GUIDED REVISION

(COMPLEX NUMBER) - 1

TIME: 60 MIN. M.M.: 66

SECTION-I(i)

Straight Objective Type (3 Marks each, -1 for wrong answer)

1.	If z is a complex number satisfying the equation $ z - (1 + i) ^2 = 2$ and $\omega = \frac{2}{z}$, then the locus traced							
	'ω' in the complex plane is							
	(A) $x - y - 1 = 0$	(B) $x + y - 1 = 0$	(C) $x - y + 1 = 0$	(D) $x + y + 1 = 0$				

2. Let $z_r (1 \le r \le 4)$ be complex numbers such that $|z_r| = \sqrt{r+1}$ and $|30 z_1 + 20 z_2 + 15 z_3 + 12 z_4| = k |z_1 z_2 z_3 + z_2 z_3 z_4 + z_3 z_4 z_1 + z_4 z_1 z_2|$. Then the value of k equals $(A) |z_1 z_2 z_3| \qquad (B) |z_2 z_3 z_4| \qquad (C) |z_3 z_4 z_1| \qquad (D) |z_4 z_1 z_2|$

- 3. Let $z_1 \& z_2$ be non zero complex numbers satisfying the equation, $z_1^2 2z_1z_2 + 2z_2^2 = 0$. The geometrical nature of the triangle whose vertices are the origin and the points representing $z_1 \& z_2$ is:

 (A) an isosceles right angled triangle

 (B) a right angled triangle which is not right angled.

 (C) an equilateral triangle

 (D) an isosceles triangle which is not right angled.
- 4. If $1, \alpha_1, \alpha_2, \ldots, \alpha_{2008}$ are $(2009)^{th}$ roots of unity, then the value of $\sum_{r=1}^{2008} r(\alpha_r + \alpha_{2009-r})$ equals

 (A) 2009 (B) 2008 (C) 0 (D) 2009
- 5. If $w = \alpha + i\beta$ where $\beta \neq 0$ and $z \neq 1$, satisfies the condition that $\frac{w \overline{w}z}{1 z}$ is purely real, then the set of values of z is

 (A) $\{z : |z| = 1\}$ (B) $\{z : z = \overline{z}\}$ (C) $\{z : z \neq 1\}$ (D) $\{z : |z| = 1, z \neq 1\}$
- 6. A man walks a distance of 3 units from the origin towards the North-East (N 45° E) direction. From there, he walks a distance of 4 units towards the North-West (N 45° W) direction to reach a point P. Then the position of P in the Argand plane is
 - (A) $3e^{i\pi/4} + 4i$ (B) $(3-4i)e^{i\pi/4}$ (C) $(4+3i)e^{i\pi/4}$ (D) $(3+4i)e^{i\pi/4}$
- 7. Let z = x + iy be a complex number where x and y are integers. Then the area of the rectangle whose vertices are the roots of the equation $z\overline{z}^3 + \overline{z}z^3 = 350$ is
 - (A) 48 (B) 32 (C) 40 (D) 80

8.	If P and Q are respec	ctively by the complex	numbers z_1 and z_2 such	that $\left \frac{1}{z_1} + \frac{1}{z_2} \right = \left \frac{1}{z_1} - \frac{1}{z_2} \right $, then the			
	circumcentre of ΔOPQ (where O is the origin) is						
	$(A) \frac{z_1 - z_2}{2}$	$(B) \frac{z_1 + z_2}{2}$	$(C) \frac{z_1 + z_2}{3}$	(D) $z_1 + z_2$			
9.	Let complex number	s α and $\frac{1}{\overline{\alpha}}$ lie on circle	es $(x - x_0)^2 + (y - y_0)^2 =$	= r^2 and $(x - x_0)^2 + (y - y_0)^2 = 4r^2$			

- respectively. If $z_0 = x_0 + iy_0$ satisfies the equation $2|z_0|^2 = r^2 + 2$, then $|\alpha| =$
- (A) $\frac{1}{\sqrt{2}}$ (B) $\frac{1}{2}$ (C) $\frac{1}{\sqrt{7}}$ (D) $\frac{1}{3}$
- Suppose A is a complex number & $n \in N$, such that $A^n = (A + 1)^n = 1$, then the least value of n is 10. (C) 9 (A) 3 (B) 6 (D) 12

SECTION-I(ii)

Multiple Correct Answer Type (4 Marks each, –1 for wrong answer)

- If the expression $(1 + ir)^3$ is of the form of s(1 + i) for some real 's' where 'r' is also real and $i = \sqrt{-1}$, 11. then the value of 'r' can be
 - (A) $\cot \frac{\pi}{8}$
- (B) $\sec \pi$
- (C) $\tan \frac{\pi}{12}$
- (D) $\tan \frac{5\pi}{12}$
- Let z_1 and z_2 be two distinct complex numbers and let $z = (1 t)z_1 + tz_2$ for some real number t with 0 < tt < 1. If Arg(w) denotes the principal argument of a nonzero complex number w, then
 - (A) $|z z_1| + |z z_2| = |z_1 z_2|$
- (B) $Arg(z z_1) = Arg(z z_2)$

 $(C)\begin{vmatrix} z-z_1 & \overline{z}-\overline{z}_1 \\ z_2-z_1 & \overline{z}_2-\overline{z}_1 \end{vmatrix} = 0$

- (D) $Arg(z z_1) = Arg(z_2 z_1)$
- Let ω be a complex cube root of unity with $\omega \neq 1$ and $P = [p_{ij}]$ be a $n \times n$ matrix with $p_{ij} = \omega^{i+j}$. Then $P^2 \neq 0$, when n =
 - (A) 57
- (B) 55
- (C) 58
- (D) 56

SECTION-I(iii)

Linked Comprehension Type (Single Correct Answer Type) (3 Marks each, -1 for wrong answer)

Paragraph for question nos. 14 to 16

Let A, B, C be three sets of complex numbers as defined below.

$$A = \{z : |z+1| \le 2 + Re(z)\}, B = \{z : |z-1| \ge 1\} \text{ and } C = \left\{z : \left|\frac{z-1}{z+1}\right| \ge 1\right\}$$

- The number of point(s) having integral coordinates in the region $A \cap B \cap C$ is 14.
 - (A) 4

(B) 5

(C) 6

(D) 10

- 15. The area of region bounded by $A \cap B \cap C$ is
 - (A) $2\sqrt{3}$
- (B) $\sqrt{3}$
- (C) $4\sqrt{3}$
- (D) 2
- The real part of the complex number in the region $A \cap B \cap C$ and having maximum amplitude is
 - (A) 1
- (B) $\frac{-3}{2}$
- (C) $\frac{1}{2}$
- (D) 2

SECTION-I(v)

Matching list type (4×4) (Single option correct) (3 Marks each, -1 for wrong answer)

17. Let $z_k = \cos\left(\frac{2k\pi}{10}\right) + i\sin\left(\frac{2k\pi}{10}\right)$; $k = 1, 2, \dots, 9$.

List-I

List-II

- P. For each z_k there exists a z_i such that $z_k \cdot z_i = 1$
- True
- Q. There exists a $k \in \{1, 2,, 9\}$ such that $z_1 \cdot z = z_k$ has no solution z in the set of complex numbers.
- False

R. $\frac{|1-z_1||1-z_2|...|1-z_9|}{10}$ equals

3.

S. $1 - \sum_{k=1}^{9} \cos\left(\frac{2k\pi}{10}\right)$ equals

Codes:

- (A) 1
- (B) 2 1 3 4 (C) 1 2 3 4
- (D) 2

SECTION-II (i)

Numerical Grid Type (Single digit Ranging from 000 to 999) (4 Marks each, -1 for wrong answer)

- 18. The minimum value of the expression $E = |z|^2 + |z 3|^2 + |z 6i|^2$ (where z = x + iy, $x, y \in R$), is
- 19. Let $z_1, z_2 \in C$ such that $z_1^2 + z_2^2 \in R$. If $z_1(z_1^2 3z_2^2) = 10$ and $z_2(3z_1^2 z_2^2) = 30$. The value of $(z_1^2 + z_2^2)$, is
- 20. If the biquadratic $x^4 + ax^3 + bx^2 + cx + d = 0$ (a, b, c, $d \in R$) has 4 non real roots, two with sum 3 + 4i and the other two with product 13 + i. The value of 'b' is

(COMPLEX NUMBER-01)

MATHEMATICS

	Q.	1	2	3	4	5	6	7	8	9	10
SECTION-I	A.	Α	D	Α	D	D	D	Α	В	С	В
SECTION-I	Q.	11	12	13	14	15	16	17			
	A.	B,C,D	A,C,D	B,C,D	В	Α	В	С			
SECTION-II	Q.	18	19	20							92
SECTION-II	A.	030	010	051							