} + \frac{1}{a^4} + \frac{1}{a^3} + \frac{1}{a^3} + \frac{1}{a^3} + 1 + a^8 + a^{10}}{8} \ge$$

$$\left(\frac{1}{a^5} \cdot \frac{1}{a^4} \cdot \frac{1}{a^3} \cdot \frac{1}{a^3} \cdot \frac{1}{a^3} \cdot 1 \cdot a^8 \cdot a^{10}\right)^{\frac{1}{8}}$$

$$\Rightarrow \frac{1}{a^5} + \frac{1}{a^4} + \frac{3}{a^3} + 1 + a^8 + a^{10} \ge 8(1)^{\frac{1}{8}}$$

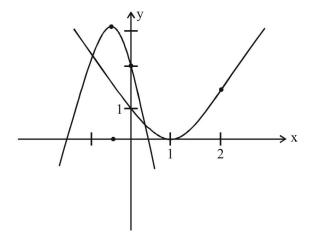
(2) We have $x^4 - 4x^3 + 12x^2 + x - 1 = 0$ $\Rightarrow x^4 - 4x^3 + 6x^2 - 4x + 1 + 6x^2 + 5x - 2 = 0$ 4. $\Rightarrow (x-1)^4 + 6x^2 + 5x - 2 = 0$

$$\Rightarrow (x-1)^4 = -6x^2 - 5x + 2$$

To solve the above polynomial, it is equivalent to find the intersection points of the curves $y = (x - 1)^4$ and

$$y = -6x^2 - 5x + 2$$
 or $y = (x - 1)^4$ and $\left(x + \frac{5}{12}\right)^2 = -\frac{1}{6}\left(y - \frac{73}{24}\right)$

The graph of above two curves as follows. Clearly they have two points of intersection. Hence the given polynomial has two real roots.



Section-B 1EE Main/

(a) We have $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$; 1. $\Rightarrow \alpha \& \beta$ are roots of equation, $x^2 = 5x - 3$ or $x^2 - 5x + 3 = 0$ $\therefore \alpha + \beta = 5 \text{ and } \alpha\beta = 3$

Thus, the equation having $\frac{\alpha}{\beta}$ & $\frac{\beta}{\alpha}$ as its roots is

$$x^2 - x \left(\frac{\alpha}{\beta} + \frac{\beta}{\alpha}\right) + \frac{\alpha\beta}{\alpha\beta} = 0$$

$$\Rightarrow x^2 - x \left(\frac{\alpha^2 + \beta^2}{\alpha \beta} \right) + 1 = 0 \text{ or } 3x^2 - 19x + 3 = 0$$

2. b = 0 and $x^2 + bx + a = 0$ respectively.

$$\therefore \alpha + \beta = -a, \alpha\beta = b \text{ and } \gamma + \delta = -b, \gamma \delta = a.$$
Given $|\alpha - \beta| = |\gamma - \delta| \Rightarrow (\alpha - \beta)^2 = (\gamma - \delta)^2$

Given
$$|\alpha - \beta| = |\gamma - \delta| \implies (\alpha - \beta)^2 = (\gamma - \delta)^2$$

$$\Rightarrow (\alpha + \beta)^2 - 4\alpha\beta = (\gamma + \delta)^2 - 4\gamma\delta$$

$$\Rightarrow a^2 - 4b = b^2 - 4a \Rightarrow (a^2 - b^2) + 4(a - b) = 0$$

$$\Rightarrow a+b+4=0 \qquad (\because a \neq b)$$

3. (a) Product of real roots =
$$\frac{9}{t^2} > 0$$
, $\forall t \in R$

.. Product of real roots is always positive.

4. (a)
$$p+q=-p$$
 and $pq=q \Rightarrow q(p-1)=0$
 $\Rightarrow q=0$ or $p=1$.
If $q=0$, then $p=0$. i.e. $p=q$
 $\therefore p=1$ and $q=-2$.

5. (a)
$$(a-b)^2 + (b-c)^2 + (c-a)^2 > 0$$

 $\Rightarrow 2(a^2 + b^2 + c^2 - ab - bc - ca) > 0$
 $\Rightarrow 2 > 2(ab + bc + ca) \Rightarrow ab + bc + ca < 1$

6. (d)
$$ax^2 + bx + c = 0$$
, $\alpha + \beta = \frac{-b}{a}$, $\alpha\beta = \frac{c}{a}$

As for given condition, $\alpha + \beta = \frac{1}{\alpha^2} + \frac{1}{\beta^2}$

$$\alpha + \beta = \frac{\alpha^2 + \beta^2}{\alpha^2 \beta^2} - \frac{b}{a} = \frac{\frac{b^2}{a^2} - \frac{2c}{a}}{\frac{c^2}{a^2}}$$

On simplification $2a^2c = ab^2 + bc^2$

$$\Rightarrow \frac{2a}{b} = \frac{c}{a} + \frac{b}{c} \Rightarrow \frac{c}{a}, \frac{a}{b}, \frac{b}{c}$$
 are in A.P.

$$\therefore \frac{a}{c}, \frac{b}{a}, \& \frac{c}{b}$$
 are in H.P.

(b) Let the roots of given equation be α and 2α then 7.

$$\alpha + 2\alpha = 3\alpha = \frac{1 - 3a}{a^2 - 5a + 3}$$

&
$$\alpha.2\alpha = 2\alpha^2 = \frac{2}{a^2 - 5a + 3} \implies \alpha = \frac{1 - 3a}{3(a^2 - 5a + 3)}$$

$$\therefore 2 \left[\frac{1}{9} \frac{(1-3a)^2}{(a^2-5a+3)^2} \right] = \frac{2}{a^2-5a+3}$$

$$\frac{(1-3a)^2}{(a^2-5a+3)} = 9 \text{ or } 9a^2-6a+1=9a^2-45a+27$$

or
$$39a = 26$$
 or $a = \frac{2}{3}$

8. (c)
$$x^2 - 3|x| + 2 = 0 \Rightarrow |x|^2 - 3|x| + 2 = 0$$

 $(|x| - 2)(|x| - 1) = 0$
 $|x| = 1, 2 \text{ or } x = \pm 1, \pm 2 \therefore \text{ No.of solution} = 4$

9. (c)
$$y = x + \frac{1}{x}$$
 or $\frac{dy}{dx} = 1 - \frac{1}{x^2}$

For max. or min., $1 - \frac{1}{x^2} = 0 \Rightarrow x = \pm 1$

$$\frac{d^2y}{dx^2} = \frac{2}{x^3} \Rightarrow \left(\frac{d^2y}{dx^2}\right)_{x=2} = 2 \text{ (+ve minima) } \therefore x = 1$$

10. **(b)** Let two numbers be a and b then
$$\frac{a+b}{2} = 9$$
 and $\sqrt{ab} = 4$

:. Equation with roots a and b is

$$x^{2} - (a+b)x + ab = 0 \implies x^{2} - 18x + 16 = 0$$

11. (c) Let the second root be
$$\alpha$$
.

Then
$$\alpha + (1-p) = -p \Rightarrow \alpha = -1$$

Also
$$\alpha . (1 - p) = 1 - p$$

$$\Rightarrow (\alpha - 1)(1 - p) = 0 \Rightarrow p = 1[\because \alpha = -1]$$

$$\therefore$$
 Roots are $\alpha = -1$ and $p-1 = 0$

12. (d) 4 is a root of
$$x^2 + px + 12 = 0$$

$$\Rightarrow$$
 16 + 4 p + 12 = 0 \Rightarrow p = -7

Now, the equation $x^2 + px + q = 0$ has equal roots.

$$\therefore p^2 - 4q = 0 \Rightarrow q = \frac{p^2}{4} = \frac{49}{4}$$

13. **(b)**
$$\tan\left(\frac{P}{2}\right)$$
, $\tan\left(\frac{Q}{2}\right)$ are the roots of $ax^2 + bx + c = 0$

$$\tan\left(\frac{P}{2}\right) + \tan\left(\frac{Q}{2}\right) = -\frac{b}{a}, \tan\left(\frac{P}{2}\right) \cdot \tan\left(\frac{Q}{2}\right) = \frac{c}{a}$$

$$\frac{\tan\left(\frac{P}{2}\right) + \tan\left(\frac{Q}{2}\right)}{1 - \tan\left(\frac{P}{2}\right)\tan\left(\frac{Q}{2}\right)} = \tan\left(\frac{P}{2} + \frac{Q}{2}\right) = 1$$

$$\Rightarrow \frac{-\frac{b}{a}}{1 - \frac{c}{a}} = 1 \Rightarrow -\frac{b}{a} = \frac{a}{a} - \frac{c}{a}$$

$$\Rightarrow -b = a - c$$
 or $c = a + b$.

then (i) Discriminant ≥ 0

(ii)
$$p(3) \ge 0$$

Sum of roots

$$\frac{\text{Sum of roots}}{2} < 5$$

Hence (i) $4k^2 - 4(k^2 + k - 5) \ge 0$ $4k^2 - 4k^2 - 4k + 20 \ge 0$

$$4k \le 20 \implies k \le 5$$

(ii)
$$f(5) > 0$$
; $25 - 10k + k^2 + k - 5 > 0$
or $k^2 - 9k + 20 > 0$
or $k(k-4) - 5(k-4) > 0$
or $(k-5)(k-4) > 0$
 $\Rightarrow k \in (-\infty, 4) \cup (-\infty, 5)$

(ii)
$$\frac{\text{Sum of roots}}{2} = -\frac{b}{2a} = \frac{2k}{2} < 5$$

The interection of (i), (ii) & (iii) gives $k \in (-\infty, 4)$.

15. (b)
$$x^2 + px + q = 0$$

Sum of roots = $\tan 30^{\circ} + \tan 15^{\circ} = -p$ Product of roots = $\tan 30^{\circ}$. $\tan 15^{\circ} = q$

$$\tan 45^{\circ} = \frac{\tan 30^{\circ} + \tan 15^{\circ}}{1 - \tan 30^{\circ} \cdot \tan 15^{\circ}} = \frac{-p}{1 - q} = 1$$

$$\Rightarrow -p=1-q \Rightarrow q-p=1$$
 $\therefore 2+q-p=3$

$$\therefore 2+a-p=3$$

16. (c) Equation
$$x^2 - 2mx + m^2 - 1 = 0$$

$$(x-m)^2 - 1 = 0$$
 or $(x-m+1)(x-m-1) = 0$

$$x = m - 1, m + 1$$

$$m-1 > -2$$
 and $m+1 < 4$

$$\Rightarrow m > -1 \text{ and } m < 3 \text{ or, } -1 < m < 3$$

17. **(b)**
$$y = \frac{3x^2 + 9x + 17}{3x^2 + 9x + 7}$$

$$3x^{2}(y-1) + 9x(y-1) + 7y - 17 = 0$$

 $D \ge 0$: x is real

$$81(y-1)^2 - 4 \times 3(y-1)(7y-17) \ge 0$$

$$\Rightarrow (y-1)(y-41) \le 0 \Rightarrow 1 \le y \le 41$$

 \therefore Max value of y is 41

18. (c) Let α and β are roots of the equation

$$x^2 + ax + 1 = 0$$
 So, $\alpha + \beta = -a$ and $\alpha\beta = 1$

given
$$|\alpha - \beta| < \sqrt{5} \implies \sqrt{(\alpha + \beta)^2 - 4\alpha\beta} < \sqrt{5}$$

$$\left(:: (\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta \right)$$

$$\Rightarrow \sqrt{a^2 - 4} < \sqrt{5} \Rightarrow a^2 - 4 < 5$$

\Rightarrow a^2 - 9 < 0 \Rightarrow a^2 < 9 \Rightarrow -3 < a < 3 \Rightarrow a \in (-3, 3)

19. (b) Statement 2 is $\sqrt{n(n+1)} < n+1, n \ge 2$

$$\Rightarrow \sqrt{n} < \sqrt{n+1}, n \ge 2$$
 which is true

$$\Rightarrow \sqrt{2} < \sqrt{3} < \sqrt{4} < \sqrt{5} < ----\sqrt{n}$$

Now
$$\sqrt{2} < \sqrt{n} \Rightarrow \frac{1}{\sqrt{2}} > \frac{1}{\sqrt{n}}$$

$$\sqrt{3} < \sqrt{n} \Rightarrow \frac{1}{\sqrt{3}} > \frac{1}{\sqrt{n}}; \quad \sqrt{n} \le \sqrt{n} \Rightarrow \frac{1}{\sqrt{n}} \ge \frac{1}{\sqrt{n}}$$

Also
$$\frac{1}{\sqrt{1}} > \frac{1}{\sqrt{n}}$$
 : Adding all, we get

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{n} > \frac{n}{\sqrt{n}} = \sqrt{n}$$

Hence both the statements are correct and statement 2 is a correct explanation of statement-1.

20. (d) Let the roots of equation $x^2 - 6x + a = 0$ be α and 4β and that of the equation

$$x^2 - cx + 6 = 0$$
 be α and 3β . Then

$$\alpha + 4\beta = 6$$
; $4\alpha\beta =$

and
$$\alpha + 3\beta = c$$
; $3\alpha\beta = 6$

$$\Rightarrow a=8$$

$$\therefore$$
 The equation becomes $x^2 - 6x + 8 = 0$

$$\Rightarrow$$
 $(x-2)(x-4)=0$ \Rightarrow roots are 2 and 4

$$\Rightarrow \alpha = 2, \beta = 1 \qquad \therefore \qquad \text{Common root is } 2.$$

(b) Given that roots of the equation

$$bx^2 + cx + a = 0$$
 are imaginary
 $c^2 - 4ab < 0$ (i)

$$c^{2}-4ab < 0 \qquad(i)$$
Let $y = 3b^{2}x^{2} + 6bc x + 2c^{2}$

$$\Rightarrow 3b^{2}x^{2} + 6bc x + 2c^{2} - y = 0$$

$$\Rightarrow 3b^2x^2 + 6bcx + 2c^2 - y = 0$$

As x is real, $D \ge 0$

$$\Rightarrow$$
 36 $b^2c^2 - 12b^2(2c^2 - y) \ge 0$

$$\Rightarrow$$
 12 b^2 (3 $c^2 - 2 c^2 + v$) ≥ 0

$$\Rightarrow c^2 + y \ge 0 \qquad \Rightarrow y \ge -c^2$$

But from eqn. (i), $c^2 < 4ab$ or $-c^2 > -4ab$

$$\therefore$$
 we get $y \ge -c^2 > -4ab$

$$\Rightarrow v > -4ab$$

22. (a) Given that $\left| z - \frac{4}{z} \right| = 2$

Now
$$|z| = \left|z - \frac{4}{z} + \frac{4}{-z}\right| \le \left|z - \frac{4}{z}\right| + \frac{4}{|z|}$$

$$\Rightarrow |z| \le 2 + \frac{4}{|z|} \Rightarrow |z|^2 - 2|z| - 4 \le 0$$

$$\Rightarrow \left(\left| z \right| - \frac{2 + \sqrt{20}}{2} \right) \left(\left| z \right| - \frac{2 - \sqrt{20}}{2} \right) \le 0$$

$$\Rightarrow \left(\left| z \right| - \left(1 + \sqrt{5} \right) \right) \left(\left| z \right| - \left(1 - \sqrt{5} \right) \right) \le 0$$

$$\Rightarrow \left(-\sqrt{5}+1\right) \le \left|z\right| \le \left(\sqrt{5}+1\right)$$

$$\Rightarrow |z|_{\text{max}} = \sqrt{5} + 1$$

23. **(b)**
$$x^2 - x + 1 = 0 \implies x = \frac{1 \pm \sqrt{1 - 4}}{2}$$

$$x = \frac{1 \pm \sqrt{3} i}{2}$$

$$\alpha = \frac{1}{2} + i\frac{\sqrt{3}}{2} = -\omega^2 \qquad \beta = \frac{1}{2} - \frac{i\sqrt{3}}{2} = -\omega$$

$$\alpha^{2009} + \beta^{2009} = (-\omega^2)^{2009} + (-\omega)^{2009} = -\omega^2 - \omega = 1$$

24. (b) Given equation is $e^{\sin x} - e^{-\sin x} - 4 = 0$

Put $e^{\sin x} = t$ in the given equation, we get $t^2 - 4t - 1 = 0$

$$\Rightarrow t = \frac{4 \pm \sqrt{16 + 4}}{2} = \frac{4 \pm \sqrt{20}}{2} = \frac{4 \pm 2\sqrt{5}}{2} = 2 \pm \sqrt{5}$$

$$\Rightarrow e^{\sin x} = 2 \pm \sqrt{5} \left(\because t = e^{\sin x} \right)$$

$$\Rightarrow e^{\sin x} = 2 - \sqrt{5}$$
 and $e^{\sin x} = 2 + \sqrt{5}$

$$\Rightarrow$$
 $e^{\sin x} = 2 - \sqrt{5} < 0$ and $\sin x = \ln(2 + \sqrt{5}) > 1$

So rejected So, rejected

Hence given equation has no solution. :. The equation has no real roots.

25. (d) $f(x) = 2x^3 + 3x + k$

$$f'(x) = 6x^2 + 3 > 0 \qquad \forall x \in \mathbb{R} \quad (\because \quad x^2 > 0)$$

 \Rightarrow f(x) is strictly increasing function

 \Rightarrow f(x) = 0 has only one real root, so two roots are not possible.

(b) From the given system, we have 26.

$$\frac{k+1}{k} = \frac{8}{k+3} \neq \frac{4k}{3k-1}$$
 (: System has no solution)

$$\Rightarrow k^2 + 4k + 3 = 8k$$

$$\Rightarrow k=1,3$$

If
$$k = 1$$
 then $\frac{8}{1+3} \neq \frac{4.1}{2}$ which is false

And if k = 3

then
$$\frac{8}{6} \neq \frac{4.3}{9-1}$$
 which is true, therefore $k=3$

Hence for only one value of k. System has no solution.

27. (a) Given equations are

$$x^2 + 2x + 3 = 0$$

$$ax^2 + bx + c = 0$$

Roots of equation (i) are imaginary roots.

According to the question (ii) will also have both roots same as (i). Thus

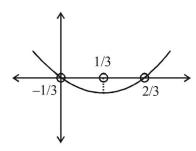
$$\frac{a}{1} = \frac{b}{2} = \frac{c}{3} = \lambda \text{ (say)} \Rightarrow a = \lambda, b = 2\lambda, c = 3\lambda$$

Hence, required ratio is 1:2:3

(c) Consider $-3(x-[x])^2 + 2[x-[x]) + a^2 = 0$ $\Rightarrow 3\{x\}^2 - 2\{x\} - a^2 = 0 \quad (\because x - [x] = \{x\})$

$$\Rightarrow 3\left(\{x\}^2 - \frac{2}{3}\{x\}\right) = a^2, a \neq 0$$

$$\Rightarrow a^2 = 3\{x\} \left(\{x\} - \frac{2}{3} \right)$$



Now, $\{x\} \in (0,1)$ and $\frac{-2}{3} \le a^2 < 1$ (by graph)

Since, x is not an integer

$$a \in (-1,1) - \{0\} \Rightarrow a \in (-1,0) \cup (0,1)$$

29. (b) Let
$$p, q, r$$
 are in AP

$$\Rightarrow 2q = p + r$$

Given
$$\frac{1}{\alpha} + \frac{1}{\beta} = 4 \implies \frac{\alpha + \beta}{\alpha \beta} = 4$$

We have $\alpha + \beta = -q/p$ and $\alpha\beta = \frac{r}{n}$

$$\Rightarrow \frac{-\frac{q}{p}}{\frac{r}{p}} = 4 \Rightarrow q = -4r$$

From (i), we have

$$2(-4r) = p + r \implies p = -9r$$

$$q = -4r$$

Now
$$|\alpha - \beta| = \sqrt{(\alpha + \beta)^2 - 4\alpha\beta}$$

$$= \sqrt{\left(\frac{-q}{p}\right)^2 - \frac{4r}{p}} = \frac{\sqrt{q^2 - 4pr}}{|p|}$$

$$=\frac{\sqrt{16r^2+36r^2}}{|-9r|}=\frac{2\sqrt{13}}{9}$$

30. (a)
$$\alpha, \beta = \frac{6 \pm \sqrt{36 + 8}}{2} = 3 \pm \sqrt{11}$$

 $\alpha = 3 + \sqrt{11}, \beta = 3 - \sqrt{11}$

$$\therefore a_n = \left(3 + \sqrt{11}\right)^n - \left(3 - \sqrt{11}\right)^n$$

$$\frac{a_{10}-2a_8}{2a_9}$$

$$=\frac{\left(3+\sqrt{11}\right)^{10}-\left(3-\sqrt{11}\right)^{10}-2\left(3+\sqrt{11}\right)^{8}+2\left(3-\sqrt{11}\right)^{8}}{2\left\lceil \left(3+\sqrt{11}\right)^{9}-\left(3-\sqrt{11}\right)^{9}\right\rceil}$$

$$=\frac{\left(3+\sqrt{11}\right)^{8}\left[\left(3+\sqrt{11}\right)^{2}-2\right]+\left(3-\sqrt{11}\right)^{8}\left[2-\left(3-\sqrt{11}\right)^{2}\right]}{2\left[\left(3+\sqrt{11}\right)^{9}-\left(3-\sqrt{11}\right)^{9}\right]}$$

$$=\frac{\left(3+\sqrt{11}\right)^{8}\left(9+11+6\sqrt{11}-2\right)+\left(3-\sqrt{11}\right)^{8}\left(2-9-11+6\sqrt{11}\right)}{2\left[\left(3+\sqrt{11}\right)^{9}-\left(3-\sqrt{11}\right)^{9}\right]}$$

$$= \frac{6(3+\sqrt{11})^9 - 6(3-\sqrt{11})^9}{2\left[(3+\sqrt{11})^9 - (3-\sqrt{11})^9\right]} = \frac{6}{2} = 3$$

31. (c)
$$(x^2-5x+5)^{x^2+4x-60}=1$$

...(ii)

 $x^2 - 5x + 5 = 1$ and $x^2 + 4x - 60$ can be any real number \Rightarrow x = 1,4

 $x^2 - 5x + 5 = -1$ and $x^2 + 4x - 60$ has to be an even number

 \Rightarrow x = 2,3

where 3 is rejected because for x = 3, $x^2 + 4x - 60$ is odd.

 $x^2 - 5x + 5$ can be any real number and $x^2 + 4x - 60 = 0$ \Rightarrow x = -10, 6

 \Rightarrow Sum of all values of x = -10 + 6 + 2 + 1 + 4 = 3