

## **Work and Time**

If any task is given to a person and he has to do an effort for completing that task. Then the effort for which he applied to complete the task is said to be **work** and the duration (or interval) to complete that work is said to be **time**.

### Important Formulae

- If A can do a piece of work in n days, then the work is completed by A in one day

   (i.e. efficiency of A) is 1/n.
- If A is 3 times as efficient as B, then ratio of time taken by them to complete the work is 1 : 3.
- If A can complete a work in n days and B can do it in m days, then one day combine work of A and B is \(\frac{1}{m} + \frac{1}{n}\). Similarly we can determine the combine work for more than two persons.

Or A and B can complete it in  $\frac{nm}{n+m}$  days.

Use the same approach to solve questions related to pipe and cistern. i.e. if we use the term leakage (or empty) then we use '-' sign.

**Example 1** The ratio of working efficiencies of *A* and *B* is 4:5. If *A* alone completes the work in 15 days, then in how many days can *B* alone complete the work?

(a) 12 days

(b) 15 days (d) 20 days

(c) 16 days

**Sol.** (a) Ratio of efficiency of A and B = 4:5

.. Ratio of time taken by them to complete work

= 5:4

But A can complete it in 15 days.

 $\therefore B$  will complete it in  $\frac{15}{5} \times 4 = 12$  days

**Example 2** A can finish a piece of work in 12 days while *B* can do it in 15 days. If both work together, what time will they take to do the work?

(a) 
$$\frac{20}{3}$$
 days

(b) 
$$\frac{20}{5}$$
 days

(c) 
$$\frac{20}{7}$$
 days

(d) None of these

**Sol.** (a) We know that, if A can do a piece of work in n days and B in m days, then they both working together in  $\frac{mn}{m+n}$  days.

Here, n = 12 days m = 15 days

∴ Both A and B work together =  $\frac{12 \times 15}{12 + 15}$ =  $\frac{180}{27} = \frac{20}{3}$  days

**Example 3** Efficiency of *A* is three times to that of *B*. If they will complete the work in 15 days by working together, then in how many days can *B* alone complete the work? (a) 20 days (b) 25 days (c) 15 days (d) 60 days **Sol.** (*d*) We know that, if *A* and *B* can do a work in *n* and *m* days, then they do combine work for one day is  $\frac{1}{n} + \frac{1}{m}$ .

Let A can do the work in x days, then B can do the same work in 3x days.

Then 
$$\frac{1}{x} + \frac{1}{3x} = \frac{1}{15}$$

$$\Rightarrow \qquad \frac{4}{3x} = \frac{1}{15}$$

$$\therefore \qquad x = \frac{4 \times 15}{3} = 20$$

Hence, B will complete the work in  $20 \times 3 = 60$  days working alone.

**Example 4** Akshu can do a piece of work in 10 days and Harshal can do same work in 12 days. They started working together but Akshu left the work 2 days before completion of work, then how much time taken to complete the work?

(a) 
$$5\frac{6}{11}$$
 days

(b) 
$$6\frac{5}{11}$$
 days

(c) 
$$7\frac{6}{11}$$
 days

(d) None of these

**Sol.** (*b*) Harshal's 2 days work = 
$$\frac{2}{12} = \frac{1}{6}$$

Remaining part of work =  $1 - \frac{1}{6} = \frac{5}{6}$ 

Akshu's and Harshal's 1 day work = 
$$\frac{1}{10} + \frac{1}{12} = \frac{11}{60}$$

[since combine work for A and B is 1/m + 1/n] Since, Akshu and Harshal can do the whole work in  $\frac{60}{11}$  days.

 $\therefore$  Time taken by them to complete  $\frac{5}{6}$  of work

$$=\frac{5}{6} \times \frac{60}{11} = \frac{50}{11} = 4\frac{5}{11}$$
 days.

 $\therefore$  Total time taken = 2 +  $4\frac{5}{11}$  =  $6\frac{5}{11}$  days.

**Example 5** Two pipes *A* and *B* can fill a tanker in 10 h and 15 h respectively. Find the time taken to fill the tank when both the pipes are turned on simultaneously.

- (a) 5h
- (b) 6 h
- (c) 7 h
- (d) 8 h

**Sol.** (b) We know that, if pipes A and B fill the water in m and n hrs, them combined pipes fill the water in  $\frac{mn}{m+n}$  hrs.

Here, m = 10 hr and n = 15 hr

 $\therefore A \text{ and } B \text{ can fill the tank in } \frac{10 \times 15}{10 + 15} \text{ h} = \frac{150}{25} = 6 \text{ h}$ 

# **Practice Exercise**

**1.** Ravi alone does a piece of work in 2 days and Rajesh does it in 6 days. In how many days will they to do it together?

(a) 
$$1\frac{1}{2}$$
 days

- **2.** A is twice as good a workman as B and together they finish a piece of work in 14 days. In how many days can A alone finish the work?
  - (a) 11 days
  - (b) 21 days
  - (c) 28 days
  - (d) 42 days

- **3.** A and B can do a piece of work in 18 days. B and C in 24 days, C and A in 36 days. In how many days can they do it all working together?
  - (a) 16 days
- (b) 17 days
- (c) 15 days
- (d) None of these
- **4.** *A* alone can complete a work in 18 days and *B* alone in 15 days. *B* alone worked at it for 10 days and then left the work. In how many more days, will *A* alone complete the remaining work?
  - (a) 5
- (b)  $5\frac{1}{2}$

(c) 6

(d)  $6\frac{1}{2}$ 

|     | three-fourth of the time. If tog                                                                                                                                |                       | certain work in 48 days, but it is found                                                                                                                       |                                            |  |  |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--|--|--|--|--|
|     | take 18 days to complete the v many days will B take to do it                                                                                                   | ?                     | that in 24 days only $\frac{2}{5}$                                                                                                                             | work is done. How                          |  |  |  |  |  |
|     | (a) 40 days (b) 30 da (c) 45 days (d) None                                                                                                                      |                       | many more men mus<br>the work in time?                                                                                                                         | t be taken in finish                       |  |  |  |  |  |
| 6.  | A man can do a piece of work i<br>with the help of his son, he can                                                                                              | n do it in            | (a) 16<br>(c) 20                                                                                                                                               | (b) 18<br>(d) 22                           |  |  |  |  |  |
|     | 3 days. In what time can the so alone.                                                                                                                          | on do it <b>14</b> .  | A cistern which has a due to which it is filled                                                                                                                |                                            |  |  |  |  |  |
|     | (a) $6\frac{1}{2}$ days (b) 7 day                                                                                                                               | ys                    | been no leak, it could<br>12 h. If the cistern is                                                                                                              |                                            |  |  |  |  |  |
|     | (c) $7\frac{1}{2}$ days (d) 8 day                                                                                                                               | ys                    | empty it in (a) 3 h                                                                                                                                            | (b) 12 h                                   |  |  |  |  |  |
| 7.  | If 12 men and 16 boys can do a work in 5 days and 13 men and                                                                                                    | d 24 boys can         | (c) 15 h                                                                                                                                                       | (d) 60 h                                   |  |  |  |  |  |
|     | do it in 4 days, compare the da<br>done by a man with that done<br>(a) 1:2 (b) 1:3 (c) 2:1                                                                      | ily work              | A tank can be filled b<br>and by another in 25<br>are kept open for 5 m<br>second is turned off.                                                               | min. Both the taps<br>in and then the      |  |  |  |  |  |
| 8.  | 7 men and 8 boys can do a pie                                                                                                                                   |                       | minutes more is the t                                                                                                                                          | _                                          |  |  |  |  |  |
|     | in 2 days. 4 men and 12 boys of                                                                                                                                 |                       | filled?<br>(a) 6 min                                                                                                                                           | (b) 11 min                                 |  |  |  |  |  |
|     | the same work in 1 day. In how<br>will 1 man do this work?<br>(a) 24 days (b) 25 days (c) 28 da                                                                 | • •                   | (c)15 min                                                                                                                                                      | $(d) 17 \frac{1}{2} \min$                  |  |  |  |  |  |
| 9.  | 8 men can dig a pit in 20 days<br>works one and a half as much<br>boy, then                                                                                     | . If a man again as a | A tank can be filled in 10 h but owing to a leakage in its bottom it requires 5 h more to fill it. If the cistern is full, in what time can the leak empty it? |                                            |  |  |  |  |  |
|     | 4 men and 9 boys can dig it in (a) 10 days (b) 12 days (c) 15 da                                                                                                |                       | (a) 10 h<br>(c) 30 h                                                                                                                                           | (b) 20 h<br>(d) 40 h                       |  |  |  |  |  |
| 10. | If 1 man or 2 women or 3 boys<br>piece of work in 44 days, then<br>piece of work will be done by<br>1 woman and 1 boy in<br>(a) 21 days (b) 24 days (c) 26 days | the same<br>l man,    | A cistern can be filled<br>20 min and 30 min re<br>emptied by a third in<br>turned on at once. We<br>be half-full?                                             | espectively and be<br>48 min. They are all |  |  |  |  |  |
| 11. | If 3 men or 5 women or 8 boys work in 38 days, then the num                                                                                                     |                       | (a) 16 min<br>(c) 10 min                                                                                                                                       | (b) 8 min<br>(d) 12 min                    |  |  |  |  |  |
|     | taken by 6 men, 10 women an<br>finish the work in<br>(a) 4 days (b) 6 days (c) 8 day                                                                            | d 6 boys to           | Two pipes A and B can<br>20 min and 24 min re<br>pipe C can empty at tl                                                                                        | espectively and a third                    |  |  |  |  |  |
| 12. | If 3 men and 5 boys can do as                                                                                                                                   | much in               | per minute. If A, B an                                                                                                                                         | _                                          |  |  |  |  |  |

**5.** A does half as much work as B is

17 days as 5 men and 3 boys can do in

man and a boy.

(a) 2:5

15 days, compare the rates of working of a

(b) 3:5 (c) 5:3

(d) 5:2

**13**. 36 workmen are employed to finish a

together, they can fill it in 15 min. The

(b) 150 gallons

(d) 60 gallons

capacity of tank is

(a) 180 gallons

(c) 120 gallons

#### **Answers**

| 1  | (a) | 2  | (b) | 3  | (a) | 4  | (c) | 5  | (b) | 6  | (c) | 7  | (c) | 8  | (c) | 9 | (d) | 10 | (b) |
|----|-----|----|-----|----|-----|----|-----|----|-----|----|-----|----|-----|----|-----|---|-----|----|-----|
| 11 | (c) | 12 | (c) | 13 | (b) | 14 | (d) | 15 | (b) | 16 | (c) | 17 | (b) | 18 | (c) |   |     |    |     |

### **Hints & Solutions**

**1.** (a) Ravi's 1 day's work =  $\frac{1}{2}$ 

and Rajesh's 1 day's work =  $\frac{1}{6}$ 

Both of them 1 day's work  $=\frac{1}{2} + \frac{1}{6} = \frac{2}{3}$ 

[: combine work for *A* and *B* is  $\frac{1}{m} + \frac{1}{n}$ .]

- ∴ Both will take  $\frac{3}{2}$  days or  $1\frac{1}{2}$  days to complete the work.
- **2.** (b) Ratio of 1 day's work of A and B = 2:1

 $(A + B)'s 1 day's work = \frac{1}{14}.$ 

 $\therefore \text{ A's 1 day's work} = \frac{1}{14} \times \frac{2}{3} = \frac{1}{21}$ 

Hence, A alone can finish the work in 21 days.

**3.** (a) (A + B)'s 1 day's work =  $\frac{1}{18}$  ...(i

(B + C)'s 1 day's work =  $\frac{1}{24}$  ...(ii)

and (C + A)'s 1 day's work =  $\frac{1}{36}$  ...(iii)

On adding Eqs. (i), (ii) and (iii), we get

2 (A + B + C)'s 1 day's work =  $\frac{1}{18} + \frac{1}{24} + \frac{1}{36}$ =  $\frac{9}{72} = \frac{1}{8}$ 

 $\therefore (A + B + C)'s 1 day's work = \frac{1}{16}$ 

Hence, all of them can finish the work in 16 days.

**4.** (c) B can complete the work in 15 days, but he worked for 10 days.

 $\therefore$  Part of work done =  $\frac{10}{15} = \frac{2}{3}$ 

Remaining part of work done =  $1 - \frac{2}{3} = \frac{1}{3}$ 

A can do the whole work in 18 days.

 $\therefore$  A can do  $\frac{1}{3}$  of the work in  $\frac{1}{3} \times 18$  days = 6 days

**5.** (b) Suppose, B takes x days.

Then, A takes =  $2 \times \frac{3}{4}x = \frac{3x}{2}$  days

Now,  $(A + B)'s 1 day's work = \frac{1}{18}$ 

 $\therefore \frac{1}{x} + \frac{2}{3x} = \frac{1}{18} \Rightarrow \frac{5}{3x} = \frac{1}{18}$   $\Rightarrow \qquad x = 30 \text{ dg}$ 

**6.** (c) Son's 1 day's work  $=\frac{1}{3} - \frac{1}{5} = \frac{2}{15}$ 

 $\therefore$  Son alone can do the work in  $\frac{15}{2}$  days

$$=7\frac{1}{2}$$
 days

**7.** (c) Let 1 man's daily work be  $\frac{1}{x}$  and that of

1 boy's be  $\frac{1}{y}$ .

Then,  $\frac{12}{x} + \frac{16}{y} = \frac{1}{5}$  ...(i)

and  $\frac{13}{x} + \frac{24}{y} = \frac{1}{4}$  ...(ii)

On solving Eqs. (i) and (ii), we get

x = 100 and y = 200

 $\therefore \frac{1}{x} : \frac{1}{y} = \frac{1}{100} : \frac{1}{200}$  = 2 : 1

**8.** (c) Let the man does it in a days and the boy in b days.

Then  $\frac{7}{a} + \frac{8}{b} = \frac{1}{2}$  ...(i)

and  $\frac{4}{a} + \frac{12}{b} = \frac{29}{56}$  ...(ii)

From Eqs. (i) and (ii),

$$\frac{52}{b} = \frac{29}{8} - 2 = \frac{13}{8}$$

$$b = 32$$

On putting the value of b in Eq. (i), we get

$$\frac{7}{a} + \frac{8}{32} = \frac{1}{2} \implies \frac{7}{a} = \frac{1}{4}$$

Hence, a man will do it in 28 days.

**9.** (d) Given,  $1 \text{ man} = \frac{3}{2} \text{ boys}$ 

So,  $8 \text{ men} \equiv 12 \text{ boys}$ 

and 4 men + 9 boys  $\equiv$  15 boys

Here, 12 boys can dig it in 20 days.

- ∴ 15 boys can dig it in  $\frac{20 \times 12}{15}$  = 16 days
- **10.** (b) 1 man = 3 boys and 1 woman =  $\frac{3}{2}$  boys.

$$\therefore (1 \text{ man} + 1 \text{ woman} + 1 \text{ boy})$$

$$= \left(3 + \frac{3}{2} + 1\right) \text{boy} = \frac{11}{2} \text{ boys}$$

Now, 3 boys can do the work in 44 days.

$$\therefore \frac{11}{2} \text{ boys can do it in } \frac{44 \times 3}{\frac{11}{2}} = 24 \text{ days}$$

- **11.** (c) 3 men  $\equiv$  5 women  $\equiv$  8 boys
  - $\Rightarrow$  6 men = 16 boys and 10 women = 16 boys
  - ∴6 men + 10 women + 6 boys = (16+16+6) boys  $\equiv$  38 boys

Now, 8 boys can finish the work in 38 days.

- $\therefore$  38 boys would finish it in  $\left(\frac{38 \times 8}{38}\right) = 8$  days
- **12.** (c) Let one day's work of a man and a boy be x and y respectively.

Then, 
$$3x + 5y = \frac{1}{17}$$
  
 $\Rightarrow 17(3x + 5y) = 1$   
Similarly,  $15(5x + 3y) = 1$ 

17(3x + 5y) = 15(5x + 3y)

- **13.** (b) 36 men can complete  $\frac{2}{5}$  of work in 24 days.
  - $\therefore$  Time taken by them to complete  $\frac{3}{5}$  of work

$$= \frac{24}{2} \times 5 \times \frac{3}{5} \text{ days} = 36 \text{ days}$$

But, the remaining work must be completed in 24 days.

Number of men required to complete work in 36 days = 36

Number of men required to complete work in 1  $day = 36 \times 36$ 

Number of men required to complete work in  $24 \text{ days} = \frac{36 \times 36}{24} = 54$ 

- ∴ Required men = 54 36 = 18
- **14.** (d) Work done by the leak in 1 h =  $\frac{1}{12} \frac{1}{15} = \frac{1}{60}$ 
  - :. Leak can empty the full cistern in 60 h
- **15.** (b) Work done by both in 5 min =  $\left(\frac{1}{20} + \frac{1}{25}\right)$  5

$$=\frac{9}{20}$$

Remaining part =  $\left(1 - \frac{9}{20}\right) = \frac{11}{20}$ 

Now,  $\frac{1}{20}$  part is filled in 1 min so,  $\frac{11}{20}$  part will be filled in 11 min.

Hence, the tank will be full in 11 min more.

**16.** (c) Work done by the leak boys in 1 h  $= \frac{1}{10} - \frac{1}{15} = \frac{1}{30}$ 

$$=\frac{1}{10}-\frac{1}{15}=\frac{1}{30}$$

Hence, the leak will empty it in 30 h.

**17.** (b) The part of the cistern filled by the taps in 1 min

$$= \frac{1}{20} + \frac{1}{30} - \frac{1}{48}$$
$$= \frac{12 + 8 - 5}{240} = \frac{1}{16}$$

- .. They fill the complete cistern in 16 min.
- $\therefore \frac{1}{2}$  of the cistern can be filled in 8 min.
- **18.** (c) Let pipe C can empty the tank in x min.

$$\therefore \frac{1}{20} + \frac{1}{24} - \frac{1}{x} = \frac{1}{15}$$

$$\Rightarrow \frac{1}{x} = \frac{1}{20} + \frac{1}{24} - \frac{1}{15} \Rightarrow \frac{1}{x} = \frac{6+5-8}{120}$$

- :. Rate of flow of water = 3 gallons per minute
- $\therefore$  Capacity of tank =  $40 \times 3$