JEE Mains & Advanced Past Years Questions

1EE-MAIN PREVIOUS YEARS

1. The eccentricity of the hyperbola whose length of the latusrectum is equal to 8 and the length of conjugate axis is equal to half of the distance between its foci, is

[JEE Main-2016]

(c) $\frac{2}{\sqrt{2}}$

- 2. A hyperbola passes through the point $p(\sqrt{2}, \sqrt{3})$ and has foci at $(\pm 2, 0)$. The nth tangent to this hyperbola at P also passes through the point. [JEE Main-2017]
 - (a) $(-\sqrt{2}, -\sqrt{3})$ (b) $(3\sqrt{2}, 2\sqrt{3})$
- - (c) $(2\sqrt{2}, 3\sqrt{3})$ (d) $(\sqrt{3}, \sqrt{2})$
- 3. Let $0 < \theta < \frac{\pi}{2}$. If the eccentricity of the hyperbola $\frac{x^2}{\cos^2 \theta} - \frac{y^2}{\sin^2 \theta} = 1$ is greater than 2, then the length of its latus rectum lies in the interval:

[JEE Main-2019 (January)]

(a) $(3,\infty)$

(b) $\left[\frac{3}{2},2\right]$

(c) (2, 3]

(d) $\left(1,\frac{3}{2}\right)$

- 4. A hyperbola has its centre at the origin, passes through the point (4, 2) and has transverse of axis of length 4 along the x-axis. Then the eccentricity of the hyperbola [JEE Main-2019 (January)] is:
 - (a) $\frac{2}{\sqrt{3}}$

(c) $\sqrt{3}$

5. The equation of a tengent to the hyperbola $4x^2 - 5y^2 = 20$ parallel to the line x - y = 2 is: [JEE Main-2019 (January)]

(a) x-y+1=0

(b) x-y+7=0

(c) x-y+9=0

(d) x-y-3=0

6. If a hyperbola has length of its conjugate axis equal to 5 and the distance between its foci is 13, then the eccentricity of the hyperbola is:

[JEE Main-2019 (January)]

(a) 13/12

(b) 2

(c) 13/6

(d) 13/8

7. If the vertices of a hyperbola be at (-2, 0) and (2, 0) and one of its foci be at(-3, 0), then which one of the following points does not lie on this hyperbola?

[JEE Main-2019 (January)]

(a) $(-6,2\sqrt{10})$

(b) $(2\sqrt{6},5)$

(c) $(4,\sqrt{15})$

(d) $(6.5\sqrt{2})$

8. If the eccentricity of the standard hyperbola passing through the point (4,6) is 2, then the equation of the tangent of the hyperbola at (4,6) is

[JEE Main-2019 (April)]

(a) 2x-y-2=0

(b) 3x-2y=0

(c) 2x-3y+10=0 (d) x-2y+8=0

9. If the line $y = mx + 7\sqrt{3}$ is normal to the hyperbola

$$\frac{x^2}{24} - \frac{y^2}{18} = 1$$
, then a value of m is

[JEE Main-2019 (April)]

(d) $\frac{\sqrt{15}}{2}$

10.	$165x + 9 = 0$ is the directrix of the hyperbola $16x^2 - 9y^2 = 144$							
	then its corresponding focus is:	[JEE Main-2019 (April)]						

(a)
$$\left(-\frac{5}{3},0\right)$$

(d)
$$\left(\frac{5}{3},0\right)$$

11. If a directrix of a hyperbola centred at the origin and passing through the point $(4, -2\sqrt{3})$ is $5x = 4\sqrt{5}$ and its eccentricity is e, then: [JEE Main-2019 (April)]

(a)
$$4e^4 - 24e^2 + 35 = 0$$

(b)
$$4e^4 - 8e^2 - 35 = 0$$

(c)
$$4e^4 - 12e^2 - 27 = 0$$

(d)
$$4e^4 - 24e^2 + 27 = 0$$

12. If a hyperbola passes through the point P(10, 16) and it has vertices at $(\pm 6, 0)$, then the equation of the normal to it at P is [JEE Main-2020 (January)]

(a)
$$x + 3y = 58$$

(b)
$$x + 2v = 42$$

(c)
$$3x+4y=94$$

(d)
$$2x + 5y = 100$$

13. If e_1 and e_2 are the eccentricities of the ellipse, $\frac{x^2}{19} + \frac{y^2}{4} = 1$ and the hyperbola, $\frac{x^2}{9} - \frac{y^2}{4} = 1$ respectively and (e_1, e_2) is a point on the ellipse, $15x^2 + 3y^2 = k$, then k is equal to

[JEE Main-2020 (January)]

(a) 14

(b) 15

(c) 16

(d) 17

14. For some $\theta \in \left(0, \frac{\pi}{2}\right)$, if the eccentricity of the hyperbola, $x^2 - y^2 \sec^2\theta = 10$ is $\sqrt{5}$ times the eccentricity of the ellipse, $x^2 \sec^2 \theta + y^2 = 5$, then the length of the latus rectum of the ellipse, is: [JEE Main-2020 (September)]

(a)
$$2\sqrt{6}$$

(b)
$$\frac{2\sqrt{5}}{3}$$

(c)
$$\frac{4\sqrt{5}}{3}$$

(d)
$$\sqrt{30}$$

15. A line parallel to the straight line 2x - y = 0 is tangent to the hyperbola $\frac{x^2}{4} - \frac{y^2}{2} = 1$ at the point (x_1, y_1) . Then [JEE Main-2020 (September)] $x_1^2 + 5y_1^2$ is equal to: (a) 8

16. Let e_1 and e_2 be the eccentricities of the ellipse,

$$\frac{x^2}{25} + \frac{y^2}{b^2} = 1(b < 5)$$
 and the hyperbola, $\frac{x^2}{16} - \frac{y^2}{b^2} = 1$

respectively satisfying $e_1e_2=1$. If α and β are the dist ances between the foci of the ellipse and the foci of

the hyperbola respectively, then the ordered pair (α, β) is equal to: [JEE Main-2020 (September)]

(b)
$$\left(\frac{24}{5}, 10\right)$$

(c)
$$\left(\frac{20}{3}, 12\right)$$

$$(d)$$
 (8,12)

17. A hyperbol a having the transverse axis of length $\sqrt{2}$ has the same foci as that of the ellipse of $3x^2 + 4y^2 = 12$, then this hyperbola does not pass through which of the [JEE Main-2020 (September)] following points?

(a)
$$\left(-\sqrt{\frac{3}{2}},1\right)$$

$$(b) \quad \left(\sqrt{\frac{3}{2}}, \frac{1}{\sqrt{2}}\right)$$

(c)
$$\left(\frac{1}{\sqrt{2}},0\right)$$

(c)
$$\left(\frac{1}{\sqrt{2}}, 0\right)$$
 (d) $\left(1, -\frac{1}{\sqrt{2}}\right)$

18. Let P(3, 3) be a point on the hyperbola, $\frac{x^2}{a^2} - \frac{y^2}{k^2} = 1$. If

the normal to it at P intersects the x-axis at (9,0) and e is its eccentricity, then the ordered pair (a^2, e^2) is equal to:

[JEE Main-2020 (September)]

(b)
$$\left(\frac{9}{2},3\right)$$

(c)
$$\left(\frac{3}{2},2\right)$$

(d)
$$\left(\frac{9}{2},2\right)$$

19. If the line y = mx + c is a common tangent to the hyperbola $\frac{x^2}{100} - \frac{y^2}{64} = 1$ and the circle $x^2 + y^2 = 36$, then which one of the following is true? [JEE Main-2020 (September)]

- (a) 5m = 4
- (b) 8m+5=0
- (c) $c^2 = 369$
- (d) $4c^2 = 369$

20. The locus of the midpoints of the chord of the circle, $x^2 + y^2 = 25$ which is tangent to the hyperbola,

$$\frac{x^2}{9} - \frac{y^2}{16} = 1$$
, is:

[JEE Main-2021 (March)]

(a)
$$(x^2 + y^2)^2 - 9x^2 + 16y^2 = 0$$

(b)
$$(x^2 + y^2)^2 - 9x^2 + 144y^2 = 0$$

(c)
$$(x^2 + y^2)^2 - 16x^2 + 9y^2 = 0$$

(d)
$$(x^2 + y^2)^2 - 9x^2 - 16y^2 = 0$$

- 21. The locus of the mid points of the chords of the hyperbola $x^2 - y^2 = 4$, which touch the parabola $y^2 = 8x$, is:

 - (a) $v^3(x-2) = x^2$ (b) $x^3(x-2) = v^2$
 - (c) $y^2(x-2) = x^3$ (d) $x^2(x-2) = y^3$

[JEE Main-2021 (August)]

- 22. The locus of the centroid of the triangle formed by any point P on the hyperbola $16x^2 - 9y^2 + 32x + 36y - 164 = 0$, and its foci is: [JEE Main-2021 (July)]
 - (a) $16x^2 9v^2 + 32x + 36v 36 = 0$
 - (b) $9x^2 16v^2 + 36x + 32v 144 = 0$
 - (c) $16x^2 9v^2 + 32x + 36v 144 = 0$
 - (d) $9x^2 16y^2 + 36x + 32y 36 = 0$
- 23. Let a line L: 2x + y = k, k > 0 be a tangent to the hyperbola $x^2 - y^2 = 3$. If L is also a tangent to the parabola $v^2 = \alpha x$, then α is equal to: [JEE Main-2021 (July)]
 - (a) 12

(c) 24

- (d) -24
- 24. Consider a hyperbola $H: x^2 2y^2 = 4$. Let the tangent at a point $P(4,\sqrt{6})$ meet the x-axis at Q and latus rectum at $R(x_1, y_1), x_1 \ge 0$. If F is a focus of H which is nearer to the point P, then the area of $\triangle OFR$ is equal to:
 - (a) $\sqrt{6}-1$
- (b) $\frac{7}{\sqrt{c}} 2$
- (c) $4\sqrt{6}-1$

[JEE Main-2021 (March)]

1EE-ADVANCED PREVIOUS YEARS

- 1. Tangents are drawn to the hyperbola $\frac{x^2}{9} \frac{y^2}{4} = 1$, parallel to the straight line 2x - y = 1. The points of contacts of the tangents on the hyperbola are [IIT JEE-2012]
 - (a) $\left(\frac{9}{2\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
 - (b) $\left(-\frac{9}{2\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ description regions were
 - (c) $(3\sqrt{3}, -2\sqrt{2})$
 - (d) $(-3\sqrt{3}, 2\sqrt{2})$

- 2. If 2x y + 1 = 0 is a tangent to the hyperbola
 - $\frac{x^2}{x^2} \frac{y^2}{16} = 1$, then which of the following CANNOT be

sides of a right angled triangle? [JEE Advanced-2017]

- (a) a, 4, 1
- (b) 2a, 4, 1
- (c) a, 4, 2
- (d) 2a, 8, 1
- 3. Let $H: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1$, where a > b > 0, be a hyperbola in the xy-plane whose conjugate axis LM subtends an angle of 60° at one of its vertices N. Let the area of the triangle LMN be $4\sqrt{3}$.

[JEE Advanced-2018]

LIST-I

LIST-II

- (P) The length of the conjugate (1) 8 axis of H is
- (Q) The eccentricity of H is
- (2) $\frac{4}{\sqrt{3}}$
- (R) The distance between
- (3) $\frac{2}{\sqrt{3}}$ the foci of H is
- (S) The length of the latus
- (4) 4 rectum of H is

The correct option is:

- (a) $P \rightarrow 4$; $O \rightarrow 2$; $R \rightarrow 1$; $S \rightarrow 3$
- (b) $P \rightarrow 4$; $Q \rightarrow 3$; $R \rightarrow 1$; $S \rightarrow 2$
- (c) $P \rightarrow 4$; $Q \rightarrow 1$; $R \rightarrow 3$; $S \rightarrow 2$
- (d) $P \rightarrow 3$: $O \rightarrow 4$: $R \rightarrow 2$: $S \rightarrow 1$
- **4.** Let a and b be positive real numbers such that a > 1 and b < a. Let P be a point in the first quadrant that lies on the

hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. Suppose the tangent to the hyperbola at P passes through the point (1,0), and suppose the normal to the hyperbola at P cuts off equal intercepts on the coordinate axes. Let Δ denote the area of the triangle formed by the tangent at P, the normal at Pand the x-axis. If e denotes the eccentricity of the hyperbola, then which of the following statements is/are [JEE Advanced-2020]

- (a) $1 < e < \sqrt{2}$ (b) $\sqrt{2} < e < 2$ (c) $\Delta = a^4$ (d) $\Delta = b^4$

JEE-MAI	N								
PREVIO	US YEA	RS							
1 (a)	2 (0)	2 (0)	1 (0)	E (-)	(()	7 (1	0 ()	0 ()	40 ()

4.(a,d)

3. (b)

1. (a, b) 2. (a, c, d)

20 (0)	- (0)	J. (a)	4. (a)	J. (u)	0. (a)	7. (u)	6. (<i>a</i>)	9. (0)	10.(0)	11.
13. (c)	14. (c)	15. (<i>b</i>)	16. (a)	17. (b)	18. (b)	19. (<i>d</i>)	20. (a)	21. (c)	22. (a)	23.

13. (0)	14. (C)	15. (b)	10. (a)	17. (b)	18. (b)	19. (<i>a</i>)	20. (a)	21. (c)	22. (a)	23. (<i>d</i>)
1EE-AD\	/ANCED						4			

		()		(-)	()	()	217(0)	(0)	20. (a)
JEE-ADVA	;		-						

JEE Mains & Advanced Past Years Questions