DPP No: 07

SYLLABUS: Periodic Table & Chemical Bonding

1.	The octet rule is not obeyed in :								
	(A) CO ₂	(B) BCI ₃	(C) PCI ₅	(D) (B) and (C) both					
2.	To which of the following species is the octet rule applicable ?								
	(A) BrF ₅	(B) SF ₆	(C) IF ₇	(D) CO ₂					
3.	O $ y $ H–O $^{-}$ C $^{-}$ Z $^{-}$ O $^{-}$ The relation between x, y and z in bicarbonate ion with respect to bond length is								
	(A) $x > y > z$	(B) $x > z > y$	(C) $z = y > x$	(D) $x > y = z$					
4.	The correct order of increasing C-O bond length of CO, CO ₃ ²⁻ , CO ₂ is :								
	(A) $CO_3^{2-} < CO_2 < C$	0	(B) $CO_2 < CO_3^{2-} < CO$						
	(C) $CO < CO_3^{2-} < C$	2	(D) $CO < CO_2 < CO_3^{2-}$						
5.	Average bond order of C-C bond in C								
	(A) 1	(B) 2	(C) 1.5	(D) 1.33					
6.	Among the species	which has the weake,	st carbon- oxygen bor	nd:					
	(A) <i>CO</i> ₂	(B) <i>CH</i> ₃ <i>COO</i> ⁻	(C) CO	(D) CO_3^{2-}					
7.	Which of the following overlaps is incorrect [assuming z-axis to be the internuclear axis]?								
	(a) 2 p _y + 2 p _y $\to \pi$ 2	2 p _y	(b) 2 p_z + 2 $p_z \rightarrow \sigma 2p_z$						
	(c) 2 p_x + 2 $p_x \rightarrow \pi$ 2	p_x	(d) 1 s + 2 $p_y \rightarrow \pi$ (1 s-2 p_y)						
	(A) 'a' & 'b'	(B) 'b' & 'd'	(C) only 'd'	(D) None of these					
8.	Which of following statement(s) is/are not correct?								
	(A) Pi-bond always exists with sigma-bond according to V.B.T.								
	(B) Pi-bond can exist independently acc. to V.B.T.								
	(C) Sigma-bond is weaker than pi-bond								
	(D) Pi-bond is less reactive than sigma-bond								
9.	Indicate the wrong statement according to Valence bond theory :								
	(A) A sigma bond is	d							
	(B) p-orbitals always have only sidewise overlapping								

	(D) There can be only one sigma bond between two atoms								
10.	Choose the correct order of bond strength by overlapping of atomic orbitals :								
	(A) 1s - 1s > 1s - 2s	s > 2p	(B) 2s - 2s > 2s - 2p > 2p - 2p						
	(C) $2s - 2p > 2s - 2s$	s > 2p - 2p	(D) 1s - 1s > 1s - 2p > 1s - 2s						
11.	C ₃ ⁴⁻ has								
	(A) two σ and two π	bond	(B) three σ and one π bond						
	(C) two σ and one σ	π bond	(D) two σ and three π bond						
12.	Which of the follow	ing is not correct							
	(A) A sigma bond is weaker than π bond								
	(B) A sigma bond is stronger than π bond								
	(C) A double bond is stronger than a single bond								
	(D) A double bond is shorter than a single bond								
13.	Deduce the geometry of each of the following molecules :								
	(i) NH ₃	(ii) C_2H_4	(iii) Cl_3^-						
	(A) pyramidal, pyra	midal, tetrahedral	(B) pyramidal, tertrahedral, pyramidal						
	(C) pyramidal, plan	ar, tetrahedral	(D) pyramidal, planar, pyramidal						
14.	Which of the following molecule has see-saw geometry?								
	(A) I ₃	(B) ICl ₂	(C) CIF ₃	(D) $IO_2F_2^-$					
15.	Which reaction involves a change in the electron–pair geometry for the under lined elemen?								
	$(A \underline{B}F_3 + F^- \longrightarrow \underline{E}$	<u>B</u> F ₄ -	(B) $\underline{N}H_3 + H^+ \longrightarrow \underline{N}H_4^+$						
	(C) 2 <u>S</u> O ₂ + O ₂	→ 2 <u>S</u> O ₃	(D) $H_2O + H^+ \longrightarrow H_3O^+$						
16.	In which of the following molecules number of lone paris and bond pairs on central atom ar not equal ?								
	(A) H ₂ O	(B) I ₃ ⁻	(C) O_2F_2	(D) SCI ₂					
17.	Which of the following species given below have shape similar to XeOF ₄ ?								
	(A) XeO ₃	(B) IOF ₄ ⁺	(C) PCI ₅	(D) XeF_5^{\oplus}					
	The hybridization of carbon atoms in $C_2 - C_3$ single bond of $HC = C - CH = CH_2$ is :								
18.	The hybridization of	f carbon atoms in C $_{\scriptscriptstyle 2}$ -	- $C_{\scriptscriptstyle 3}$ single bond of H($C \equiv C - CH = CH_2$ is:					
18.			- C_3 single bond of H((C) sp – sp ²						

(C) s-orbitals never form $\boldsymbol{\pi}$ - bonds

19.	Determine the geometry of each of the following molecules and hybridisation about the central atom :													
	(i) BeF	₂ (g)		(ii) All	H_3		(iii) CH ≡ CH							
	(A) sp	(A) sp linear, sp² trigonal planar, sp² planar respectively												
	(B) sp ²	(B) sp² planar, sp linear, sp² planar respectively												
	(C) sp	(C) sp trigonal planar, sp² linear, sp² planar respectively												
	(D) sp	linear,	sp² trig	onal pl	anar, s _l	o linear	respec	tively						
20.	In pen	In pent-3-en-1-yne the terminal carbon-atoms have following hybridisation												
	(A) sp	& sp ²		(B) sp ² & sp ³			(C) sp	(C) sp ² & sp			(D) sp & sp ³			
21.	Carbon atoms in $C_2(CN)_4$ are :													
	(A) sp	–hybrid	ised				(B) sp ² -hybridised							
	(C) sp-and sp ² -hybridised				(D) sp, sp ² and sp ³ -hybridised									
22.	In which the following interaction form non-bonding molecular orbital, when z-axis is the bonding axis?													
	(A) d _{yz}	(A) $d_{yz} + d_{z^2}$ (B) $d_{yz} + d_{xy}$			(C) $d_{x^2-y^2} + d_{xy}$			(D) All form N.B.M.O.						
23.	BF ₃ +	F- → B	F ₄ -											
	What is the hybridiation state of B in BF_3 and BF_4^- :													
latere	(A) sp^2 , sp^3 (B) sp^3 , sp^3				(C) sp ² , sp ²			(D) sp^3 , sp^3d						
mege 24.	Integer Value Quetions. 24. In OF ₂ , the number of bond pairs and lone pairs of electrons are respectively X and Y then													
24.	$Y \div X$	_	anibei	or boric	i palis i	and ion	e pairs	OI CICC	allons a	ie iesp	ectively	/ X and	i tileli	
25.	In how	many	of the t	ollowin	g speci	ies, the	central	atoms	have to	wo lone	pairs c	of electr	ons?	
	XeF ₄ XeF ₅				F ₂ SeO ₂			XeF ₃ ⁺						
	XeOF ₄ CIOF ₃				ICl ₄ SCl ₂ OSF ₄									
ANSWER KEY														
1.	(D)	2.	(D)	3.	(D)	4.	(D)	5.	(C)	6.	(D)	7.	(C)	
8.	(B)	9.	(B)	10.	(D)	11.	(A)	12.	(A)	13.	(D)	14.	(D)	
15.	(A)	16.	(B)	17.	(D)	18.	(B)	19.	(D)	20.	(D)	21.	(C)	
22.	(D)	23.	(A)	24.	(4)	25.	5						J	