DAY SEVENTEEN

Area Bounded by the Curves

Learning & Revision for the Day

Curve Area
 Area between a Curve and Lines

Area between Two Curves

Curve Area

The space occupied by a continuous curve, which is bounded under the certain conditions, is called **curve area** or the area of bounded by the curve.

Area between a Curve and Lines

1. The area of region shown in the following figure, bounded by the curve y = f(x) defined on $[\alpha, \beta]$, *X*-axis and the lines $x = \alpha$ and $x = \beta$ is given by $\int_{\alpha}^{\beta} y \, dx$ or $\int_{\alpha}^{\beta} f(x) \, dx$.

2. If the curve y = f(x) lies below *X*-axis, then area of region bounded by the curve y = f(x), *X*-axis and the lines $x = \alpha$ and $x = \beta$ will be negative as shown in the following figure. So, we consider the area as $\left| \int_{\alpha}^{\beta} y \, dx \right|$ or $\left| \int_{\alpha}^{\beta} f(x) \, dx \right|$

3. Area of region shown in the following figure, bounded by the curve x = f(y), *Y*-axis and the lines y = c and y = d is given by $\int_{c}^{d} f(y) \, dy$ or $\int_{c}^{d} x \, dy$

If the position of the curve under consideration is on the left side of *Y*-axis, then area is given by $\left|\int_{c}^{d} f(y) dy\right|$.

4. If the curve crosses the *X*-axis number of times, the area of region shown in the following figure, enclosed between the curve y = f(x), *X*-axis and the lines $x = \alpha$ and $x = \beta$ is given by

Area between Two Curves

1. (i) Area of region shown in the following figure, bounded between the curves y = f(x), y = g(x), where $f(x) \le g(x)$, and the lines x = a, x = b (a < b) is given by

Area =
$$\int_{a}^{b} [g(x) - f(x)] dx$$

(ii) If $f(x) \ge g(x)$ in [a, c] and $f(x) \le g(x)$ in [c, b] where a < c < b, then Area

$$= \int_{a}^{a} [f(x) - g(x)] dx + \int_{c}^{b} [g(x) - f(x)] dx$$

2. Area of region shown in the following figure, bounded by the curves y = f(x), y = g(x), *X*-axis and lines x = a, x = b is given by

Area and the shape of some important curves

S.No.	Curves	Point of intersection	Area of shaded region			
(i)	$f(x, y): \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1, \frac{x}{a} + \frac{y}{b} \ge 1$ $\Rightarrow \text{ or } \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1 \le \frac{x}{a} + \frac{y}{b}$	A (a, 0), B(0, b)	Area = $ab \frac{(\pi - 2)}{4}$ sq units ($\begin{array}{c} & & & \\ -a, 0) A' \\ & &$		
(ii)	Parabola $y^2 = 4ax$ and its latusrectum $x = a$	A (a, 2a), B(a, – 2a)	Area = $\frac{8}{3}a^2$ sq units	$X' \leftarrow O \qquad \qquad$		

(iii)	$f(x, y): y^2 = 4ax \text{ and } y = mx $	$O(0,0), A\left(\frac{4a}{m^2}, \frac{4a}{m}\right)$	Area = $\frac{8a^2}{3m^3}$ sq units X'	$Y \xrightarrow{Y} A \xrightarrow{Y} X$
(iv)	$f(x, y): x^{2} = 4ay$ $y^{2} = 4bx$	O(0,0), $A (4a^{2/3}b^{1/3}, 4a^{1/3}b^{2/3})$	Area = $\frac{16}{3}(ab)$ sq units $\chi' \leftarrow$	$x^{2}=4ay \qquad Y \qquad (4a^{2/3}b^{1/3},4a^{1/3}b^{2/3})$ $(0, 0) O \qquad $
(v)	Area bounded by $y^2 = 4a (x + a)$ and $y^2 = 4b (b - x)$	$A(b - a, 2\sqrt{ab})$ $B(b - a, -2\sqrt{ab})$	Area = $\frac{8}{3}\sqrt{ab}$ (a + b) sq units	$X' \underbrace{(0, 0)}_{B'(-a, 0)} \underbrace{(0, 0)}_{Y'} \xrightarrow{A'(b, 0)} X$
(vi)	Common area bounded by the ellipses $\frac{x^2}{b^2} + \frac{y^2}{a^2} = \frac{1}{a^2b^2} \text{ and}$ $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{1}{a^2b^2}, 0 < a < b$	$x = y = \frac{1}{\sqrt{a^2 + b^2}}$ $x = y = -\frac{1}{\sqrt{a^2 + b^2}}$	Area = Area of region <i>PQRS</i> = $4 \times \text{Area of } OLQM$ = $\frac{4}{ab} \tan^{-1}\left(\frac{a}{b}\right)$ sq units	$X' \longleftrightarrow \begin{array}{c} P \\ \hline \\ Q \\ \hline \\ Q \\ (0, 0) \\ \hline \\ Y' \end{array} \xrightarrow{Y} X$
(vii)	If α , $\beta > 0$, $\alpha > \beta$ the area between the hyperbola $xy = p^2$, the <i>X</i> -axis and the ordinates $x = \alpha$, $x = \beta$	_	Area = $p^2 \log\left(\frac{\alpha}{\beta}\right)$	$X' \longleftrightarrow (0, 0) O \\ \downarrow \\ \gamma'$

(day practice session 1)

FOUNDATION QUESTIONS EXERCISE

1 Let *f* : [-1, 2] → [0, ∞) be a continuous function such that f(x) = f(1-x) for all $x \in [-1, 2]$. Let $R_1 = \int_{-1}^{2} x f(x) dx$, and

 R_2 be the area of region bounded by y = f(x), x = -1, x = 2 and the X-axis. Then

(a) $R_1 = 2R_2$ (b) $R_1 = 3R_2$ (c) $2R_1 = R_2$ (d) $3R_1 = R_2$

2 Let A_1 be the area of the parabola $y^2 = 4ax$ lying between the vertex and the latus rectum and A_2 be the area between the latus rectum and the double ordinate x = 2a. Then A_1/A_2 is (a) $(2\sqrt{2} - 1)/7$ (b) $(2\sqrt{2} + 1)/7$

(a) $(2\sqrt{2} - 1)/7$	$(D)(2\sqrt{2} + 1)/7$
(c) $(2\sqrt{2} + 1)$	(d) (2√2 – 1)

3 The area of smaller segment cut off from the circle $x^2 + y^2 = 9$ by x = 1 is

(a) $\frac{1}{2}(9\sec^{-1}3 - \sqrt{8})$ (b) $9\sec^{-1}(3) - \sqrt{8}$ (c) $\sqrt{8} - 9\sec^{-1}(3)$ (d) None of these

- **4** The ratio of the area bounded by the curves $y = \cos x$ and $y = \cos 2x$ between $x = 0, \pi/3$ and X-axis, is (a) $\sqrt{2}:1$ (b) 1:1 (c) 1:2 (d) 2:1
- **5** The area bounded by the curve y = f(x), *X*-axis and the lines x = 1, x = b is $(\sqrt{b^2 + 1} \sqrt{2})$ for all b > 1, then f(x) equals to
 - (a) $\sqrt{x^2 + 1}$ (b) $\sqrt{x + 1}$ (c) $x/\sqrt{x^2 + 1}$ (d) None of these
- **6** If the ordinate x = a divides the area bounded by the curve $y = \left(1 + \frac{8}{x^2}\right)$, X-axis and the ordinates x = 2, 4 into two equal parts, then *a* is equal to

(a) 8 (b) $2\sqrt{2}$ (c) 2 (d) $\sqrt{2}$

- **7** Let the straight line x = b divide the area enclosed by $y = (1 x)^2$, y = 0 and x = 0 into two parts $R_1(0 \le x \le b)$ and $R_2(b \le x \le 1)$ such that $R_1 R_2 = 1/4$. Then *b* equals (a) 3/4 (b) 1/2 (c) 1/3 (d) 1/4
- **8** The curve $y = a\sqrt{x} + bx$ passes through the point (1, 2) and the area enclosed by the curve, the *X*-axis and the line x = 4 is 8 square units. Then a - b is equal to (a) 2 (b) - 1 (c) - 2 (d) 4
- **9** If y = f(x) makes positive intercepts of 2 and 1 unit on *x* and *y*-coordinates axes and encloses an area of $\frac{3}{4}$ sq unit with the axes, then $\int_{0}^{2} xf'(x) dx$, is

(a)
$$\frac{3}{2}$$
 (b) 1 (c) $\frac{5}{4}$ (d) $-\frac{3}{4}$

10 The area of the region (in sq units), in the first quadrant, bounded by the parabola $y = 9x^2$ and the lines x = 0, y = 1 and y = 4, is \rightarrow **JEE Mains 2013**

1 and
$$y = 4$$
, is
 $\frac{12}{2}$ (b) $\frac{14}{2}$

(a)

11 The area bounded by the curve $y = \ln(x)$ and the lines $y = 0, y = \ln(3)$ and x = 0 is equal to \rightarrow JEE Mains 2013 (a) 3 (b) $3 \ln(3) - 2$ (c) $3 \ln(3) + 2$ (d) 2

(c) $\frac{7}{2}$

12 The area of the region bounded by the curve $ay^2 = x^3$, the *Y*-axis and the lines y = a and y = 2a, is

→ NCERT Exemplar

(d) $\frac{14}{9}$

(a)
$$\frac{3}{5}a^2(2 \cdot 2^{2/3} - 1)$$
 sq unit (b) $\frac{2}{5}a(2^{2/3} - 1)$ sq unit
(c) $\frac{3}{5}a^2(2^{2/3} + 1)$ sq unit (d) None of these

13 The area of the region bounded by

y = |x - 3| and y = 2, is (a) 4.5 sq units (b) 6.3 sq units

(a) 4.5 sq units	(b) 0.5 sq units
(c) 3.5 sq units	(d) None of these

- 14 The area between the curve y = 4 |x| and X-axis is
 (a) 16 sq units
 (b) 20 sq units
 (c) 12 sq units
 (d) 18 sq units
- **15** The area under the curve $y = |\cos x \sin x|, 0 \le x \le \frac{\pi}{2}$ and above X-axis is

(a) $2\sqrt{2}$ (b) $2\sqrt{2} - 2$ (c) $2\sqrt{2} + 2$ (d) 0

→ JEE Mains 2013

16 The area of the region enclosed by the curves y = x,

 $x = e, y = \frac{1}{x}$ and the positive X-axis is

(a) 1 sq unit (b)
$$\frac{3}{2}$$
 sq units (c) $\frac{5}{2}$ sq units (d) $\frac{1}{2}$ sq unit

- **17** The area bounded by $y = |\sin x|$, *X*-axis and the lines $|x| = \pi$ is
 - (a) 2 sq units (b) 3 sq units
 - (c) 4 sq units (d) None of these
- **18** For $0 \le x \le \pi$, the area bounded by y = x and $y = x + \sin x$, is

(a) 2	(b) 4
(c) 2π	(d) 4π

- **19** The area (in sq unit) of the region described by $\{(x, y): y^2 \le 2x \text{ and } y \ge 4x 1\}$ is \rightarrow JEE Mains 2015
 - (a) $\frac{7}{32}$ (b) $\frac{5}{34}$ (c) $\frac{15}{64}$ (d) $\frac{9}{32}$

- **20** The area bounded by the curves $y^2 = 4x$ and $x^2 = 4y$, is (a) 0 (b) $\frac{32}{3}$ (c) $\frac{16}{3}$ (d) $\frac{8}{3}$
- **21** If the area bounded by $y = ax^2$ and $x = ay^2$, a > 0 is 1, then *a* is equal to
 - (a) 1 (b) $\frac{1}{\sqrt{3}}$

(c)
$$\frac{1}{3}$$
 (d) None of these

- **22** The area bounded between the parabolas $x^2 = \frac{y}{4}$ and
 - $x^{2} = 9 y$ and the straight line y = 2, is (a) $20\sqrt{2}$ (b) $\frac{10\sqrt{2}}{3}$ (c) $\frac{20\sqrt{2}}{3}$ (d) $10\sqrt{2}$
- **23** The area enclosed the curves $y = x^3$ and $y = \sqrt{x}$ is

(a)
$$\frac{5}{3}$$
 sq units
(b) $\frac{5}{4}$ sq units
(c) $\frac{5}{12}$ sq unit
(d) $\frac{12}{5}$ sq units

24 The area (in sq units) of the region $\{(x, y) : y^2 \ge 2x \text{ and} x^2 + y^2 \le 4x, x \ge 0, y \ge 0\}$ is \rightarrow JEE Mains 2016

(a)
$$\pi - \frac{4}{3}$$
 (b) $\pi - \frac{3}{3}$
(c) $\pi - \frac{4\sqrt{2}}{3}$ (d) $\frac{\pi}{2} - \frac{2\sqrt{2}}{3}$

25 The area of the region described by

 $A = \{(x, y): x^2 + y^2 \le 1 \text{ and } y^2 \le 1 - x\} \text{ is } \Rightarrow \text{JEE Mains 2014}$ (a) $\frac{\pi}{2} + \frac{4}{3}$ (b) $\frac{\pi}{2} - \frac{4}{3}$ (c) $\frac{\pi}{2} - \frac{2}{3}$ (d) $\frac{\pi}{2} + \frac{2}{3}$

26 The parabola $y^2 = 2x$ divides the circle $x^2 + y^2 = 8$ in two parts. Then, the ratio of the areas of these parts is

(a) $\frac{3\pi - 2}{10\pi + 2}$	(b) $\frac{3\pi + 2}{9\pi - 2}$
$10\pi + 2$	$10^{\circ} 9\pi - 2$
(c) $\frac{6\pi - 3}{11\pi - 5}$	(d) $\frac{2\pi - 9}{9\pi + 2}$
$11\pi - 5$	$(3) 9\pi + 2$

27 The area bounded by the curves y = 2 - |2 - x| and |x| y = 3 is

(a)(5 – 4 ln 2)/3	(b) (2 – ln 3)/2
(c)(4 – 3 ln 3)/2	(d) None of these

- **28** The area bounded by the curves y = |x| 1 and y = -|x| + 1, is (a) 1 sq unit (b) 2 sq units (c) $2\sqrt{2}$ sq units (d) 4 sq units 29 The area of the smaller region bounded by the circle $x^{2} + y^{2} = 1$ and the lines |y| = x + 1 is (a) $(\pi - 2)/4$ (b) $(\pi - 2)/2$ (c) $(\pi + 2)/2$ (d) None of these 30 The area (in sq units) bounded by the curves $y = \sqrt{x}$, 2y - x + 3 = 0, X-axis and lying in the first quadrant is → JEE Mains 2013 (a) 9 (b) 36 (d) $\frac{27}{4}$ (c) 18 **31** The area bounded by the curves $y = x^2$ and $y = 2/(1 + x^2)$ is (a) $(3\pi + 2)/3$ (b) $(3\pi - 2)/3$ (c) $(3\pi - 2)/6$ (d) None of these **32** The area bounded by $y = \tan x$, $y = \cot x$, X-axis in $0 \le x \le \frac{\pi}{2}$ is (b) log2 (d) None of these (a) 3log2 (c) 2log 2 **33** Area of the region bounded by curves x = 1/2, x = 2, $y = \log_{e} x$ and $y = 2^{x}$ is equal to $(4 - \sqrt{2})/\log 2 + b - c \log 2$. Then, b + c equals (a) 2 (b) – 1 (d) None of these (c) 4
- **34** The area bounded by the curve $y = (x + 1)^2$, $y = (x 1)^2$ and the line $y = \frac{1}{4}$ is

(a) $\frac{1}{6}$ sq unit	(b) $\frac{2}{3}$ sq unit
(c) $\frac{1}{4}$ sq unit	(d) $\frac{1}{3}$ sq unit

35 The area of bounded region by the curve $y = \log_e x$ and $y = (\log_e x)^2$, is

(a)
$$3 - e$$
 (b) $e - 3$
(c) $\frac{1}{2}(3 - e)$ (d) $\frac{1}{2}(e - 3)$

DAY PRACTICE SESSION 2

PROGRESSIVE QUESTIONS EXERCISE

1 Let $f(x) = x^2$, $g(x) = \cos x$ and h(x) = f(g(x)). Then area bounded by the curve y = h(x), and X-axis between $x = x_1$ and $x = x_2$, where x_1 , x_2 are roots of the equation $18x^2 - 9\pi x + \pi^2 = 0$, is

(a) π/12 (b) π/6 (c) π/3 (d) None of these

2 The area bounded by $f(x) = \min(|x|, |x-1|, |x+1|)$ in [-1, 1] and X-axis, is (in sq unit)

(a)
$$\frac{1}{5}$$
 (b) $\frac{1}{4}$ (c) $\frac{1}{3}$ (d) $\frac{1}{2}$

- **3** A point P(x, y) moves in such a way that [|x|] + [|y|] = 1, $[\cdot] = G.I.F.$ Area of the region representing all possible positions of the point P is equal to (b) 4 (a) 8 (c) 16 (d) None of these
- 4 The area bounded by the curve $xy^2 = 4(2 x)$ and Y-axis is (a) 2π (b) 4π (c) 12π (d) 6π
- **5** The area of the region $R = \{(x, y) : |x| \le |y| \text{ and }$ $x^2 + y^2 \le 1$ is (a) $\frac{3\pi}{8}$ sq units (b) $\frac{5\pi}{8}$ sq units (c) $\frac{\pi}{2}$ sq units (d) $\frac{\pi}{8}$ sq unit
- 6 Area of the region bounded by the parabola $(y 2)^2$ = x - 1, the tangent to it at the point with the ordinate 3, and the X-axis is given by (a)9/2 sq units (b) 9 sq units (c)18 sq units (d) None of these
- 7 Let the circle $x^2 + y^2 = 4$ divide the area bounded by tangent and normal at $(1, \sqrt{3})$ and X-axis in A_1 and A_2 . Then $\frac{A_1}{A_2}$ equals to

(a)
$$\pi/(3\sqrt{3} - \pi)$$
 (b) $\pi/(3\sqrt{3} + \pi)$
(c) $\pi/(3 - \pi\sqrt{3})$ (d) None of these

8 The area (in sq units) of the region

 $\{(x, y) : x \ge 0, x + y \le 3, x^2 \le 4y \text{ and } y \le 1 + \sqrt{x}\}$ is

(a)
$$\frac{7}{3}$$
 (b) $\frac{5}{2}$ (c) $\frac{59}{12}$ (d) $\frac{3}{2}$

→ JEE Mains 2017

- **9** The area enclosed between the curves $y = \log_e(x+e)$, $x = \log(1/y)$ and the X-axis is equal to (a) 2e (b) 2 (c) 2/e (d) None of these
- **10** Let f(x) be a real valued function satisfying the relation f(x/y) = f(x) - f(y) and $\lim_{x \to 0} \frac{f(1+x)}{x} = 3$. The area bounded by the curve y = f(x), y-axis and the line y = 3is equal to
 - (a) *e* (b) 2e (c) 3*e* (d) None of these

11 The area bounded by the lines y = 2, x = 1, x = a and the curve y = f(x), which cuts the last two lines above the first line for all $a \ge 1$, is equal to $\frac{2}{3}[(2a)^{3/2} - 3a + 3 - 2\sqrt{2}]$. Then f(x) =(a) $2\sqrt{2x}, x \ge 1$ (b) $\sqrt{2x}, x \ge 1$ (c) $2\sqrt{x}, x \ge 1$ (d) None of these

12 The area bounded by the curve

y =
$$\cos^{-1}(\sin x) - \sin^{-1}(\cos x)$$
 and the lines y = 0,
x = $\frac{3\pi}{2}$, x = 2π is
(a) $\frac{\pi^2}{4}$ (b) $\frac{\pi^2}{2}$ (c) π^2 (d) $2\pi^2$

- **13** Let f(x) be continuous function such that f(0) = 1, $f(x) - f(x/7) = x/7 \ \forall x \in R$. The area bounded by the curve y = f(x) and the coordinate axes is (b) 3 (c) 6 (a) 2 (d) 9
- **14** If area bounded by the curves $y = x bx^2$ and $by = x^2$ is maximum, then b is equal to

(b) – 1 (c) $b = \pm 1$ (d) None of these

15 Let A_n be the area bounded by the curve $y = (\tan x)^n$ and the lines x = 0 and $x = \pi/4$. Then, for n > 2

(a)
$$\frac{1}{2n} < A_n < \frac{1}{2n-2}$$
 (b) $\frac{1}{2n+1} < A_n < \frac{1}{2n-1}$
(c) $\frac{1}{2n+2} < A_n < \frac{1}{2n-2}$ (d) $\frac{1}{2n+2} < A_n < \frac{1}{2n}$

ANSWERS

(SESSION 1)	1 (c) 11 (d) 21 (b) 31 (b)	2 (b) 12 (a) 22 (c) 32 (b)	 3 (b) 13 (d) 23 (c) 33 (c) 	 4 (d) 14 (a) 24 (b) 34 (d) 	 5 (c) 15 (b) 25 (a) 35 (a) 	6 (b)16 (b)26 (b)	7 (b) 17 (c) 27 (c)	8 (d) 18 (a) 28 (b)	9 (d) 19 (d) 29 (b)	10 (d) 20 (c) 30 (a)
(SESSION 2)	1 (a) 11 (a)	2 (d) 12 (a)	3 (a) 13 (b)	4 (b) 14 (c)	5 (c) 15 (c)	6 (b)	7 (a)	8 (b)	9 (b)	10 (c)

(a) 1

Hints and Explanations

SESSION 1

1 Given, $R_1 = \int_{-1}^{2} x f(x) dx$, and $R_2 = \int_{-1}^{2} f(x) dx$ and f(1 - x) = f(x)Consider, $R_1 = \int_{-1}^{2} x f(x) dx$ $= \int_{-1}^{2} (1-x) f(1-x) dx$ $=\int_{-1}^{2} (1-x) f(x) dx$ $= R_2 - R_1$ $\therefore R_2 = 2R_1$ **2** $A_1 = 2 \int_{a}^{a} 2\sqrt{a} \sqrt{x} \, dx$ $= 4\sqrt{a} \times \frac{2}{2} [x^{3/2}]_0^a = 8a^2/3$ $A_2 = 2 \int_a^{2a} 2\sqrt{a} \sqrt{x} \, dx$ $= 4\sqrt{a} \times \frac{2}{2} \left[x^{3/2} \right]_a^{2a} = \frac{8a^2}{2} \left(2\sqrt{2} - 1 \right)$ $\therefore A_1 / A_2 = \frac{1}{2\sqrt{2} - 1} = \frac{(2\sqrt{2} + 1)}{7}$ **3** Required area, $A = 2 \int_{1}^{3} \sqrt{9 - x^2} dx$)(3, 0) (1, 0) (0, 0) |x=1 $=2\cdot\frac{1}{2}\left[x\sqrt{9-x^{2}}+9\sin^{-1}\frac{x}{3}\right]$

$$= \left[9\left(\frac{\pi}{2} - \sin^{-1}\left(\frac{1}{3}\right)\right) - \sqrt{8}\right]$$
$$= \left[9\cos^{-1}\left(\frac{1}{3}\right) - \sqrt{8}\right]$$
$$= [9\sec^{-1}(3) - \sqrt{8}]$$
4 Here, $A_1 = \int_0^{\pi/3} \cos x \, dx$
$$= [\sin x]_0^{\pi/3} = \frac{\sqrt{3}}{2}$$
and $A_2 = \int_0^{\pi/3} \cos 2x \, dx$
$$= \left[\frac{\sin 2x}{2}\right]_0^{\pi/3} = \frac{\sqrt{3}}{4}$$
 $\therefore A_1 : A_2 = 2:1$

 $=\left[9\frac{\pi}{2}-\sqrt{8}-9\sin^{-1}\left(\frac{1}{3}\right)\right]$

5 $\int_{1}^{b} f(x) dx = \sqrt{b^{2} + 1} - \sqrt{2}$ Now, on differentiating both sides w.r.t. b, we get $f(b) = \frac{2b}{2\sqrt{b^2 + 1}} \quad \forall b > 1$ $f(x) = x/\sqrt{x^2 + 1}.$ \Rightarrow 6 Area of region AMNB $=\int_{2}^{4}\left(1+\frac{8}{x^{2}}\right)dx = \left[x-\frac{8}{x}\right]_{0}^{4} = 4$ B (4, 3/2) Area of region, ACDM $=\int_{2}^{a}\left(1+\frac{8}{x^{2}}\right)dx \Rightarrow \left[x-\frac{8}{x}\right]_{2}^{a}=2$ $\Rightarrow a = \pm 2\sqrt{2} \Rightarrow a = 2\sqrt{2}$ $[\because a > 0]$ **7** We have, $R_1 - R_2 = \int_0^b (1 - x)^2 dx$ $-\int_{h}^{1} (1-x)^2 dx = \frac{1}{4}$ 0 (b,0) (1,0) $y = (1 - x)^2$ $\Rightarrow \frac{1}{3} - \frac{2(1-b)^3}{3} = \frac{1}{4} \Rightarrow (1-b)^3 = \frac{1}{8}$ $\therefore b = \frac{1}{2}$ **8** $y = a\sqrt{x} + bx \ (x \ge 0).$ At x = 1, y = 2, we get 2 = a + b ...(i) $\int_{0}^{4} (a\sqrt{x} + bx) dx = 8$ $\frac{16a}{3} + 8b = 8$...(ii) On solving Eqs. (i) and (ii), we get a = 3 and b = -1 $\therefore a-b=4$

9 Clearly, y = f(x) passes through (2, 0) and (0, 1). :. 0 = f(2) and 1 = f(0)Also, $\int_{0}^{2} f(x) dx = \frac{3}{4}$ [given] Now, $\int_{0}^{2} x f'(x) dx = [xf(x)]_{0}^{2} - \int_{0}^{2} f(x) dx$ $\Rightarrow \int_{0}^{2} x f'(x) dx = [2f(2) - 0f(0)] - \frac{3}{4}$ $\Rightarrow \int_0^2 x f'(x) \, dx = 2 \times 0 - 0 \times 1 - \frac{3}{4}$ $=-\frac{3}{1}$ **10** Required area = $\int_{1}^{4} \frac{\sqrt{y}}{3} dy = \frac{1}{3} \left[\frac{y^{3/2}}{3/2} \right]_{1}^{4}$ $=\frac{2}{2}(4^{3/2}-1^{3/2})=\frac{2}{2}\times 7=\frac{14}{2}$ **11** Required area = $\int_0^{\log 3} x dy = \int_0^{\log 3} e^{y} dy$ $= [e^{y}]_{0}^{\log 3} = [e^{\log 3} - e^{0}] = 3 - 1 = 2$ 12 We have a | B y = a- X 0 Required area = Area $BMNC = \int_{a}^{2a} x dy$ $= \int_{a}^{2a} a^{1/3} y^{2/3} dy = \frac{3 a^{\overline{3}}}{5} [y^{5/3}]_{a}^{2a}$ $=\frac{3a^{\frac{1}{3}}}{5}\left((2a)^{\frac{5}{3}}-a^{\frac{5}{3}}\right)$ $=\frac{3}{5}a^{\frac{1}{3}}a^{\frac{5}{3}}\left((2)^{\frac{5}{3}}-1\right)$ $=\frac{3}{5}a^{2}\left(2\cdot2^{\frac{2}{3}}-1\right)$ sq unit

13 The curve y = |x-3| meets the line y = 2, when x = 1 and x = 5

The area of the shaded region = $\frac{1}{2} \times 2 \times 4 = 4$ sq units

The area of the shaded portion = $\frac{1}{2} \times 8 \times 4 = 16$ sq units

15 Required area

$$= \int_{0}^{\pi/2} |\cos x - \sin x| dx$$

= $\int_{0}^{\pi/4} (\cos x - \sin x) dx$
+ $\int_{\pi/4}^{\pi/2} (\sin x - \cos x) dx$
= $[\sin x + \cos x]_{0}^{\pi/4}$
+ $[-\cos x - \sin x]_{\pi/4}^{\pi/2}$
= $(\sqrt{2} - 1) - (1 - \sqrt{2}) = 2\sqrt{2} - 2$
16 Given, $y = x, x = e$ and $y = \frac{1}{x}, x \ge 0$
Since, $y = x$ and $x \ge 0 \Rightarrow y \ge 0$

∴ Area to be calculated in 1st quadrant shown in figure

 \therefore Required area = Area of $\triangle ODA$ + Area of DABCD

$$= \frac{1}{2}(1 \times 1) + \int_{1}^{e} \frac{1}{x} dx = \frac{1}{2} + [\log |x|]_{1}^{e}$$

$$= \frac{1}{2} + [\log |x|]_{1}^{e} = \frac{1}{2} + 1 = \frac{3}{2} \text{ sq units}$$
17 We have,

$$y = |\sin x| = \begin{cases} \sin x, & \text{if } x \ge 0 \\ -\sin x, & \text{if } x < 0 \\ \text{and } |x| = \pi \implies x = \pm \pi$$

$$y = |\sin x| = \frac{1}{2} + \frac{1$$

 $= \int_{-\frac{1}{2}}^{1} \left(\frac{y+1}{4} - \frac{y^2}{2} \right) dy$ $= \frac{1}{4} \left(\frac{y^2}{2} + y \right)_{1/2}^{1} - \frac{1}{6} (y^3)_{-1/2}^{1}$ $= \frac{1}{4} \left\{ \left(\frac{1}{2} + 1 \right) - \left(\frac{1}{8} - \frac{1}{2} \right) \right\} - \frac{1}{6} \left\{ 1 + \frac{1}{8} \right\}$ $=\frac{1}{4}\left\{\frac{3}{2}+\frac{3}{8}\right\}-\frac{1}{6}\left\{\frac{9}{8}\right\}$ $= \frac{1}{4} \times \frac{15}{8} - \frac{3}{16} = \frac{9}{32}$ ${\bf 20}\,$ For the point of intersection of $y^2 = 4x$ and $x^2 = 4y$ $y^2 = 4x$ (4, 4) (0, 0)D (4, 0) Substitute $y = \frac{x^2}{4}$ in $y^2 = 4x$ $\Rightarrow \left(\frac{x^2}{4}\right)^2 = 4x \Rightarrow x^4 = 4^3 x \Rightarrow x = 0, 4$ \therefore Area bounded between curves $=\int_{0}^{4} \left(\sqrt{4}x - \frac{x^{2}}{4}\right) dx$ $= \left[2 \cdot \frac{x^{3/2}}{\frac{3}{2}} - \frac{x^3}{12} \right]_{-1}^{2}$ $= \frac{4}{3} \cdot (4)^{3/2} - \frac{(4)^3}{12}$ $= \frac{32}{3} - \frac{16}{3} = \frac{16}{3}$ **21** The intersection point of two curves is $\left(\frac{1}{a},\frac{1}{a}\right)$. $\begin{array}{c} & & \\ & &$ \therefore Area, $A = \int_{0}^{1/a} \left(\sqrt{\frac{x}{a}} - ax^2 \right) dx$

Hence, required area

$$\Rightarrow 1 = \frac{1}{\sqrt{a}} \cdot \frac{2}{3} [x^{3/2}]_{0}^{1/a} - \frac{a}{3} [x^{3}]_{0}^{1/a}$$

$$\Rightarrow a^{2} = \frac{1}{3} \Rightarrow a = \frac{1}{\sqrt{3}}$$
22
$$y = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}}$$
Required area = $2\int_{0}^{2} \left(3\sqrt{y} - \frac{\sqrt{y}}{2}\right) dy$

$$= 2\int_{0}^{2} \left(\frac{5}{2}\sqrt{y}\right) dy = 5\left[\frac{y^{3/2}}{\frac{3}{2}}\right]_{y=0}^{y=2}$$

$$= \frac{10}{3}(2^{3/2} - 0) = \frac{20\sqrt{2}}{3}$$

23 Clearly, the intersection of two curves $y = x^3$ and $y = \sqrt{x}$ are given by x = 0 and x = 1.

24 We have, $x^2 + y^2 \le 4x$ and $y^2 \ge 2x$ To find point of intersection, substitute $y^2 = 2x \text{ in } x^2 + y^2 = 4x$

$$x^{2} + y^{2} = 4x \implies x^{2} + 2x = 4x$$
$$\implies x^{2} - 2x = 0 \implies x(x - 2) = 0$$
$$\implies x = 0 \text{ or } x = 2$$
$$\implies y = 0 \text{ or } y = 2$$

Required area =
$$\int_{0}^{2} (y_{1} - y_{2}) dx$$

= $\int_{0}^{2} Y_{\text{circle}} - \int_{0}^{2} Y_{\text{parabola}} dx$
= $\frac{\pi r^{2}}{4} - \int_{0}^{2} \sqrt{2} (x)^{1/2} dx$
= $\frac{\pi \times 4}{4} - \sqrt{2} \frac{2}{3} \left[x^{\frac{3}{2}} \right]_{0}^{2}$
= $\pi - \frac{2\sqrt{2}}{3} (2^{3/2} - 0) = \pi - \frac{8}{3}$
25 Given,
 $A = \{(x, y): x^{2} + y^{2} \le 1 \text{ and } y^{2} \le 1 - y^{2} \le 1$

X

Required area
$$=\frac{1}{2}\pi r^2 + 2\int_0^1 (1-y^2)dy$$

Let the area of the smaller part be $A_{\,_1}$ and that of the bigger

part be A_2 . We have to find $\frac{A_1}{A_2}$.

The point *B* is a point of intersection (lying in the first quadrant) of the given parabola and the circle, whose coordinates can be obtained by solving the two equations $y^2 = 2x$ and $x^2 + y^2 = 8$.

$$\Rightarrow x^{2} + 2x = 8 \Rightarrow (x - 2)(x + 4) = 0$$
$$\Rightarrow x = 2, -4$$

x = -4 is not possible as both the points of intersection have the same positive *x*-coordinate. Thus, $C \equiv (2, 0)$. Now, $A_1 = 2$ [Area (*OBCO*)

+ Area (*CBAC*)]
=
$$2\left[\int_{0}^{2} y_{1} dx + \int_{2}^{2\sqrt{2}} y_{2} dx\right],$$

where, y_1 and y_2 are respectively the values of y from the equations of the parabola and that of the circle.

$$\Rightarrow A_1 = 2 \left[\int_0^2 \sqrt{2x} dx + \int_2^{2\sqrt{2}} \sqrt{8 - x^2} dx \right]$$

$$\Rightarrow A_1 = 2 \left[\sqrt{2} \cdot \frac{2}{3} \cdot x^{3/2} \right]_0^2$$

$$+ 2 \left[\frac{x}{2} \sqrt{8 - x^2} + \frac{8}{2} \sin^{-1} \frac{x}{2\sqrt{2}} \right]_2^{2\sqrt{2}}$$

$$= \frac{16}{3} + 2 \left[2\pi - \left(2 + 4 \times \frac{\pi}{4} \right) \right]$$

$$= \left(\frac{4}{3} + 2\pi \right) \text{ sq units}$$

Clearly, area of the circle = $\pi (2\sqrt{2})^2$

$$= 8\pi \text{ sq units}$$

Now, $A_2 = 8\pi - A_1 = 6\pi - \frac{4}{3}$
and the required ratio, $\frac{A_1}{A_2}$ is

$$= \frac{\frac{4}{3} + 2\pi}{6\pi - \frac{4}{9\pi - 2}}$$

3 27 $y = 2 - |2 - x| = \begin{cases} x & : x < 2 \\ 4 - x & : x \ge 2 \end{cases}$ and $y = \frac{3}{|x|} \implies y = \begin{cases} -3/x & : x < 0 \\ 3/x & : x > 0 \end{cases}$ $y = -3/x |z|^{Y}$

$$\Rightarrow x = 3/x \Rightarrow x = \sqrt{3}$$

and $4 - x = 3/x \Rightarrow x = 3 (x > 2)$.
$$\therefore \text{ Required area}$$
$$= \int_{\sqrt{3}}^{2} \left(x - \frac{3}{x}\right) dx + \int_{2}^{3} \left(4 - x - \frac{3}{x}\right) dx$$
$$= (4 - 3 \log 3)/2$$

28 The region is clearly square with vertices at the points (1, 0), (0, 1), (-1, 0) and (0, -1).

So, its area = $\sqrt{2} \times \sqrt{2}$ = 2 sq units

Area = $2\int_0^1 \left(\frac{2}{1+x^2} - x^2\right) dx$

 \Rightarrow [|x|] = 1, [|y|] = 0or [|x|] = 0, [|y|] = 1 $1 \le |x| < 2, \ 0 \le |y| < 1$ \Rightarrow or $0 \le |x| < 1$ or $1 \le |y| < 2$ $\Rightarrow x \in (-2, -1] \cup [1, 2), \ y \in (-1, 1)$ or $x \in (-1, 1), y \in (-2, -1] \cup [1, 2)$ \therefore Required area = $8 \times 1 \times 1 = 8$

6 (

4 In the equation of curve $xy^2 = 4(2 - x)$, the degree of *y* is even. Therefore, the curve is symmetrical about X-axis and lies in $0 < x \le 2$. The area bounded by the curve and the Y-axis is $2\int_{-2}^{2} y dx$

$$= 2\int_{0}^{2} 2\sqrt{\frac{2-x}{x}} dx = 4\int_{0}^{2} \sqrt{\frac{2-x}{x}} dx$$
Put $x = 2\sin^{2}\theta \Rightarrow dx = 4\sin\theta \cdot \cos\theta d\theta$
 \therefore Required area $= 4\int_{0}^{\pi/2} \sqrt{\frac{2-2\sin^{2}\theta}{2\sin^{2}\theta}}$
 $\cdot 4\sin\theta \cdot \cos\theta d\theta$
 $= 8\int_{0}^{\pi/2} 2\cos^{2}\theta d\theta$
 $= 8\int_{0}^{\pi/2} (1 + \cos 2\theta) d\theta$
 $= 8\left[\theta + \sin\frac{2\theta}{2}\right]_{0}^{\frac{\pi}{2}}$
 $= 8\left[\frac{\pi}{2} + 0 - 0\right] = 4\pi$

5 Required area = Area of the shaded region

= 4 (Area of the shaded region in
first quadrant)
= 4
$$\int_{0}^{1/\sqrt{2}} (y_1 - y_2) dx$$

= 4 $\int_{0}^{1/\sqrt{2}} (\sqrt{1 - x^2} - x) dx$
= 4 $\left[\frac{1}{2}x\sqrt{1 - x^2} + \frac{1}{2}\sin^{-1}x - \frac{x^2}{2}\right]_{0}^{1/\sqrt{2}}$
 $y_{=-x}$
(-1/ $\sqrt{2}$, 1/ $\sqrt{2}$)
 χ'
(-1/ $\sqrt{2}$, -1/ $\sqrt{2}$)
 χ'
= 4 $\left[\frac{1}{2\sqrt{2}} \times \frac{1}{\sqrt{2}} + \frac{1}{2} \times \frac{\pi}{4} - \frac{1}{4}\right]$
= $\frac{\pi}{2}$ sq units

6
$$(y-2)^2 = x - 1$$
 ...(i)
Curve (i) is a parabola with vertex at the
point $A(1, 2)$, axis $y - 2 = 0$ i.e. $y = 2$
and concavity towards positive X-axis.
For the point, say P, at which ordinate
 $y = 3$ and $x = 2$
Equation of tangent at $P(2, 3)$ is
 $y - 3 = \left[\frac{dy}{dx}\right]_{z,3}(x-2)$
or $y - 3 = \frac{1}{2}(x-2)$ i.e.
 $x - 2y + 4 = 0$...(ii)
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$

we get, $\frac{x^2}{4} + x = 3$ $\Rightarrow x^2 + 4x - 12 = 0$ $\Rightarrow (x+6)(x-2) = 0 \Rightarrow x = 2, y = 1$ Solving $y = 1 + \sqrt{x}$ and y = 3 - x, we get $1 + \sqrt{x} = 3 - x \implies x = 1, y = 2$ (0,3) (2,1) X'4 Required Area $\int_{0}^{1} (1 + \sqrt{x}) dx + \int_{1}^{2} (3 - x) dx - \int_{0}^{2} \frac{x^{2}}{4} dx$ $\left[x + \frac{2}{3}x^{3/2}\right]_{0}^{1} + \left[3x - \frac{x^{2}}{2}\right]_{1}^{2} - \left[\frac{x^{3}}{12}\right]_{0}^{2}$ $= \left(1 + \frac{2}{3}\right) + \left[\left(6 - 2\right) - \left(3 - \frac{1}{2}\right)\right] - \left[\frac{8}{12}\right]$ $\overline{2}$ 9 $y = \log_e(x + e)$...(i) $v = e^{-x}$...(ii) Required area $=\int_{1-e}^{0} \log(x+e) dx + \int_{0}^{\infty} e^{-x} dx$ →X $= [x \log (x + e)]_{1-e}^{0}$ $- \int_{1-e}^{0} \frac{x}{x + e} dx + [-e^{-x}]_{0}^{\infty}$ $= 0 + 1 - [x - e \log (x + e)]_{1 - e}^{0}$ = 1 + 1 = 2**10** f(x/y) = f(x) - f(y)...(i) $x = y = 1 \implies f(1) = 0$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{f\left(\frac{x+h}{x}\right)}{h} \text{ [using Eq. (i)]}$ $= \lim_{h \to 0} \frac{f(1+h/x)}{h/x} \cdot \frac{1}{x} = \frac{3}{x}$

8 On solving $x^2 = 4y$ and x + y = 3

 $\ensuremath{\textbf{11}}\xspace{1}\xspac$

 $\int_{1}^{a} [f(x) - 2]dx = \frac{2}{3}[(2a)^{3/2} - 3a + 3 - 2\sqrt{2}]$ On differentiating both sides w.r.t. *a*, we get $f(a) - 2 = \frac{2}{3} \left[\frac{3}{2} (2a)^{1/2} \cdot 2 - 3 \right]$ $\Rightarrow f(a) - 2 = 2\sqrt{2a} - 2$ $\Rightarrow f(a) = 2\sqrt{2a}$

$$\Rightarrow f(x) = 2\sqrt{2}x, x \ge 1$$

12 $\frac{3\pi}{2} \le x \le 2\pi \Rightarrow -2\pi \le -x \le -\frac{3\pi}{2}$

$$\cos^{-1} (\sin x) = \cos^{-1} \cos \left(2\pi + \frac{\pi}{2} - x \right)$$

= $2\pi + \frac{\pi}{2} - x$
and $\sin^{-1} (-\cos x)$
= $\sin^{-1} \sin \left(\frac{3\pi}{2} - x \right) = \frac{3\pi}{2} - x$
 $\therefore y = 2\pi + \pi/2 - x + 3\pi/2 - x$
= $4\pi - 2x$
Required area = $\int_{3\pi/2}^{2\pi} (4\pi - 2x) dx = \frac{\pi^2}{4}$
13 $f(x) - f(x/7) = x/7$
 $f(x/7) - f(x/7^2) = x/7^2$
 $f(x/7^2) - f(x/7^3) = x/7^3$
 $\vdots \vdots \vdots \vdots \vdots \vdots \vdots$
 $f(x/7^{n-1}) - f(x/7^n) = x/7^n$.
Adding, we get
 $f(x) - f(x/7^n) = \frac{x}{7} \left(1 + \frac{1}{7} + \dots + \frac{1}{7^{n-1}} \right)$
 $= \frac{x}{6} \left(1 - \frac{1}{7^n} \right)$
Taking limit as $n \to \infty$, we get
 $f(x) - f(0) = \frac{x}{6} \Rightarrow f(x) = 1 + \frac{x}{6}$
 $[\because f(0) = 1]$
Required area $= \int_{-6}^{0} \left(1 + \frac{x}{6} \right) = 3$
14 Given curves are
 $v = x - bx^2$ and $bv = x^2$

$$y = x - bx^{2} \text{ and } by = x^{2}$$

Solving these, we get $x = 0, b/(1 + b^{2})$
$$\therefore \quad \Delta(b) = \left| \int_{0}^{b/b+1} \left(\frac{x^{2}}{b} - x + bx^{2} \right) dx \right|$$
$$= \left| \left[\left(\frac{b^{2} + 1}{b} \right) \frac{x^{3}}{3} - \frac{x^{2}}{2} \right]_{0}^{b/(b^{2} + 1)} \right|$$

$$= \frac{1}{6} \frac{b^2}{(b^2 + 1)^2}$$

$$2b(b^2 + 1)^2$$

$$\Delta'(b) = \frac{1}{6} \cdot \frac{-2b^2(b^2 + 1) \times 2b}{(b^2 + 1)^4}$$

$$= \frac{2b(1 - b)(1 + b)}{(b^2 + 1)^3}$$

$$\Rightarrow \Delta(b) \text{ is max. for } b = 1, -1.$$

$$\boxed{\Box \Delta'(b) = \bigoplus_{j=1}^{\infty} \bigoplus_{j=1$$

15 In (0, π/4), tan x > 0
∴
$$A_n = \int_0^{\pi/4} \tan^n x \, dx$$

 $= \int_0^{\pi/4} \tan^{n-2} x (\sec^2 x - 1) \, dx$
 $= \left[\frac{\tan^{n-1} x}{n-1} \right]_0^{\pi/4} - \int_0^{\pi/4} \tan^{n-2} x \, dx$
 $\Rightarrow \quad A_n = \frac{1}{n-1} - A_{n-2}$
 $\Rightarrow \quad A_n + A_{n-2} = \frac{1}{n-1}$
For $n > 2, 0 < x < \pi/4$
 $\Rightarrow 0 < \tan x < 1 \Rightarrow \tan^{n-2} x > \tan^n x$
 $\Rightarrow \quad A_{n-2} > A_n$
 $\Rightarrow \quad 2A_n < \frac{1}{n-1}$
 $\Rightarrow \quad A_n < \frac{1}{2n-2}$
Also, $A_{n+2} + A_n = \frac{1}{n+1}$
 $\Rightarrow \quad 2A_n > \frac{1}{n+1}$
 $\therefore \quad \frac{1}{2n+2} < A_n < \frac{1}{2n-2}$