CHAPTER 2

POLYNOMIALS

Polynomials

The word Polynomial is derived from two greek words, namely Poly (meaning "many") and Nomial (meaning "terms"), therefore meaning of polynomial = many terms.

An algebraic expression p(x) of the form $p(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$, where $a_0, a_1, a_2, \dots, a_n$ are real numbers and all the powers of x are non-negative integers is called a polynomial.

For Example

(i)
$$x^2 + 9x$$
 (ii) $4x^5 - \sqrt{5}x^2 + 8$ (iii) $3x^3 + \frac{5}{8}x + 5$

Following expressions are not polynomials:

- (i) $3x \frac{2}{x} 5$, as power of x is -1 i.e., negative.
- (ii) $4x^3 3\sqrt{x} + 6$, as power of x is $\frac{1}{2}$ i.e., fraction.

Degree of a Polynomial

The highest power (exponent) of the terms of a polynomial is called degree of the polynomial.

For example:

In polynomial $4x^3 - 7x^6 + 4$:

- \Box The power of term $4x^3$ is 3.
- \Box The power of term $-7x^6$ is 6.
- \Box The power of term 4 is 0.

Since, the highest power is 6, therefore degree of the polynomial $4x^3 - 7x^6 + 4$ is 6.

Let's see some more examples.

- (i) The degree of polynomial $5y^2 6$ is 2.
- (ii) The degree of polynomial $7x 13x^5 + 4x^3$ is 5.
- (iii) The degree of polynomial 13x + 7 is 1 as $x = x^{1}$.

Mind it

The degree of a polynomial with more than one variable can be computed by adding the exponents of each variable in terms. For example: $7a^4 - 3ab^4$

- \Box The power of term 7a⁴ is 4.
- \Box The power of term 3ab⁴ is 5. (a has exponent 1, b has 4, so 1 + 4 = 5)

Types of Polynomials

In general, the polynomials are divided into three categories.

	Not defined	Zero	0
0		(non-zero)constant	$(p^0 = 1)$
	1	Linear	p + 1
	2	Quadratic	$p^2 + p + 13$
	3	Cubic	$p^{3} + 2p - p + 4$

Generally, a polynomial of degree n, for n greater than 3, is called a polynomial of degree n, although quartic and quintic polynomial are sometimes used for degree 4 and 5 respectively.

Based on number of terms

Number of non-zero terms	Name	Example	
0	zero polynomial	0	
1	monomial	x ²	
2	binomial	$x^{2} + 1$	
3	trinomial	$x^2 + x + 1$	

Based on number of distinct variables

Number of distinct variables	Name	Example	
1	Univariate	a + 3	
2	Bivariate	a + b + 5	
3	Trivariate	a+b+c+7	

Usually, a polynomial in more than one variable is called a multivariate polynomial. In this chapter, mainly we will discuss only about the polynomials in one variable.

Ex.	$P(x) = 4x^7 - 3x^2 + 5$	Trinomial of degree 7
	$Q(y) = 5y^2 + 9$	Quadratic Binomial
	R(s) = 75	Linear monomial

Note: In general, the polynomial in one variable x of degree 'n' is $a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \ldots + a_2 x^2 + a_1 x + a_0$, $a_n \neq 0$, where a_n , a_{n-1} ,..., a_2 , a_1 , a_0 all are constants.

Values and Zeroes of a Polynomial

If p(x) is a polynomial in variable x and a is any real number, then the value obtained by replacing x by a in p(x) is called **value of** p(x) **at** x = a **and is denoted by** p(a)**.**

For Example:

For a polynomial $f(x) = 2x^3 - 5x^2 + 7$. To find its value at x = 5, replace x by 5. So, the value of $f(x) = 2x^3 - 5x^2 + 7$ at x = 5 $f(5) = 2(5)^3 - 5(5)^2 + 7$ = 250 - 125 + 7= 132

If for x = a, the value of the polynomial p(x) is 0 i.e., p(a) = 0; then x = a is a zero of the polynomial p(x). For **example**:

For polynomial p(x) = x - 2; p(2) = 2 - 2 = 0

 \therefore x = 2 or simply 2 is a zero of the polynomial p(x) = x - 2.

Note:

- (i) A polynomial of degree n can have atmost n zeroes which means if a polynomial is of degree 5, then it can have at the most 5 zeroes.
- (ii) Difference between zeroes and solutions

Let's try to draw a graph of the polynomial $f(x) = x^2 - 2x - 8$

The following table gives the values of y or f(x) for various values of x.

X	-4 -3 -2 0		0	4	5	
$y = x^2 - 2x - 8$	16	7	0	-8	0	7

All the above values are the solutions of the polynomial $f(x) = x^2 - 2x - 8$ From these values, (-2, 0) and (4,0) are the zeroes of the polynomial f(x) as it makes the value of f(x) equal to 0.

Factor Theorem

Let p(x) be a polynomial of degree $n \ge 1$ and 'a' be a real number such that p(a) = 0, then (x - a) is a factor of p(x). Conversely, if (x - a) is a factor of p(x), then p(a) = 0.

Remainder Theorem

Let p(x) be any polynomial of degree $n \ge 1$ and 'a' be any real number. If p(x) is divided by (x - a), then the remainder is equal to p(a) i.e., zero.

Geometrical Meaning of the Zeroes of a Polynomial

When the graph of the polynomial is drawn on a graph sheet, it will cut or touches the x-axis in as many places as there are zeroes of the polynomial. Thus, the zeroes of a polynomial f(x) are the x-coordinates of the points, where the graph of y = f(x) intersects the x-axis.

Graph of a Linear Polynomial

The graph of a linear polynomial f(x) = ax + b, $a \neq 0$ is always a straight line. To draw the graph of a straight line we need minimum two points, because a unique line will pass through two given points. The line represented by y = ax + b

crosses the X-axis at exactly one point, namely $\left(-\frac{b}{a},0\right)$.

Graph of a Quadratic Polynomial

The graph of any quadratic polynomial $f(x) = ax^2 + bx + c$, $a \neq 0$ is a parabola. It is basically a curved shape opening up or down depending upon whether a > 0 or a < 0.

Case 1: If D > 0, the parabola will intersect the x-axis at two distinct points where $D = \sqrt{b^2 - 4ac}$. So, the quadratic polynomial $ax^2 + bx + c$, $a \neq 0$ has 2 zeroes in this case.

Note: In the above graph α and β are the zeroes of the quadratic polynomial $f(x) = ax^2 + bx + c$, $a \neq 0$. D is the discriminant of a quadratic equation about which you will study in depth in chapter 4.

Roots are real & distinct

Case II: If D = 0, the parabola will just touch the x-axis at one point and vice-versa. So, the quadratic polynomial $ax^2 + bx + c = 0$, $a \neq 0$ has 1 zero in this case.

Roots are equal

Case III: If D < 0, the parabola will not intersect x-axis at all and vice-versa. So, the quadratic polynomial $ax^2 + bx + c = 0$, $a \neq 0$ has no real zero in this case.

Roots are imaginary

Graph of a Cubic Polynomial

Graphs of cubic polynomial does not have a fixed standard shape. The graphs of cubic polynomial will always cross X-axis at least once and at most thrice.

Example

?

1. Degree of polynomial 5 is _____

Ans. We know the degree of the polynomial is the highest power of a variable in the polynomial. That is degree indicates the highest exponential power in the polynomial (excluding the coefficients).

We need to find the degree of polynomial 5.

5 can be written as : 5×1

We know that a non-zero number raised to the power of zero is equal to one.

That is $x^0 = 1$, where 'x' is a variable

Then we have,

$$5 = 5 \times x^{0}$$

We can see that the exponential power of term 'x' is zero and which is the greatest exponential. Hence, the degree of the polynomial 5 is 0.

2. Find the remainder if $f(x) = x^4 - 3x^2 + 4$ is divided by g(x) = x - 2

Ans. Let us denote the given polynomials as

$$f(x) = x^4 - 3x^2 + 4,$$

 $g(x) = x - 2$

We have to find the remainder when f(x) is divided by g(x).

By the factor theorem, when f(x) is divided by g(x) the remainder is

$$f(2) = (2)^4 - 3(2)^2 + 4$$

= 16 - 12 + 4
= 8

- 3. Find the remainder if $f(x) = 4x^3 12x^2 + 14x 3$ is divided by g(x) = 2x - 1
- Ans. Let us denote the given polynomials as

$$f(x) = 4x^3 - 12x^2 + 14x - 3$$
$$g(x) = 2x - 1$$
$$\Rightarrow g(x) = 2\left(x - \frac{1}{2}\right)$$

We have to find the remainder when f(x) is divided by g(x).

By the factor theorem, when f(x) is divided by g(x) the remainder is

$$f\left(\frac{1}{2}\right) = 4\left(\frac{1}{2}\right)^3 - 12\left(\frac{1}{2}\right)^2 + 14\left(\frac{1}{2}\right) - 3$$
$$= 4 \times \frac{1}{8} - 12 \times \frac{1}{4} + 14 \times \frac{1}{2} - 3$$
$$= \frac{1}{2} - 3 + 7 - 3$$
$$= \frac{3}{2}$$

4. The graphical representation of quadratic polynomial y = ax² + bx + c is shown in the given figure. Does it have (i) any solution (ii) zero(s)?

- Ans. (i) There are infinite solutions because there are infinite points that satisfy the equation $y = ax^2 + bx + c.$
 - (ii) There is no zero because graphically there is no point of intersection of x-axis and the curve.
 - 5. Find the remainder when $x^3 6x^2 + 2x 4$ is divided by 3x 1.

Ans. Let us suppose $f(x) = x^3 - 6x^2 + 2x - 4$

We have,
$$3x - 1 = 3\left(x - \frac{1}{3}\right)$$

So, by using factor theorem when f(x) is divided

by 3 $\left(x - \frac{1}{3}\right)$, the remainder is equal to $f\left(\frac{1}{3}\right)$

Now, $f(x) = x^3 - 6x^2 + 2x - 4$

$$\Rightarrow f\left(\frac{1}{3}\right) = \left(\frac{1}{3}\right)^3 - 6\left(\frac{1}{3}\right)^2 + 2\left(\frac{1}{3}\right) - 4$$
$$= \frac{1}{27} - \frac{6}{9} + \frac{2}{3} - 4$$
$$= \frac{2 - 18 + 18 - 108}{27}$$
$$= \frac{-107}{27}$$

Hence, remainder is equal to $\frac{-107}{27}$

- 6. Find the values of a and b if $x^3 ax^2 13x + b$ has (x 1) and (x + 3) as factors.
- Ans. Let us suppose $f(x) = x^3 ax^2 13x + b$

We are given, (x - 1) and (x + 3) are the factors of f(x). According to the factor theorem, if (x - 1) and

(x + 3) are the factors of f(x) then the value of f(1) and f(-3) will be equal to zero.

$$\therefore f(1) = 0$$

$$\Rightarrow (1)^{3} - a(1)^{2} - 13(1) + b = 0$$

$$\Rightarrow 1 - a - 13 + b = 0$$

$$\Rightarrow - a + b = 12$$

$$\Rightarrow a - b = -12$$
 ...(i)
And, f(-3) = 0

$$\Rightarrow (-3)^{3} - a(-3)^{2} - 13(-3) + b = 0$$

$$\Rightarrow -27 - 9a + 39 + b = 0$$

$$\Rightarrow -9a + b = -12$$

 \Rightarrow 9a - b = 12 ...(ii)

On solving equation (i) and equation (ii) we get a = 3, b = 15.

- 7. The polynomials $az^3 + 4z^2 + 3z 4$ and $z^3 4z + a$ leave the same remainder when divided by z 3, find the value of a.
- Ans. Let us suppose $f(z) = az^3 + 4z^2 + 3z 4$ and g(z)= $z^3 - 4z + a$ leaves the same remainder when divided by z - 3. Then, using factor theorem.

$$f(3) = g(3)$$

$$\Rightarrow a \times (3)^{3} + 4 \times (3)^{2} + 3 \times 3 - 4 = (3)^{3} - 4 \times 3 + a$$

$$\Rightarrow 27a + 36 + 9 - 4 = 27 - 12 + a$$

$$\Rightarrow 26a + 41 = 15$$

$$\Rightarrow 26a = -26$$

$$\Rightarrow a = \frac{-26}{26} = -1$$

8. Find atleast on factor of the polynomial $p(x) = x^3 - 3x^2 + x + 1$.

Ans. In the polynomial $p(x) = x^3 - 3x^2 + x + 1$, sum of the coefficients (1 - 3 + 1 + 1) is equal to zero.

 \therefore (x - 1) is a factor of polynomial p(x). To verify the above statement, we may find p(x) at x = 1 p(x) = 13 -3(1) + 1 + 1

$$= 1 - 3 + 1 + 1$$

= 0

Relationship Between Zeroes and Coefficients of a Quadratic Polynomial

Let α and β be the zeroes of a quadratic polynomial $f(x) = ax^2 + bx + c$, $a \neq 0$, then f(x) can be written in the form of factors $(x - \alpha)$ and $(x - \beta)$ using factor theorem as

 $f(x) = k(x - \alpha)(x - \beta), \text{ where } k \text{ is constant}$ $ax^2 + bx + c = k(x^2 - \beta x - \alpha x + \alpha \beta)$ $ax^2 + bx + c = k(x^2 - (\alpha + \beta)x + \alpha \beta)$ $ax^2 + bx + c = kx^2 - k(\alpha + \beta)x + k\alpha \beta$

Comparing the coefficients of x^2 , x and constant terms on both sides, we get a = k, $b = -k(\alpha + \beta)$ and $c = k\alpha\beta$

On dividing both b and c by a

- /

$$\Rightarrow \frac{b}{a} = \frac{-k(\alpha + \beta)}{k} \text{ and } \frac{c}{a} = \frac{k\alpha\beta}{k}$$
$$\Rightarrow \frac{b}{a} = -(\alpha + \beta) \text{ and } \frac{c}{a} = \alpha\beta$$
$$\Rightarrow \alpha + \beta = -\frac{b}{a} \text{ and } \alpha\beta = \frac{c}{a}$$

Hence,

Sum of the zeroes $=-\frac{b}{a} = -\frac{\text{Coefficient of } x}{\text{Coefficient of } x^2}$ Product of the zeroes $=\frac{c}{a} = \frac{Constant term}{Coefficient of x^2}$

Note:

If α and β are the zeroes of a quadratic polynomial f(x), then the polynomial f(x) is given by

$$f(x) = k\{x^2 - (\alpha + \beta)x + \alpha\beta\}$$

 $f(x) = k\{x^2 - (Sum of the zeroes) x + Product of the zeroes\}$ where k is any non-zero real number.

Relationship Between Zeroes and Coefficients of a Cubic Polynomial

Let α, β, γ be the zeroes of a cubic polynomial $f(x) = ax^3 + bx^2 + cx + d$, $a \neq 0$. Then, by factor theorem, $(x - \alpha), (x - \beta)$ and $(x - \gamma)$ are factors of f(x).

÷	f(x) =	k(x -	$-\alpha)(x-\beta)(x-\gamma)$
\Rightarrow	$ax^3 + bx^2 + cx + d$	=	$k(x-\alpha)(x-\beta)(x-\gamma)$
\Rightarrow	$ax^3 + bx^2 + cx + d$	=	$k\{x^{3}-(\alpha+\beta+\gamma)x^{2}+(\alpha\beta+\beta\gamma+\gamma\alpha)x-\alpha\beta\gamma\}$
\Rightarrow	$ax^3 + bx^2 + cx + d$	=	$kx^{3} - k(\alpha + \beta + \gamma)x^{2} + k(\alpha\beta + \beta\gamma + \gamma\alpha)x - k\alpha\beta\gamma$

By comparing the coefficients of x^3 , x^2 , x and constant terms on both sides, we get

 $a = k, b = -k (\alpha + \beta + \gamma), c = (\alpha\beta + \beta\gamma + \gamma\alpha) and d = -k(\alpha\beta\gamma)$

On solving we will get the following results.

Sum of the zeroes = $\alpha + \beta + \gamma = -\frac{b}{a} = -\frac{\text{Coefficient of } x^2}{\text{Coefficient of } x^3}$

 \Rightarrow Sum of the products of the zeroes taken two at a time = $\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a} = \frac{\text{Coefficient of } x}{\text{Coefficient of } x^3}$

 \Rightarrow Product of the zeroes = $\alpha\beta\gamma = -\frac{d}{a} = -\frac{\text{Constant term}}{\text{Coefficient of } x^3}$

Note: Cubic polynomial having α , β , and γ as its zeroes is given by

 $f(x) = k\{x^3 - (\alpha + \beta + \gamma)x^2 + (\alpha\beta + \beta\gamma + \gamma\alpha)x - \alpha\beta\gamma\}$, where k is any non-zero real number.

Mind It

Quartic Polynomial: If α , β , γ , δ are zeroes of a quartic equation $ax^4 + bx^3 + cx^2 + dx + e = 0$, then

$$\alpha + \beta + \gamma + \delta = \frac{-b}{a}$$
$$\alpha\beta + \beta\gamma + \gamma\delta + \alpha\gamma + \gamma\delta + \beta\delta = \frac{c}{a}$$
$$\alpha\beta\gamma + \alpha\gamma\delta + \alpha\beta\delta + \beta\gamma\delta = \frac{-d}{a}$$
$$\alpha\beta\gamma\delta = \frac{e}{a}$$

IMPORTANT FORMULAE

 $\begin{array}{c} (a + b)^2 = a^2 + 2ab + b^2 \\ \hline (a - b)^2 = a^2 - 2ab + b^2 \\ \hline a^2 - b^2 = (a + b) (a - b) \\ \hline a^3 + b^3 = (a + b) (a^2 - ab + b^2) \\ \hline a^3 - b^3 = (a - b) (a^2 + ab + b^2) \\ \hline (a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca \\ \hline (a + b)^3 = a^3 + b^3 + 3ab(a + b) \\ \hline (a - b)^3 = a^3 - b^3 - 3ab(a - b) \\ \hline a^3 + b^3 + c^3 - 3abc = (a + b + c) (a^2 + b^2 + c^2 - ab - bc - ca) \\ \end{array}$ Special Case: If a + b + c = 0 then $a^3 + b^3 + c^3 = 3abc$.

Example

1. Find the zeroes of each of the following polynomial quadratic and verify the relationship between the zeroes and their coefficients: (i) $g(s) = 4s^2 - 4s + 1$ (ii) $g(x) = 6x^2 - 3 - 7x$ **Ans.** (i) When have, $g(s) = 4s^2 - 4s + 1$ $= 4s^2 - 2s - 2s + 1$ = 2s (2s - 1) - 1(2s - 1) \therefore g(s) = (2s - 1)(2s - 1)The zeroes of g(s) are given by g(s) = 0(2s - 1)(2s - 1) = 0(2s - 1) = 0 and (2s - 1) = 02s = 1 and 2s = 1 $s = \frac{1}{2}$ and $s = \frac{1}{2}$ Thus, the zeroes of $g(s) = 4s^2 - 4s + 1$ are $\alpha = \frac{1}{2}$ and $\beta = \frac{1}{2}$ Now, sum of the zeroes $= \alpha + \beta$ $=\frac{1}{2}+\frac{1}{2}$ $=\frac{1+1}{2}$ $=\frac{2}{2}$ = 1 and $\frac{-\text{Coefficient of } x}{\text{Coefficient of } x^2} = -\frac{-4}{4}$ $=\frac{\cancel{A}}{\cancel{A}}$ Therefore, sum of the zeroes = $\frac{-\text{Coefficient of } x}{-\text{Coefficient of } x}$ Coefficient of x^2 Product of the zeroes = $\alpha\beta$ $=\frac{1}{2}\times\frac{1}{2}$ $=\frac{1}{4}$

Therefore, the product of the zeroes

$$\frac{\text{Constant term}}{\text{Coefficient of } x^2} = \frac{1}{4}$$

Hence, the relationship between the zeroes and coefficient are verified.

(ii)
$$6x^2 - 3 - 7x = 6x^2 - 7x - 3$$

$$= (3x + 1)(2x - 3)$$

The value of $6x^2 - 3 - 7x$ is zero when

$$3x + 1 = 0$$
 or $2x - 3 = 0$, i.e., $x = \frac{-1}{3}$ or $x = \frac{3}{2}$

Therefore, the zeroes of $6x^2 - 3 - 7x$ are $\frac{-1}{2}$ and $\frac{3}{2}$

Sum of zeroes $= \frac{-1}{3} + \frac{3}{2} = \frac{7}{6} = \frac{-(-7)}{6}$ $= \frac{-(\text{Coefficient of } x)}{\text{Coefficient of } x^2}$ Product of zeroes $= \frac{-1}{3} \times \frac{3}{2} = \frac{-1}{2} = \frac{-3}{6}$ $= \frac{\text{Constent term}}{\text{Coefficient of } x^2}$

2. For each of the following, find a quadratic polynomial whose sum and product respectively of the zeroes are as given. Also, find the zeroes of these polynomials by factorization.

(i)
$$-\frac{8}{3}, \frac{4}{3},$$
 (ii) $-2\sqrt{3}, -9$

Ans. We know that a quadratic polynomial whose sum and product of zeroes are given is $f(x) = k[x^2 - (Sum of zeroes)x + Product of$ zeroes] ... (i)

(i) We have, sum of zeroes
$$=\frac{-8}{3}$$
 and product of zeroes $=\frac{4}{3}$

So, the required quadratic polynomial will be

$$f(x) = k\left(x^2 + \frac{8}{3}x + \frac{4}{3}\right)$$
 [from eq. (i)]

$$= \frac{k}{3}(3x^{2} + 8x + 4)$$

$$= \frac{k}{3}(3x^{2} + 6x + 2x + 4)$$

$$= \frac{k}{3}[3x(x+2) + 2(x+2)]$$

$$= \frac{k}{3}(3x+2)(x+2)$$

Now, the zeroes are given by f(x) = 0

Thus,
$$x = -\frac{2}{3}$$
 and $x = -2$

(ii) We have, sum of zeroes = $-2\sqrt{3}$ and product of zeroes = -9

So, the required quadratic polynomial will be

$$f(x) = k(x^2 + 2\sqrt{3}x - 9)$$

[from eq. (i)]

$$= k(x^{2} + 3\sqrt{3}x - \sqrt{3}x - 9)$$
$$= k(x + 3\sqrt{3})(x - \sqrt{3})$$

Now, the zeroes are given by f(x) = 0

Thus,
$$x = -3\sqrt{3}$$
 and $x = \sqrt{3}$

- 3. Find a quadratic polynomial whose zeroes are 4 and 3 respectively.
- Ans. Let the quadratic polynomial be $ax^2 + bx + c$ and it's zeroes be α and β

Given,

$$\alpha + \beta = 4 + 3 = 7$$

 $\alpha\beta = 4(3) = 12$

A quadratic polynomial whose sum and product of its zeroes is given can be written as

 $f(x) = K [x^2 - (sum of zeroes) x + product of zeroes]$

Where K is a constant

:. Required quadratic polynomial

 $f(x) = K[x^2 + 7x + 12]$

- 4. If α and β are the roots (zeroes) of the polynomial $f(x) = x^2 3x + k$ such that $\alpha \beta = 1$, find the value of k.
- Ans. Since α and β are the roots (zeroes) of the polynomial $f(x) = x^2 3x + k$

$$\therefore \qquad \alpha + \beta = -\frac{\text{Coefficient of } x}{\text{Coefficient of } x^2}$$
$$= \frac{-(-3)}{1} = 3 \text{ and}$$
$$\alpha\beta = \frac{\text{Constant term}}{\text{Coefficient of } x^2} = k$$

Given, $\alpha - \beta = 1$ Squaring both side, we get

$$\Rightarrow (\alpha - \beta)^{2} = (1)^{2}$$

$$\Rightarrow \alpha^{2} - 2\alpha\beta + \beta^{2} = 1$$

$$\begin{bmatrix} (a + b)^{2} = a^{2} + b^{2} + 2ab \\ \Rightarrow (a + b)^{2} - 2ab = a^{2} + b^{2} \end{bmatrix}$$

$$\Rightarrow \{(\alpha + \beta)^{2} - 2\alpha\beta\} - 2\alpha\beta = 1$$

$$\Rightarrow (\alpha + \beta)^{2} - 4\alpha\beta = 1$$

$$\Rightarrow (3)^{2} - 4 \times k = 1$$

$$\Rightarrow 4k = 8$$

$$\Rightarrow k = 2$$

Therefore, the value of k is 2.

5. If α , β are the zeroes of the polynomial $f(x) = 2x^2 + 5x + k$ satisfying the relation $\alpha^2 + \beta^2 + \alpha\beta = \frac{21}{4}$, then find the value of k.

Ans. Since α and β are the zeroes of the polynomial $f(x) = 2x^2 + 5x + k$.

$$\therefore \alpha + \beta = \frac{-5}{2} \text{ and } \alpha\beta = \frac{k}{2}$$
Now, $\alpha^2 + \beta^2 + \alpha\beta = \frac{21}{4}$

$$\Rightarrow (\alpha^2 + \beta^2 + 2\alpha\beta) - \alpha\beta = \frac{21}{4}$$

$$\Rightarrow \frac{25}{4} - \frac{k}{2} = \frac{21}{4}$$

$$\left[\because \alpha + \beta = \frac{5}{2} \text{ and } \alpha \beta = \frac{k}{2} \right]$$

$$\Rightarrow \qquad -\frac{k}{2} = -1$$

$$\Rightarrow \qquad k = 2$$
6. If both $(x - 2)$ and $\left(x - \frac{1}{2} \right)$ are factors of $px^2 + 5x + r$, then show that $p = r$.
Ans. Let us suppose, $f(x) = px^2 + 5x + r$
Here, roots α and β are 2 and 3 respectively.
According to the question,
Product of roots $= \frac{\text{Constant term}}{\text{Coefficient of } x^2}$

$$\Rightarrow \alpha \times \beta = \frac{r}{p}$$

$$\Rightarrow 2 \times \frac{1}{2} = \frac{r}{p}$$

$$\Rightarrow 1 = \frac{r}{p}$$

$$\Rightarrow \therefore r = p$$
Hence proved.

7. Find the zeroes of the quadratic polynomial $9x^2 - 5$ and verify the relation between the zeroes and its coefficients.

Ans. We have,
$$9x^2 - 5 = 0$$

or $(3x)^2 - (\sqrt{5})^2 = 0$
 $(3x - \sqrt{5})(3x + \sqrt{5}) = 0$ $[a^2 - b^2 = (a + b)(a - b)]$
 $\Rightarrow (3x - \sqrt{5}) = 0$ and $(3x + \sqrt{5}) = 0$
or $x = \frac{\sqrt{5}}{3}$ and $x = \frac{-\sqrt{5}}{3}$
Therefore, the zeroes of $9x^2 - 5$ are $\frac{\sqrt{5}}{3}$ and

Therefore, the zeroes of $9x^2 - 5$ are $\frac{\sqrt{3}}{3}$ and $\frac{-\sqrt{5}}{3}$

Sum of the zeroes $= \frac{-\text{coefficient of } x}{\text{coefficient of } x^2}$

$$\Rightarrow \qquad \frac{\sqrt{5}}{3} - \frac{\sqrt{5}}{3} = \frac{-0}{9}$$
$$\Rightarrow \qquad 0 = 0$$

Product of zeroes =
$$\frac{\text{constant term}}{\text{coefficient of } x^2}$$

 $\Rightarrow \left(\frac{\sqrt{5}}{3}\right)\left(\frac{-\sqrt{5}}{3}\right) = \frac{-5}{9}$
 $\Rightarrow \frac{-5}{9} = \frac{-5}{9}$
Hence, relation verified.

8. If α and β are the zeroes of the quadratic polynomial $f(x) = ax^2 + bx + c$, then calculate

the value of
$$\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$$
.

Ans. $f(x) = ax^2 + bx + c$

$$\alpha + \beta = -\frac{b}{a} \text{ and } \alpha\beta = \frac{c}{a}$$

We have,

...

:..

$$\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{\alpha^3 + \beta^3}{\alpha\beta}$$
$$= \frac{(\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)}{\alpha\beta}$$
$$= \frac{\left(-\frac{b}{a}\right)^3 - 3\left(\frac{c}{a}\right)\left(-\frac{b}{a}\right)}{\frac{c}{a}}$$
$$= \frac{\frac{-b^3}{a^3} + 3\frac{bc}{a^2}}{\frac{c}{a}}$$
$$\frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{3abc - b^3}{a^2c}$$

9. If α and β are the zeroes of the quadratic polynomial $p(s) = 3s^2 - 6s + 4$, then find the

value of
$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} + 2\left(\frac{1}{\alpha} + \frac{1}{\beta}\right) + 3\alpha\beta$$
.

Ans. Since α and β are the zeroes of the polynomial

$$p(s) = 3s^{2} - 6s + 4,$$

$$\therefore \alpha + \beta = \frac{-(-6)}{3} = 2 \text{ and } \alpha\beta = \frac{4}{3}$$

Given,

$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} + 2\left(\frac{1}{\alpha} + \frac{1}{\beta}\right) + 3\alpha\beta$$

$$= \frac{\alpha^{2} + \beta^{2}}{\alpha\beta} + 2\left(\frac{\beta + \alpha}{\alpha\beta}\right) + 3\alpha\beta$$

$$= \frac{(\alpha + \beta)^{2} - 2\alpha\beta}{\alpha\beta} + \frac{2(\alpha + \beta)}{\alpha\beta} + 3\alpha\beta$$

$$= \frac{(2)^{2} - 2 \times \frac{4}{3}}{\frac{4}{3}} + \frac{2 \times 2}{\frac{4}{3}} + 3 \times \frac{4}{3}$$

$$= \frac{4 - \frac{8}{3}}{\frac{4}{3}} + \frac{4}{\frac{4}{3}} + \frac{12}{3}$$

$$= 8$$

- 10. Verify that numbers given along side of the polynomial are their zeroes $x^4 + 2x^3 - 7x^2 - 8x$ + 12; -3, -2, 1, 2.
- Ans. Here the polynomial p(x) is

 $x^4 + 2x^3 - 7x^2 - 8x + 12$ Value of the polynomial $x^4 + 2x^3 - 7x^2 - 8x + 12$ at x = -3 $P(-3) = (-3)^4 + 2(-3)^3 - 7(-3)^2 - 8(-3) + 12$ = 81 - 54 - 63 + 24 + 12= 0So, -3 is a zeroes of p(x). Value of the polynomial $x^4 + 2x^3 - 7x^2 - 8x + 12$ at x = -2 is $P(-2) = (-2)^4 + 2(-2)^3 - 7(-2)^2 - 8(-2) + 12$ = 16 - 16 - 28 + 16 + 12= 0So, -2 is a zeroes of p(x).

Value of the polynomial $x^4 + 2x^3 - 7x^2 - 8x + 12$ at x = 1 $P(1) = (1)^4 + 2(1)^3 - 7(1)^2 - 8(1) + 12$ = 1 + 2 - 7 - 8 + 12= 0

So, 1 is a zeroes of p(x).

Value of the polynomial $x^4 + 2x^3 - 7x^2 + 12$ at x = 2

$$P(2) = (2)^4 + 2(2)^3 - 7(2)^2 - 8(2) + 12$$

= 16 + 16 - 28 - 16 + 12
= 0

So, 2 is a zeroes of p(x).

So, -3, -2, 1, 2 are the zeroes of given polynomial.

11. If α and β are the zeroes of the polynomial $ax^2 + bx + c$, find a polynomial whose zeroes

are
$$\frac{1}{a\alpha+b}$$
 and $\frac{1}{a\beta+b}$

Ans. As α and β are the zeroes of the polynomial $ax^2 + bx + c$

$$\therefore \alpha + \beta = \frac{-b}{a} \text{ and } \alpha\beta = \frac{c}{a} \qquad \dots(i)$$

Since $\frac{1}{a\alpha + b}$ and $\frac{1}{a\beta + b}$ are the zeroes of the

required polynomial.

 \therefore sum of the zeroes

=

=

$$= \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} = \frac{a\beta + b + a\alpha + b}{(a\alpha + b)(a\beta + b)}$$

$$= \frac{a(\alpha + \beta) + 2b}{a^2\alpha\beta + ab(\alpha + \beta) + b^2}$$

$$= \frac{a \times \left(\frac{-b}{a}\right) + 2b}{a^2 \times \left(\frac{c}{a}\right) + ab \times \left(\frac{-b}{a}\right) + b^2}$$
[using eq. (i)]
$$= \frac{\frac{-ab + 2ba}{a}}{\frac{a^2c - ab^2 + ab^2}{a}}$$

$$= \frac{ab}{a^2c}$$

Product of the zeroes

$$= \left(\frac{1}{a\alpha + b}\right) \left(\frac{1}{a\beta + b}\right)$$

$$= \frac{1}{a^{2}\alpha\beta + ab(\alpha + \beta) + b^{2}}$$

$$= \frac{1}{a^{2} \times \frac{c}{a} + ab \times \left(\frac{-b}{a}\right) + b^{2}}$$
[using eq. (i)]
$$= \frac{1}{a^{2} \times \frac{c}{a} + ab \times \left(\frac{-b}{a}\right) + b^{2}}$$
[using eq. (i)]
$$= x^{2} - \left(\frac{b}{ac}\right) x + \frac{1}{ac}$$

Division Algorithm for Polynomials

If f(x) and p(x) are any two polynomials such that $p(x) \neq 0$, then we can find polynomials r(x) and q(x) such that $f(x) = p(x) \times q(x) + r(x)$ i.e., Dividend = (Divisor × Quotient) + Remainder

where r(x) = 0 or degree of r(x) < degree of p(x).

- (i) If r(x) = 0, p(x) is a factor of f(x).
- (ii) If deg(f(x)) > deg(p(x)), then deg(q(x)) = deg(f(x)) deg(p(x))
- (iii) If deg(f(x)) = deg(p(x)), then deg(q(x)) = 0 and deg(r(x)) < deg(p(x))

Working Rule to Divide a Polynomial By Another Polynomial

- Step 1: Arrange the terms of dividend and the divisor in the decreasing order of their degrees.
- Step 2: To obtain the first term of quotient, divide the highest degree term of the dividend by the highest degree term of the divisor.
- Step 3: To obtain the second term of the quotient, divide the highest degree term of the new dividend obtained as remainder by the highest degree term of the divisor.
- Step 4: Continue this process till the degree of remainder is less than the degree of divisor.

Example

1. Check whether first polynomial is a factor of the second polynomial by applying the division algorithm.

$$x^{2} + 3x + 1$$
, $3x^{4} + 5x^{3} - 7x^{2} + 2x + 2$

Ans. We divide $3x^4 + 5x^3 - 7x^2 + 2x + 2$ by

$$x^2 + 3x + 1$$

$$\begin{array}{r} 3x^{2} - 4x + 2 \\
x^{2} + 3x + 1 \overline{\smash{\big)}}3x^{4} + 5x^{3} - 7x^{2} + 2x + 2 \\
3x^{4} + 9x^{3} + 3x^{2} \\
\underline{- - - -} \\
- 4x^{3} - 10x^{2} + 2x + 2 \\
- 4x^{3} - 12x^{2} - 4x \\
\underline{+ + +} \\
2x^{2} + 6x + 2 \\
2x^{2} + 6x^{2} + 2 \\
\underline{- - - -} \\
0
\end{array}$$

Since, here remainder is zero.

Hence, $x^2 + 3x + 1$ is a factor of $3x^4 + 5x^3 - 7x^2 + 2x + 2$ Checking $3x^4 + 5x^3 - 7x^2 + 2x + 2$ $= (3x^2 - 4x + 2) (x^2 + 3x + 1) + 0$

- $= 3x^4 + 5x^3 7x^2 + 2x + 2 =$ Dividend
- 2. Apply the division algorithm to find the quotient and remainder on dividing p(x) by g(x) as given below

$$p(x) = x^{4} - 3x^{2} + 4x + 5$$
$$g(x) = x^{2} + 1 - x$$

Ans. We have,

 $p(x) = x^4 - 3x^2 + 4x + 5,$

 $g(x) = x^2 + 1 - x$

 $x^{2} - x + 1)\overline{x^{4} - 3x^{2} + 4x + 5}$ $x^{4} - x^{3} + x^{2}$ - + - $x^{3} - 4x^{2} + 4x + 5$ $x^{3} - x^{2} + x$ - + - $-3x^{2} + 3x + 5$ $-3x^{2} + 3x - 3$ + - - 8

We stop here since degree of 8 < degree of $(x^2 + 1 - x)$. So, quotient = $x^2 + 1 - x$, remainder = 8

Therefore,

Quotient × Divisor + Remainder

- $= (x^{2} + x 3)(x^{2} x + 1) + 8$
- $= x^{4} x^{3} + x^{2} + x^{3} x^{2} + x 3x^{2} + 3x 3 + 8$ = x⁴ - 3x² + 4x + 5 = Dividend

Therefore the Division Algorithm is verified.

- 3. If the polynomial $p(x) = 2x^5 15x^4 + 40x^3 34x^2 + ax + b$ is divisible by $g(x) = x^2 4x + 6$. Then find the value of a + b.
- Ans. We have, $p(x) = 2x^5 15x^4 + 40x^3 34x^2 + ax + b$ and $g(x) = x^2 4x + 6$

As p(x) is divisible by g(x), the remainder will be zero.

Now, applying long division method,

$$x^{2}-4x+6) \underbrace{2x^{5}-15x^{4}+40x^{3}-34x^{2}+ax+b(2x^{3}-7x^{2}+8)}_{2x^{5}-8x^{4}+12x^{3}} - \frac{-4}{-7x^{4}+28x^{3}-34x^{2}+ax+b}}_{-7x^{4}+28x^{3}-42x^{2}} + \frac{-4}{-8x^{2}+ax+b}}_{8x^{2}+ax+b} + \frac{-7x^{4}+28x^{3}-42x^{2}}{-8x^{2}+ax+b}}_{-7x^{4}+28x^{3}-42x^{2}} + \frac{-4}{-8x^{2}+ax+b}}_{-7x^{4}+28x^{3}-42x^{2}} + \frac{-4}{-8x^{2}+ax+b}}_{-7x^{4}+28x^{2}+ax+b}} + \frac{-4}{-8x^{2}+ax+b}}_{-7x^{4}+28x^{2}+ax+b}}_{-7x^{4}+28x^{2}+ax+b}} + \frac{-4}{-8x^{2}+ax+b}}_{-7x^{4}+28x^{2}+ax+b}} + \frac{-4}{-8x^{2}+ax+b}}_{-7x^{4}+28x^{2}+ax+b}} + \frac{-4}{-8x^{2}+ax+b}}_{-7x^{4}+28x^{2}+ax+b}} + \frac{-4}{-8x^{2}+ax+b}}_{-7x^{4}+28x^{2}+ax+b}} + \frac{-4}{-8x^{2}+ax+b}}_{-7x^{4}+28x^{2}+ax+b}} + \frac{-4}{-8x^{2}+ax+b}$$

As remainder must be zero (32 + a)x + (b - 48) = 0x + 0 $\therefore \qquad 32 + a = 0 \Rightarrow a = -32$ And $b - 48 = 0 \Rightarrow b = 48$ $\therefore \qquad a + b = -32 + 48 = 16$ 4. If x + y + z = 1, $x^2 + y^2 + z^2 = 21$ and xyz = 8,

- 4. If x + y + z = 1, x + y + z = 21 and xyz = 0. then find the value of (1 - x)(1 - y)(1 - z).
- **Ans.** Given, x + y + z = 1, ...(i)

$$x^2 + y^2 + z^2 = 21$$
 ...(ii)

By squaring we get eq. (i), we get

$$x^2 + y^2 + z^2 + 2xy + 2yz + 2zx = 1$$

$$[(a + b + c)^{2} = a^{2} + b^{2} + c^{2} + 2ab + 2bc + 2ac]$$

$$\Rightarrow 21 + 2(xy + yz + zx) = 1$$
 [Using (ii)]

$$\Rightarrow xy + yz + zx = -10$$

Now, $(1 - x)(1 - y)(1 - z)$

$$= (1 - x)(1 - y - z + yz)$$

= (1 - y - z + yz - x + xy + xz - xyz)
= 1 - (x + y + z) + (xy + yz + zx) - xyz
= 1 - 1 - 10 - 8 = -18 [Using (ii) and (iii)]

5. Find the value of b for which the polynomial

 $2x^3 + 9x^2 - x - b$ is exactly divisible by 2x + 3.

Ans.

$$2x + 3 \underbrace{) \begin{array}{c} x^{2} + 3x - 5 \\ 2x^{3} + 9x^{2} - x - b \\ \underline{2x^{3} + 3x^{2}} \\ 6x^{2} - x - b \\ \underline{6x^{2} + 9x} \\ -10x - b \\ \underline{-10x - 15} \\ -b + 15 \end{array}}$$

For the dividend to be exactly divisible by the divisor the remainder must be zero.

 \therefore $-b + 15 = 0 \Rightarrow b = 15$

6. Find the value that must be subtracted from the expression $8x^4 + 14x^3 - 2x^2 + 8x - 12$, so that it is exactly divisible by $4x^2 + 3x - 2$. Ans.

 \therefore We get a remainder equal to 15x - 14. For exact divisibility remainder must be equal to zero.

 \therefore The expression that must be subtracted

$$= 15x - 14$$

7. If $x^n - py^n + qz^n$ is exactly divisible by x^2 - (ay + bz) x + abyz, then find the value of $\frac{p}{a^n} - \frac{q}{b^n}$

Ans. On factorizing $x^2 - ayx - bzx + abyz = x(x - ay)$ - bz(x - ay) = (x - ay)(x - bz)Let, $f(x) = x^n - py^n + qz^n$ is exactly divisible by (x - ay)(x - bz)

$$\therefore f(ay) = f(bz) = 0 \qquad (Using factor theorem)$$
$$f(ay) = a^n y^n - py^n + qz^n = 0 \qquad ...(i)$$

$$f(bz) = b^n z^n - py^n + qz^n = 0$$
 ...(ii)

Subtracting (ii) from (i)

$$a^{n}y^{n} - b^{n}z^{n} = 0$$

$$\Rightarrow \qquad y^{n} = \frac{b^{n}z^{n}}{a^{n}} \qquad \dots (iii)$$

Now substituting the value of yⁿ in eq (ii), we get

$$b^n z^n - p\left(\frac{b^n z^n}{a^n}\right) + q z^n = 0$$

Dividing all the terms of this expresssion by $b^n z^n$, we have

$$1 - \frac{p}{a^{n}} + \frac{q}{b^{n}} = 0$$
$$\implies \frac{p}{a^{n}} - \frac{q}{b^{n}} = 1$$

8. Let a, b, c, x, y and z be numbers such that $a = \frac{b+c}{x-2}, b = \frac{c+a}{y-2}, c = \frac{a+b}{z-2}.$ If xy + yz + zx = 67 and x + y + z = 2010, find the value of xyz + 5900.Ans. Given, $a = \frac{b+c}{x-2}, b = \frac{c+a}{y-2}, c = \frac{a+b}{z-2}$ $\Rightarrow x - 2 = \frac{b+c}{a}$ Adding 1 on both sides, we get $\Rightarrow x - 1 = \frac{b+c}{a} + 1$

$$\Rightarrow x - 1 = \frac{a + b + c}{a}$$
$$\Rightarrow \frac{1}{x - 1} = \frac{a}{a + b + c} \qquad \dots (i)$$

Similarly,
$$\frac{1}{y-1} = \frac{b}{a+b+c}$$
 and ...(ii)

$$\frac{1}{z-1} = \frac{c}{a+b+c} \qquad \dots (iii)$$

Adding (i), (ii) and (iii)

$$\frac{1}{x-1} + \frac{1}{y-1} + \frac{1}{z-1} = \frac{a}{a+b+c} + \frac{b}{a+b+c} + \frac{c}{a+b+c}$$
$$\frac{(y-1)(z-1) + (x-1)(z-1) + (x-1)(y-1)}{(x-1)(y-1)(z-1)} = 1$$
$$\Rightarrow yz - y - z + 1 + xz - x - z + 1 + xy - y - x + 1 = xyz - xy - zx - yz + x + y + z - 1$$
$$\Rightarrow 2(xy + yz + zx) - 3(x + y + z) + 4 = xyz$$
$$\Rightarrow xyz = -5892$$
[Using the values given in the question]
xyz + 5900 = -5892 + 5900 = 8

Summary

-

Quick Recall

Fill in the blanks

- 1. The degree of cubic polynomial is _____
- 2. A polynomial of degree n has at the most ______ zeroes.
- 3. _____ is not equal to zero when the divisor is not a factor of dividend.
- 4. Degree of remainder is always _____ than degree of divisor.
- 5. Degree of a zero polynomial is _____
- 6. A linear polynomial is represented by a _____
- The highest power of a variable in a polynomial is called its ______
- 8. The graph of quadratic polynomial opens upward when 'a' is _____
- 9. A ______ is a polynomial of degree 0.
- 10. The zeroes of a polynomial p(x) are precisely the x coordinates of the points, where the graph of y = p(x) intersects the _____ axis.

True and False Statements

- 1. 3, -1, $\frac{1}{3}$ are the zeroes of the cubic polynomial $p(x) = 3x^3 - 5x^2 - 11x - 3$
- **2.** (z 1) is a factor of $g(z) = 2z^3 2$.
- 3. $x^3 2\sqrt{x}$ is a polynomial.
- 4. A cubic polynomial has atleast one zero.
- **5.** The degree of the sum of two polynomials each of degree 3 is always 3.

6. Sum of zeroes of quadratic polynomial

 $= -\frac{(\text{coefficient of } x)}{(\text{coefficient of } x^2)}$

- 7. Graph of a quadratic polynomial is a parabola.
- **8.** The degree of the product of two polynomials each of degree 5 is always 5.
- 9. Product of zeroes of quadratic polynomial is

 $-\frac{\text{(constant term)}}{\text{(coefficient of } x^2)}$

10. Zeroes of quadratic polynomial $x^2 + 6x + 9$ are 2 and 7.

Match The Followings

1. Match the following with correct response.

Zeroes	Quadratic polynomials
(1) 3 and -3	(A) $x^2 + x - 42$
(2) $5 + \sqrt{2}$ and $5 - \sqrt{2}$	(B) $x^2 - 9$
(3) $-9 \text{ and } \frac{1}{9}$	(C) $x^2 + \left(\frac{80}{9}\right)x - 1$
(4) -7 and 6	(D) $x^2 - 10x + 21$
a. 1-A, 2-C, 3-B, 4-D	b. 1-C, 2-B, 3-D, 4-A
c. 1-B, 2-D, 3-C, 4-A	d. 1-D, 2-A, 3-C, 4-B

2. Match the following with correct response.

Polynomial Remainder (1) $\frac{x^3 - 3x^2 + x + 2}{x^2 - x + 1}$ (A) 8

(2)
$$\frac{3x^3 + 5x^2 + 2}{x^2 + 2x + 1}$$
 (B) $41x - 18$

(3)
$$\frac{x^4 + 7x^3 + 3x + 2}{x^2 + 3x - 2}$$
 (C) $-x + 3$

(4)
$$\frac{x^4 - 3x^2 + 4x + 5}{x^2 - x + 1}$$
 (D) $-2x + 4$

a. 1-D, 2-C, 3-B, 4-A b. 1-C, 2-B, 3-D, 4-A c. 1-A, 2-C, 3-B, 4-D d. 1-B, 2-D, 3-A, 4-C

Answers

Fill in the Blanks:	2. True
1. Three	3. False, because the exponent of the variable is not a
2. n	whole number.
3. Remainder	4. True
4. Less	5. False
5. Not defined	6. True
6. Straight line	7. True
7. Degree	8 False
8. Positive	
9. Constant	9. False
10. x	10. False
True and False:	Match the Followings
1. True	1. (c) 2. (a)

NCERT Exercise

 The graphs of y = p(x) are given in Fig. below, for some polynomials p(x). Find the number of zeroes of p(x) in each case.

Exp. Do it yourself.

Hint: Total number of zeroes in any polynomial

= total number of times the curve intersects x-axis.

- 1. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.
 - (i) $x^2 2x 8$
 - (ii) $4s^2 4s + 1$
 - (iii) $6x^2 3 7x$
 - (iv) $4u^2 + 8u$
 - (v) $t^2 15$
 - (vi) $3x^2 x 4$

Exp. (i) $x^2 - 2x - 8$

Using middle term splitting and factorizing, we get $\Rightarrow x^2 - 4x + 2x - 8 = x(x - 4) + 2(x - 4) = 0$ = (x - 4)(x + 2) = 0 \Rightarrow x - 4 = 0 and x + 2 = 0 \Rightarrow x = + 4, and - 2 Hence, zeroes of polynomial equation $x^2 - 2x - 8$ are (4, -2) Sum of zeroes = 4 - 2 $(\alpha + \beta) = 2$ $=\frac{-(-2)}{1}$ $= \frac{-(\text{Coefficient of } x)}{(\text{Coefficient of } x^2)}$ Product of zeroes = $4 \times (-2)$ $(\alpha \times \beta) = -8$ $=\frac{-(8)}{1}$ $= \frac{\text{(Constant term)}}{\text{(Coefficient of } x^2)}$ (ii) $4s^2 - 4s + 1 = (2s - 1)^2$ The value of $4s^2 - 4s + 1$ is zero when 2s - 1 = 0,

i.e., $s = \frac{1}{2}$ Therefore, the zeroes of $4s^2 - 4s + 1$ are $\frac{1}{2}$ and $\frac{1}{2}$

Sum of zeroes =
$$\frac{-(\text{Coefficient of s})}{(\text{Coefficient of s}^2)}$$

 $\frac{1}{2} + \frac{1}{2} = \frac{-(4)}{4}$

1 = 1

 \Rightarrow

Product of zerores = $\frac{\text{Constant term}}{\text{Coefficient of s}^2}$

$$\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$

$$\Rightarrow \qquad \frac{1}{4} = \frac{1}{4}$$
(iii) $6x^2 - 3 - 7x = 6x^2 - 7x - 3$
 $= (3x + 1)(2x - 3)$
The value of $6x^2 - 3 - 7x$ is zero when
 $3x + 1 = 0$ and $2x - 3 = 0$
 $\Rightarrow x = \frac{-1}{3}$ and $x = \frac{3}{2}$
Therefore, the zeroes of $6x^2 - 3 - 7x$ are $\frac{-1}{3}$ and $\frac{3}{2}$
Sum of zeroes $= \frac{-(\text{Coefficient of } x)}{(\text{Coefficient of } x^2)}$
 $\Rightarrow \qquad \frac{-1}{3} + \frac{3}{2} = \frac{-(-7)}{6}$
 $\Rightarrow \qquad \frac{7}{6} = \frac{7}{6}$
Product of zeroes $= \frac{\text{Constant term}}{\text{Coefficient of } x^2}$

1

$$\Rightarrow \qquad \frac{-1}{3} \times \frac{3}{2} = \frac{-3}{6}$$
$$\Rightarrow \qquad \frac{-1}{2} = \frac{-1}{2}$$

(iv) Do it yourself

(v) Do it yourself

- (vi) Do it yourself
- 2. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.

(i)
$$\frac{1}{4}, -1$$

(ii)
$$\sqrt{2}, \frac{1}{3}$$

- (iii) $0, \sqrt{5}$
- (iv) 1, 1

(v)
$$-\frac{1}{4}, \frac{1}{4}$$

(vi) 4, 1

Exp. (i) We know,

Sum of zeroes = $\alpha + \beta = \frac{1}{4}$

Product of zeroes = $\alpha\beta = -1$

 \Rightarrow If sum and product of zeroes of any quadratic polynomial is given, then the quadratic polynomial equation can be written directly as:

$$x^{2} - (\alpha + \beta)x + \alpha\beta = 0$$
$$x^{2} - \frac{1}{4}x + (-1) = 0$$
$$4x^{2} - x - 4 = 0$$

Thus, $4x^2 - x - 4$ is the required polynomial.

(ii)
$$\sqrt{2}, \frac{1}{3}$$

Let the polynomial be $ax^2 + bx + c$, and its zeroes be α and β

$$\alpha + \beta = \sqrt{2} = \frac{3\sqrt{2}}{3} = \frac{-b}{a}$$
$$\alpha\beta = \frac{1}{3} = \frac{c}{a}$$

If a = 3, then b = $-3\sqrt{2}$, c = 1

Then the quadratic polynomial is $3x^2 - 3\sqrt{2}x + 1$.

(iii) Do it yourself.

(iv) Do it yourself.

$$(\mathbf{v}) -\frac{1}{4}, \frac{1}{4}$$

Let the polynomial be $ax^2 + bx + c$ and its zeroes be α and β .

$$\alpha + \beta = -\frac{1}{4} = \frac{-b}{a}$$
$$\alpha \times \beta = \frac{1}{4} = \frac{c}{a}$$
if a = 4, then b = 1, c = 1

Then the quadratic polynomial is $4x^2 + x + 1$.

(vi) Do it yourself.

Exercise-II

1. Divide the polynomial p(x) by the polynomial g(x)and find the quotient and remainder in each of the following :

(i)
$$p(x) = x^3 - 3x^2 + 5x - 3$$
, $g(x) = x^2 - 2$
(ii) $p(x) = x^4 - 3x^2 + 4x + 5$, $g(x) = x^2 + 1 - x$
(iii) $p(x) = x^4 - 5x + 6$, $g(x) = 2 - x^2$

Exp. (i) Given,

Dividend =
$$p(x) = x^3 - 3x^2 + 5x - 3$$

Divisor = $g(x) = x^2 - 2$
 $x^2 - 2 \overline{\smash{\big)}x^3 - 3x^2 + 5x - 3}$
 $-\frac{x^3 + 0x^2 - 2x}{-3x^2 + 7x - 3}$
 $-\frac{-3x^2 + 0x + 6}{7x - 9}$

Therefore, upon division we get,

- Quotient = x 3and remainder = 7x - 9
- (ii) Do it yourself.
- (iii) Do it yourself.
- 2. Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:
 - (i) $t^2 3$, $2t^4 + 3t^3 2t^2 9t 12$ (ii) $x^2 + 3x + 1$, $3x^4 + 5x^3 - 7x^2 + 2x + 2$ (iii) $x^3 - 3x + 1$, $x^5 - 4x^3 + x^2 + 3x + 1$
- **Exp.** (i) $t^2 3$, $2t^4 + 3t^3 2t^2 9t 12$

Given, First polynomial = $t^2 - 3$ = divisor Second polynomial = $2t^4 + 3t^3 - 2t^2 - 9t - 12$ = dividend $t^2 - 3 \sqrt{2t^4 + 3t^3 - 2t^2 - 9t - 12}$ $- \frac{2t^4 + 0t^3 - 6t^2}{2t^3 + 4t^2}$ 0t 12

$$\begin{array}{r} -3t^{2} +4t^{2} -9t -12 \\
-3t^{3} +0t^{2} -9t \\
-\frac{4t^{2} +0t -12}{4t^{2} +0t -12} \\
0
\end{array}$$

Since, remainder as 0. Therefore, $t^2 - 3$ is a factor of $2t^4 + 3t^3 - 2t^2 - 9t - 12$.

(ii) Do it yourself.

(iii) Do it yourself.

- 3. Obtain all other zeroes of $3x^4 + 6x^3 2x^2 10x 5$, if two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$
- Exp. Since it is a quartic polynomial, it can have at most 4 zeroes.

$$\sqrt{\left(\frac{5}{3}\right)} \text{ and } -\sqrt{\left(\frac{5}{3}\right)} \text{ are zeroes of the polynomial}$$

f(x).
$$\therefore \left(x - \sqrt{\left(\frac{5}{3}\right)}\right) \left(x + \sqrt{\left(\frac{5}{3}\right)}\right) = x^2 - \left(\frac{5}{3}\right) = \frac{3x^2 - 5}{3}$$

$$[(a - b)(a + b) = a^2 - b^2]$$

 $(3x^2 - 5) = 0$ is a factor of given polynomial f(x). [Factor theorem]

$$\frac{x^{2} + 2x + 1}{3x^{2} - 5}3x^{4} + 6x^{3} - 2x^{2} - 10x - 5 \\
-3x^{4} - 5x^{2} \\
+ 6x^{3} + 3x^{2} - 10x - 5 \\
6x^{3} - 10x \\
-3x^{2} - 5 \\
3x^{2} - 5 \\
-3x^{2} - 5 \\
0$$

Now since D = dq + r

Therefore, $3x^4 + 6x^3 - 2x^2 - 10x - 5 = (3x^2 - 5)(x^2 + 2x + 1)$

Now, on further factorizing $(x^2 + 2x + 1)$ we get,

$$x^2 + 2x + 1 = x^2 + x + x + 1$$

[splitting the middle term]

$$= x(x + 1) + 1(x + 1)$$
$$= (x + 1)(x + 1)$$
$$(x + 1)(x + 1) = 0$$

So, its zeroes are given by: x = -1 and x = -1. Therefore, all four zeroes of given polynomial are:

$$\sqrt{\left(\frac{5}{3}\right)}, -\sqrt{\left(\frac{5}{3}\right)}, -1 \text{ and } -1.$$

4. On dividing p(x) = x³ - 3x² + x + 2 by a polynomial g(x), the quotient and remainder were x - 2 and -2x + 4, respectively. Find g(x).

Exp. Given,

Dividend, $p(x) = x^3 - 3x^2 + x + 2$ Quotient = x - 2Remainder = -2x + 4

As we know,

Dividend = Divisor × Quotient + Remainder $\therefore x^3 - 3x^2 + x + 2 = g(x) × (x - 2) + (-2x + 4)$ $x^3 - 3x^2 + x + 2 - (-2x + 4) = g(x) × (x - 2)$ Therefore, $g(x) × (x - 2) = x^3 - 3x^2 + 3x - 2$ Now, for finding g(x) we will divide $x^3 - 3x^2 + 3x$ - 2 from (x - 2)

$$\begin{array}{r} x^{2} - x + 1 \\ x - 2 \overline{\smash{\big)} x^{3} - 3x^{2} + 3x - 2} \\ - \frac{x^{3} - 2x^{2}}{-x^{2} + 3x - 2} \\ - \frac{x^{2} + 3x - 2}{-x^{2} + 2x} \\ - \frac{x^{2} + 2x}{-x^{2} + 2x} \\ - \frac{x^{2} - 2}{-x^{2} + 2x} \\ - \frac{x^{2} - 2x^{2} - 2x^{2} - 2x^{2} \\ - \frac{x^{2} - 2x^{2} - 2x^{2} - 2x^{2} - 2x^{2} \\ - \frac{x^{2} - 2x^{2} - 2x^{2} - 2x^{2} - 2x^{2} - 2x^{2} \\ - \frac{x^{2} - 2x^{2} \\ - \frac{x^{2} - 2x^{2} -$$

Therefore, $g(x) = (x^2 - x + 1)$

- 5. Give examples of polynomials p(x), g(x), q(x) and r(x), which satisfy the division algorithm and
 - (i) deg p(x) = deg q(x)
 - (ii) deg q(x) = deg r(x)
 - (iii) deg r(x) = 0

Exp. (i) deg p(x) = deg q(x)

Degree of dividend is equal to degree of quotient, only when the divisor is a constant term.

$$p(x) = 3x^{2} + 3x + 6$$

$$q(x) = x^{2} + x + 2$$

$$g(x) = 3 \text{ and } r(x) = 0$$

Quotient \times Divisor + Remainder

$$= g(x) q(x) + r(x)$$

= 3 (x² + x + 2) + 0
= 3x² + 3x + 6
= Dividend
= P(x)
Division algorithm satisfied.

As, you can see, the degree of quotient is equal to the degree of dividend here.

(ii) deg
$$q(x) = deg r(x)$$

 $p(x) = x^2 + x$
 $g(x) = x$
 $q(x) = x + 1$ and $r(x) = 0$

As, you can see, the degree of quotient is equal to the degree of remainder here.

Quotient \times Divisor + Remainder

=
$$g(x) q(x) + r(x)$$

= $x(x + 1) + 0$
= $x^{2} + x$
= Dividend
= $p(x)$

(iii) deg r(x) = 0

The degree of remainder is 0 only when the remainder left after division algorithm is a constant.

$$p(x) = x^{2} + 1$$

$$g(x) = x$$

$$q(x) = x \text{ and } r(x) = 1$$

Clearly, the degree of remainder here is 0.

Also, division algorithm is satisfied here.

Exercise-IV

1. Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case:

(i)
$$2x^3 + x^2 - 5x + 2; \frac{1}{2}, 1, -2$$

(ii) $x^3 - 4x^2 + 5x - 2; 2, 1, 1$

Exp. (i) Given, $p(x) = 2x^3 + x^2 - 5x + 2$

...

And zeroes for p(x) are $=\frac{1}{2}$, 1, -2

 $p\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^2 - 5\left(\frac{1}{2}\right) + 2$ = 0 $p(1) = 2(1)^3 + (1)^2 - 5(1) + 2$ = 0 $p(-2) = 2(-2)^3 + (-2)^2 - 5(-2) + 2$ = 0

Hence, $\frac{1}{2}$, 1, -2 are the zeroes of $2x^3 + x^2 - 5x + 2$.

Now, comparing the given polynomial with general expression, we get

 $ax^{3} + bx^{2} + cx + d = 2x^{3} + x^{2} - 5x + 2$ \Rightarrow a = 2, b = 1, c = -5 and d = 2 Let α , β , γ are the zeroes of the cubic polynomial

 $ax^3 + bx^2 + cx + d$, and we take $\alpha = \frac{1}{2}$, $\beta = 1$ and $\gamma = -2$, then

Sum of zeroes =
$$-\frac{\text{Coefficient of } x^2}{\text{Coefficient of } x^3}$$

 $\Rightarrow \qquad \alpha + \beta + \gamma = \frac{-1}{2}$ $\Rightarrow \quad \frac{1}{2} + 1 + (-2) = \frac{-1}{2}$

 $\frac{3}{2} - 2 = \frac{-1}{2}$ \Rightarrow

 \Rightarrow

 $\frac{-1}{2} = \frac{-1}{2}$ Hence verified. Sum of product of zeroes = $\frac{\text{Coefficient of } x}{\text{Coefficient of } x^3}$

$$\Rightarrow \quad \alpha\beta + \beta\alpha + \gamma\alpha = \frac{-5}{2}$$
$$\Rightarrow \left(\frac{1}{2} \times 1\right) + (1 \times -2) + \left(-2 \times \frac{1}{2}\right) = \frac{-5}{2}$$
$$\Rightarrow \frac{1}{2} - 2 - 1 = \frac{-5}{2}$$
$$\Rightarrow \frac{1}{2} - 3 = \frac{-5}{2}$$

 $\Rightarrow \frac{-5}{2} = \frac{-5}{2}$ Hence Verified. Product of zeroes = $\frac{\text{Constant term}}{\text{Coefficient of } x^3}$ $\alpha\beta\gamma = \frac{(-2)}{2}$ $\Rightarrow \frac{1}{2} \times (1) \times (-2) = -1$

-1 = -1 Hence verified. \Rightarrow

Hence, the relationship between the zeroes and the coefficients are satisfied.

(ii) Do it yourself.

- 2. Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, -7, -14 respectively.
- **Exp.** Let α , β and γ be the zeroes of the required polynomial, then

$$\label{eq:alpha} \begin{split} \alpha + \beta &+ \gamma = 2 \\ \alpha \beta + \beta \gamma + \gamma \alpha &= -7 \\ \alpha \beta \gamma &= -14 \end{split}$$

: Cubic polynomial can be written as

$$\begin{aligned} x^3 - (\alpha + \beta + \gamma)x^2 + (\alpha\beta + \beta\gamma + \gamma\alpha)x - \alpha\beta\gamma &= 0 \\ x^3 - 2x^2 - 7x + 14 &= 0 \end{aligned}$$

Hence, $x^3 - 2x^2 - 7x + 14 = 0$ is the required cubic polynomial.

3. If the zeroes of the polynomial $x^3 - 3x^2 + x + 1$ are a - b, a, a + b, find a and b.

Exp. Let
$$p(x) = x^3 - 3x^2 + x + 1$$

And zeroes are given as a - b, a, a + b

Sum of zeroes =
$$-\frac{\text{Coefficient of } x^2}{\text{Coefficient of } x^3}$$

 $a - b + a + a + b = \frac{-(-3)}{1}$
 $\Rightarrow \qquad 3a = 3$
 $\Rightarrow \qquad a = 1$

Thus, the zeroes are 1 - b, 1, 1 + b.

Now, product of zeroes = $\frac{\text{Constant term}}{\text{Coefficient of } x^3}$ $\Rightarrow (1 - b) \times 1 \times (1 + b) = -\frac{1}{2}$ $\Rightarrow (1 - b) (1 + b) = -1$ $\Rightarrow (1 - b^2) = -1 [(1 + a) (1 - a) = 1 - a^2]$ $\Rightarrow b^2 = 2$ $\Rightarrow b = \sqrt{2}$

Hence, $1-\sqrt{2}$, 1, $1+\sqrt{2}$ are the zeroes of the polynomial $x^3 - 3x^2 + x + 1$.

- 4. If two zeroes of the polynomial $x^4 6x^3 26x^2 + 138x 35$ are $2 \pm \sqrt{3}$, find other zeroes.
- **Exp.** Since this is a polynomial equation of degree 4, hence there will be total 4 zeroes.

Let $f(x) = x^4 - 6x^3 - 26x^2 + 138x - 35$ Since $2 + \sqrt{3}$ and $2 - \sqrt{3}$ are zeroes of given polynomial f(x).

$$\therefore [x - (2 + \sqrt{3})] [x - (2 - \sqrt{3})] = 0$$
$$x^{2} - 4x + 1 = 0$$

 $x^2 - 4x + 1$ is a factor of a given polynomial f(x).

Now we divide the given polynomial by $x^2 - 4x + 1$.

$$\begin{array}{r} x^{2} - 2x - 35 \\ x^{2} - 4x + 1 \overline{\smash{\big)}} x^{4} - 6x^{3} - 26x^{2} + 138x - 35 \\ - \frac{x^{4} - 4x^{3} + x^{2}}{- 2x^{3} - 27x^{2} + 138x - 35} \\ - \frac{2x^{3} - 27x^{2} + 138x - 35}{- 2x^{3} + 8x^{2} - 2x} \\ - 35x^{2} + 140x - 35 \\ - \frac{35x^{2} + 140x - 35}{- 35x^{2} + 140x - 35} \\ - \frac{35x^{2} + 15x^{2} + 15x$$

So, $x^4 - 6x^3 - 26x^2 + 138x - 35 = (x^2 - 4x + 1) (x^2 - 2x - 35)$

Now on further factorizing $(x^2 - 2x - 35)$, we get $x^2 - (7 - 5)x - 35 = x^2 - 7x + 5x + 35 = 0$ x(x - 7) + 5(x - 7) = 0(x + 5)(x - 7) = 0 So, its zeroes are given by: x = -5 and x = 7.

Hence, the other zeroes of given polynomial are: -5 and 7.

- 5. If the polynomial $x^4 6x^3 + 16x^2 25x 10$ is divided by another polynomial $x^2 - 2x + k$, the remainder comes out to be x + a, find k and a.
- Exp. By division algorithm,

Dividend = Divisior × Quotient + Remainder Dividend - Remainder = Divisor × Quotient $x^4 - 6x^3 + 16x^2 - 25x - 10 - x - a = x^4 - 6x^3 + 16x^2 - 26x + 10 - a$ will be perfectly divisible by $x^2 - 2x + k$.

let us divide x^4 – $6x^3$ + $16x^2$ + 26x + 10 – a by x^2-2x + k

$$\frac{x^{2}-4x + (8-k)}{x^{2}-2x + k} \frac{x^{2}-6x^{3}+16x^{2}-26x + 10 - a}{x^{4}-2x^{3}+kx^{2}} \frac{-+--}{-4x^{3}+(16-k)x^{2}-26x} \frac{-4x^{3}+8x^{2}-4kx}{x^{4}-4x^{3}+8x^{2}-4kx} \frac{+--+}{(8-k)x^{2}-(26-4k)x + 10 - a} \frac{(8-k)x^{2}-(26-4k)x + 10 - a}{(8-k)x^{2}-(16-2k)x + (8k-k^{2})} \frac{-+--}{(-10+2k)x + (10-a-8k+k^{2})}$$

It can be observed that (-10 + 2k) = 0 and $(10 - a - 8k + k^2) = 0$ For (-10 + 2k) = 0, 2k = 10And thus, k = 5For $(10 - a - 8k + k^2) = 0$ $10 - a - 8 \times 5 + 25 = 0$ 10 - a - 40 + 25 = 0 -5 - a = 0Therefore, a = -5Hence, k = 5 and a = -5

Subjective Questions

Very Short Answer Type Questions

- **1.** Form the quadratic polynomial whose zeroes are 4 and 6.
- **2.** Form the quadratic polynomial whose sum and product of zeroes are 6 and 7.
- 3. If α , β and γ are the zeroes of polynomial $x^3 3x^2 + x + 1$, find the value of $\alpha + \beta + \gamma$.
- 4. If x = 2 & x = 0 are the zeroes of the polynomial f(x) = 2x³ 5x² + ax + b, then find the value of a + b.
- 5. Find the remainder when $f(x) = x^3 6x^2 + 2x 4$ is divided by g(x) = 1 2x.
- 6. If x = 3 is a root of $f(x) = x^3 4x^2 + 6k$, then find the value of k.
- 7. Find the remainder when $f(x) = x^3 + x^2 + 2x + 3$ is divided by x 1.
- 8. Find the remainder when the polynomial $P(x) = x^4 + 6x^3 + 13x^2 + 12x + 6$ is divided by g(x) = x + 2
- 9. Find the value of 'a' for which (x 3) is a factor of f(x) = x² ax + 9.
- 10. Show that (x + a) is always a factor of $x^n + a^n$ when n is an odd positive integer.

Short Answer Type Questions

- 1. Find the zeroes of the given quadratic polynomial $6x^2 13x + 6$ and then verify the relation between the zeroes and its coefficients.
- 2. Verify the relation between the zeroes and the coefficients of polynomial $ax^2 + bx + c$, $a \neq 0$.
- 3. If α and β are the zeroes of the polynomial $ax^2 + bx + c$, then find the value of

(i) $\alpha - \beta$

- (ii) $\alpha^2 + \beta^2$
- 4. If α and β are the zeroes of the quadratic polynomial $ax^2 bx + c$, then find the value of $a^2 \beta^2$.
- 5. Find a cubic polynomial whose zeroes are 1, 2 and -3.
- 6. If α and β are the zeroes of the polynomial $ax^2 + bx + c$, then form the polynomial whose zeroes are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$.
- 7. Divide the polynomial $p(x) = 3x^3 + 4x + 11$ by $g(x) = x^2 3x + 2$ to find the quotient and remainder.
- 8. On dividing 3x³ + 4x² + 5x 13 by a polynomial g(x), the quotient and remainder were 3x + 10 and 16x 43, respectively. Find g(x).
- 9. For a given polynomial $p(x) = x^4 6x^3 26x^2 + 138x 35$, the sum of two zeroes is 4. Find the sum of other two zeroes.
- 10. Find the sum of real values of y satisfying the equation $x^2 + x^2y^2 + x^2y^4 = 525$ and $x + xy + xy^2 = 35$.

Long Answer Type Questions

- 1. Verify that $\frac{1}{2}$, 1, -2 are zeroes of cubic polynomial $2x^3 + x^2 5x + 2$. Also, verify the relationship between the zeroes and their coefficients.
- 2. If α and β are the zeroes of the polynomial $x^2 + 4x + 3$, form the polynomial whose zeroes are $1 + \frac{\beta}{\alpha}$ and $1 + \frac{\alpha}{\beta}$.
- **3.** Using factor theorem, factorize : $p(x) = 2x^4 7x^3 13x^2 + 63x 45$.

- 4. Find the value that must be added to $f(x) = 3x^4$ + $13x^3 - 29x^2 + 100x - 77$, so that the resulting polynomial is completely divisible by $g(x) = x^2 + 6x - 7$.
- 5. Simplify:

$$\frac{(x-y)^2}{(y-z)(z-x)} + \frac{(y-z)^2}{(x-y)(z-x)} + \frac{(z-x)^2}{(x-y)(y-z)}$$

Integer Type Questions

- 1. Find the value of "p" for which 2 is one of the zeroes of $f(x) = x^2 + 3x + p$.
- Find the value of "x" in the polynomial 2a² + 2xa + 5a + 10 for which (a + x) is one of its factors.
- 3. If the sum of zeroes of the quadratic polynomial $3x^2$ -mx + 6 is 3, then find the value of k.

- 4. Find the value of p for which one zero of polynomial $3x^2 4x + p$ is reciprocal to the other.
- 5. If (x 1) is one of the factor of the quadratic polynomial $x^2 + 3x + m$, then find the value of m.
- 6. If 'm' and 'n' are the zeroes of polynomial $x^2 + mx + n$, find the value of m n.
- 7. Find the value of $a^4b^3 + a^3b^4$, where a and b are the zeroes of $f(x) = x^2 4x + 3$.
- 8. Find the value of $\frac{1}{p} + \frac{1}{q} + \frac{1}{r}$, where p, q and r are zeroes of polynomial $6x^3 + 3x^2 5x + 1$.
- 9. If the HCF of the polynomials x² + 2mx 15 and (x 3)(x + n) is (x + 5), then find the value of m + n.
- 10. Find the degree of polynomial $\frac{3x^3 + 10x^2 + x 14}{3x^2 + 13x + 14}$.

Multiple Choice Questions

Level-I

1.	 If the zeroes of the quadratic polynomial ax² + bx + c, c ≠ 0 are equal, then a. c and a have opposite signs 				
	a. c and a have opposite signs				
	b. c and b have same sign				
	c. c and a have same sign				
	d. c and b have opposite sig	gns			
2.	Find the number of polyno -2 and 5.	omials whose zeroes are			
	a. 1 b.	2			
	c. 6 d.	Infinite			
3.	Find the degree of the polynor	mial $(x + 1)(x^2 - x - x^4 + 1)$.			
	a. 2 b.	3			
	c. 1 d.	5			
4.	The zeroes of the quadratic $x + b$ are 2 and -3 , then find	polynomial $x^2 + (a + 1)$ and the value of 'a' and 'b'.			
	a. $a = -7, b = -6$ b.	a = 0, b = -1			
	c. $a = 2, b = -6$ d.	a = 0, b = -6			
5.	If one of the zeroes of t $(a - 1)x^2 + ax + 1$ is -3, th	he quadratic polynomial en find the value of a			
	a. $\frac{4}{3}$ b.	$-\frac{4}{3}$			
	c. $\frac{2}{3}$ d.	$-\frac{7}{3}$			
6.	Find a quadratic polynom -3 and 4.	nial, whose zeroes are			
	a. $x^2 - x + 12$ b.	$\frac{x^2}{2} + \frac{x}{2} + 12$			
	c. $\frac{x^2}{2} - \frac{x}{2} - 6$ d.	$\frac{x^2}{2} + \frac{x}{2} - 6$			
7.	If $(x - 2)$ is a factor of the	polynomial $x^3 + 4x^2 - px$			
	+ 8, then the value of \sqrt{p}	is			
	a. 4 b.	3			
	c. 5 d.	16			
8.	The sum of the squares of polynomial $6x^2 + x + c$ is 2 is	E zeroes of the quadratic 25/36, then the value of c			

a.	4	b.	-4

c. -3 d. –2 9. Find the value of $\frac{1}{m} + \frac{1}{n} - mn$, where m and n are the zeroes of $x^2 - 4x + 1$.

a. 3

- b. $\frac{1}{3}$ c. -5 d. -3
- 10. Find the zeroes of polynomial $x^2 2x 8$. a. (2, -4) b. (4, -2)c. (−2, −2) d. (4, -4)
- 11. What is the quadratic polynomial whose sum and the product of zeroes is $\left(\sqrt{2}, \frac{1}{3}\right)$ respectively? a. $3x^2 - 3\sqrt{2}x + 1$ b. $6x^2 - 6\sqrt{2}x + 2$
- c. $3x^2 + 3\sqrt{2}x 1$ d. Both a and b 12. The degree of the polynomial, $5x^4 - 9x^2 + x^9$ is

		0	1	5) -	-
a.	2				b. 4	
c.	. 1				d. 9	

13. -1 is one of the zeroes of cubic polynomial $x^3 + ax^2$ + bx + c, then product of other two zeroes is

a. b – a – 1	b. $b - a + 1$
c. a – b + 1	d. a − b − 1

- 14. If p(x) is a polynomial of degree one and p(a) = 0, then a is said to be
 - a. Zero of p(x)b. Constant of p(x)
 - c. Value of p(x)d. None of these
- 15. Number of zeroes of polynomial is equal to number of points where the graph of polynomial
 - a. Intersects x-axis
 - b. Intersects y-axis
 - c. Intersects y-axis or x-axis
 - d. None of the above
- 16. A polynomial of degree n has

a. At least n zeroes	b. Only one zero
----------------------	------------------

- c. More than n zeroes d. Atmost n zeroes
- **17.** Zeroes of $p(x) = x^2 8$ are

a. $\pm 9\sqrt{3}$ b. =	±2√2	
-------------------------	------	--

c. $\pm 4\sqrt{2}$ d. None of the above

18.	If $(x - 2)$ is a factor of $(x - 2)$ of m is	$x^2 - mx + 2$), then the value
	a 2	h 3
	c. 1	d. 0
19.	If $x + 2$ is a factor of { the value of 'k' is	$(x + 1)^5 + (2x + k)^3$, then
	a. 2	b. 3
	c. 4	d. 5
20.	Which of the following polynomial?	does NOT represent a zero
	a. $p(x) = 0$	b. $p(x) = x^0 - 1$
	c. $p(x) = x^0$	d. $p(x) = 0.x^0$
21.	The degree of a quartic p	polynomial is:
	a. 2	b. 1
	c. 4	d. 3
22.	If $f(x) = 2x^3 - 13x^2 + 1$	7x + 12, then find out the
	remainder when $f(x)$ is d	livided by $(x + 2)$.
	a. –90	b. –85
	c. –70	d. 90
23.	Find the value of $ax^2 + b$	$bx + c$ at $x = \frac{-b}{a}$.
	a. a	b. $b^2 - 4ac$
	c. c	d b
		u. 0
24.	If $p(x) = x^2 - 2\sqrt{2}x + 1$,	then find the value of
24.	If $p(x) = x^2 - 2\sqrt{2}x + 1$, remainder when $p(x)$ is di	then find the value of vided by $(x - 2\sqrt{2})$.
24.	If $p(x) = x^2 - 2\sqrt{2}x + 1$, remainder when $p(x)$ is dial of 0	then find the value of vided by $(x - 2\sqrt{2})$.
24.	If $p(x) = x^2 - 2\sqrt{2}x + 1$, remainder when $p(x)$ is dia. 0	then find the value of vided by $(x - 2\sqrt{2})$. b. 1
24.	If $p(x) = x^2 - 2\sqrt{2}x + 1$, remainder when $p(x)$ is di a. 0 c. $4\sqrt{2}$	then find the value of vided by $(x - 2\sqrt{2})$. b. 1 d. $8\sqrt{2} + 1$
24. 25.	If $p(x) = x^2 - 2\sqrt{2}x + 1$, remainder when $p(x)$ is di a. 0 c. $4\sqrt{2}$ Find the value of the pol at $x = 3$.	then find the value of vided by $(x - 2\sqrt{2})$. b. 1 d. $8\sqrt{2} + 1$ ynomial $(3x^3) \times (4x^2) + 7x^5$
24. 25.	If $p(x) = x^2 - 2\sqrt{2}x + 1$, remainder when $p(x)$ is di a. 0 c. $4\sqrt{2}$ Find the value of the pol at $x = 3$. a. 4617	then find the value of vided by $(x - 2\sqrt{2})$. b. 1 d. $8\sqrt{2} + 1$ ynomial $(3x^3) \times (4x^2) + 7x^5$ b. 4628
24. 25.	If $p(x) = x^2 - 2\sqrt{2}x + 1$, remainder when $p(x)$ is di a. 0 c. $4\sqrt{2}$ Find the value of the pol at $x = 3$. a. 4617 c. 4611	then find the value of vided by $(x - 2\sqrt{2})$. b. 1 d. $8\sqrt{2} + 1$ ynomial $(3x^3) \times (4x^2) + 7x^5$ b. 4628 d. 4619
24.25.26.	If $p(x) = x^2 - 2\sqrt{2}x + 1$, remainder when $p(x)$ is di a. 0 c. $4\sqrt{2}$ Find the value of the pol at $x = 3$. a. 4617 c. 4611 Find the roots of the pol	then find the value of vided by $(x - 2\sqrt{2})$. b. 1 d. $8\sqrt{2} + 1$ ynomial $(3x^3) \times (4x^2) + 7x^5$ b. 4628 d. 4619 ynomial $x^3 - 3x - 2 = 0$.
24.25.26.	If $p(x) = x^2 - 2\sqrt{2}x + 1$, remainder when $p(x)$ is di a. 0 c. $4\sqrt{2}$ Find the value of the pol at $x = 3$. a. 4617 c. 4611 Find the roots of the poly a. $-1, -1, 2$	then find the value of vided by $(x - 2\sqrt{2})$. b. 1 d. $8\sqrt{2} + 1$ ynomial $(3x^3) \times (4x^2) + 7x^5$ b. 4628 d. 4619 ynomial $x^3 - 3x - 2 = 0$. b. $-1, 1, -2$
24.25.26.	If $p(x) = x^2 - 2\sqrt{2}x + 1$, remainder when $p(x)$ is di a. 0 c. $4\sqrt{2}$ Find the value of the pol at $x = 3$. a. 4617 c. 4611 Find the roots of the poly a. $-1, -1, 2$ c. $-1, 2, 3$	then find the value of vided by $(x - 2\sqrt{2})$. b. 1 d. $8\sqrt{2} + 1$ ynomial $(3x^3) \times (4x^2) + 7x^5$ b. 4628 d. 4619 ynomial $x^3 - 3x - 2 = 0$. b1, 1, -2 d. 1, 1, -2
24.25.26.27.	If $p(x) = x^2 - 2\sqrt{2}x + 1$, remainder when $p(x)$ is di a. 0 c. $4\sqrt{2}$ Find the value of the pol at $x = 3$. a. 4617 c. 4611 Find the roots of the pol a. -1 , -1 , 2 c. -1 , 2, 3 Let $f(x) = x^2 + 3x + 2$, divided by $(x = 1)$ will be	then find the value of vided by $(x - 2\sqrt{2})$. b. 1 d. $8\sqrt{2} + 1$ ynomial $(3x^3) \times (4x^2) + 7x^5$ b. 4628 d. 4619 ynomial $x^3 - 3x - 2 = 0$. b. $-1, 1, -2$ d. 1, 1, -2 the remainder when $f(x)$ is
24.25.26.27.	If $p(x) = x^2 - 2\sqrt{2}x + 1$, remainder when $p(x)$ is di a. 0 c. $4\sqrt{2}$ Find the value of the pol at $x = 3$. a. 4617 c. 4611 Find the roots of the pol a. $-1, -1, 2$ c. $-1, 2, 3$ Let $f(x) = x^2 + 3x + 2$, divided by $(x - 1)$ will be	then find the value of vided by $(x - 2\sqrt{2})$. b. 1 d. $8\sqrt{2} + 1$ ynomial $(3x^3) \times (4x^2) + 7x^5$ b. 4628 d. 4619 ynomial $x^3 - 3x - 2 = 0$. b. $-1, 1, -2$ d. 1, 1, -2 the remainder when $f(x)$ is
24.25.26.27.	If $p(x) = x^2 - 2\sqrt{2}x + 1$, remainder when $p(x)$ is di a. 0 c. $4\sqrt{2}$ Find the value of the pole at $x = 3$. a. 4617 c. 4611 Find the roots of the pole a. -1 , -1 , 2 c. -1 , 2 , 3 Let $f(x) = x^2 + 3x + 2$, divided by $(x - 1)$ will be a. 3	then find the value of vided by $(x - 2\sqrt{2})$. b. 1 d. $8\sqrt{2} + 1$ ynomial $(3x^3) \times (4x^2) + 7x^5$ b. 4628 d. 4619 ynomial $x^3 - 3x - 2 = 0$. b. $-1, 1, -2$ d. 1, 1, -2 the remainder when $f(x)$ is be b. 5
24.25.26.27.	If $p(x) = x^2 - 2\sqrt{2}x + 1$, remainder when $p(x)$ is di a. 0 c. $4\sqrt{2}$ Find the value of the pol at $x = 3$. a. 4617 c. 4611 Find the roots of the pol a. $-1, -1, 2$ c. $-1, 2, 3$ Let $f(x) = x^2 + 3x + 2$, divided by $(x - 1)$ will b a. 3 c. 6	then find the value of vided by $(x - 2\sqrt{2})$. b. 1 d. $8\sqrt{2} + 1$ ynomial $(3x^3) \times (4x^2) + 7x^5$ b. 4628 d. 4619 ynomial $x^3 - 3x - 2 = 0$. b1, 1, -2 d. 1, 1, -2 the remainder when $f(x)$ is be b. 5 d. 4
24.25.26.27.28.	If $p(x) = x^2 - 2\sqrt{2}x + 1$, remainder when $p(x)$ is di a. 0 c. $4\sqrt{2}$ Find the value of the pole at $x = 3$. a. 4617 c. 4611 Find the roots of the pole a. $-1, -1, 2$ c. $-1, 2, 3$ Let $f(x) = x^2 + 3x + 2$, divided by $(x - 1)$ will b a. 3 c. 6 Let $f(x)=2x^2 + 3x + 1$, divisible by $(x + 1)$ is	then find the value of vided by $(x - 2\sqrt{2})$. b. 1 d. $8\sqrt{2} + 1$ ynomial $(3x^3) \times (4x^2) + 7x^5$ b. 4628 d. 4619 ynomial $x^3 - 3x - 2 = 0$. b. $-1, 1, -2$ d. $1, 1, -2$ the remainder when $f(x)$ is be b. 5 d. 4 the remainder when $f(x)$ is
24.25.26.27.28.	If $p(x) = x^2 - 2\sqrt{2}x + 1$, remainder when $p(x)$ is di a. 0 c. $4\sqrt{2}$ Find the value of the pol at $x = 3$. a. 4617 c. 4611 Find the roots of the pol a. $-1, -1, 2$ c. $-1, 2, 3$ Let $f(x) = x^2 + 3x + 2$, divided by $(x - 1)$ will b a. 3 c. 6 Let $f(x)=2x^2 + 3x + 1$, divisible by $(x + 1)$ is a. 6	then find the value of vided by $(x - 2\sqrt{2})$. b. 1 d. $8\sqrt{2} + 1$ ynomial $(3x^3) \times (4x^2) + 7x^5$ b. 4628 d. 4619 ynomial $x^3 - 3x - 2 = 0$. b. $-1, 1, -2$ d. 1, 1, -2 the remainder when $f(x)$ is b. 5 d. 4 the remainder when $f(x)$ is b. 0

29. The polynomials $ax^3 + 3x^2 - 3$ and $2x^3 - 5x + a$ when divided by (x - 4) leaves remainder $R_1 \& R_2$ such that $2R_1 - R_2 = 0$, then the value of a is

	a. $-\frac{18}{127}$	b.	$\frac{18}{127}$
	c. $\frac{17}{127}$	d.	$\frac{127}{18}$
30.	Simplify: $(l + m)^2 - 4lm$		
	a. $(l - m)^2$	b.	$4l^2m^2$
	c. $(l + 2m)^2$	d.	None of these
31.	Simplify the following ex	xpr	ession: $(s - r)^2 - (s + r)^2$
	a. 2sr	b.	$2s^2 + 2r^2$
	c. –4sr	d.	None of these
32.	If $(2x + 3)$ is a factor of t	oolv	ynomial $2x^3 + 9x^2 - x - b$
	then b will be		
	a. 15	b.	-15
	c. 25	d.	-10
33.	Find the value of c	for	which the polynomial
	$2x^2 + kx + \sqrt{2}$ is exactl	y d	ivisible by $(x - 1)$.
	a. $2 + \sqrt{2}$	b.	$2 - \sqrt{2}$
	c. $-(2+\sqrt{2})$	d.	$-2 + \sqrt{2}$
34.	Find the value of polyno	mia	al $f(x) = 3x (4x - 5) + 3$
	at $x = \frac{1}{2}$.		
	a. <u>3</u>	b.	_1
	2		2
	c. $-\frac{3}{2}$	d.	_3
	7		8
35.	Find the remainder when by $x - a$.	x ³	$-ax^2 + 6x - a$ is divided
	a. 2a	b.	5a
	с. ба	d.	9a
	Level-II		
1.	The zeroes of the quadratic	c po	olynomial $x^2 + 99 x - 127$
	are a Dath positive		
	b. Both negative		
	c. One positive and one	neg	ative
	d. Can't say	_	
2.	Given that one of the zer	oes	of the cubic polynomial

 $ax^3 + bx^2 + cx + d$ is zero, the product of the other two zeroes is

a.
$$\frac{-c}{a}$$
 b. $\frac{c}{a}$

c. 0 d.
$$\frac{-b}{a}$$

- 3. If one of the zeroes of a quadratic polynomial of the form $x^2 + ax + b$ is the negative of the other, then it
 - a. Has no linear term and the constant term is negative.
 - b. Has no linear term and the constant term is positive.
 - c. Can have a linear term but the constant term is negative.
 - d. Can't say
- 4. If α , β are zeroes of $x^2 6x + p$ then what is the value of p if $3\alpha + 2\beta = 20$?

a. -16 b. 5 c. 2 d. -8

- 5. Find the value of p for which (x 2) is a factor of polynomial $x^4 x^3 + 2x^2 px + 4$.
 - a. 10 b. -9
 - c. 4 d. -10
- 6. If 2 and 3 are zeroes of the quadratic polynomial x² + ax + b, the values of a + b is

a3	b. 5
c. 1	d. 6

7. If $f(x) = 2x^2 - x + 1$ and $g(x) = x^3 - 3x + 1$, then the value of f(1) + g(-1) is

a. 2	b. 1
c. –5	d. 5

- 8. The value of the polynomial $4x^2 + 3x 7$ at x = 1 is
 - a. 1 b. 2
 - c. 7 d. None of these
- 9. The function $f(x) = x^3 6x^2 + ax + b$ where a and b are constants is exactly divisible by (x 3) and leaves a remainder of -55 when divided by (x + 2) Find the value of a + b.
 - a. -30b. 10c. 7d. 13
- 10. If $(x + \lambda)$ is a factor of polynomial $p(x) = x^2 + 5x + 6$, then the value of λ is

a.	2	b.	3

c. Both (a) and (b) d. None of these

- 11. If $x^4 + \frac{1}{x^4} = 119$, then the value of $x^3 \frac{1}{x^3}$ is equal to
 - a. 9 b. 4 c. 25 d. 36
- 12. When $6x^9 + 3x^{16} p$ is divided by x + 1, the remainder is 20. The value of p is a. -23 b. -12
 - c. 8 d. 23

- 13. A quadratic polynomial is divisible by (2x 1) and (x + 3) and leaves remainder 12 on division by (x 1). The polynomial is
 - a. $6x^2 + 15x + 9$ b. $2x^2 + 15x - 3$ c. $6x^2 + 15x - 9$ d. Both b and c
- 14. If the zeroes of the polynomial x³ 6x² 45x + 162 are a b, -a, a + b, then the value of a is
 a. 3
 b. -6
 c. 6
 d. 5
- 15. Find the remainder when the polynomial $ax^3 + bx^2 + cx + d$ is divided by ax + b.

a. ad - bcb. $\frac{1}{a}(ad - bc)$ c. $\frac{a - bc}{d}$ d. $\frac{a + b + cd}{2}$

Assertion & Reason Type Questions

DIRECTION: In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as:

- (a) Both assertion (A) and reason (R) are true and reason(R) is the correct explanation of assertion (A)
- (b) Both assertion (A) and reason (R) are true but reason(R) is not the correct explanation of assertion (A).
- (c) Assertion (A) is true but reason (R) is false.
- (d) Assertion (A) is false but reason (R) is true.
- 1. Assertion: The graph y = f(x) is shown in figure, for the polynomial f(x). The number of zeroes of f(x) is 5.

Reason: The number of zero of the polynomial f(x) is the number of point of which f(x) cuts or touches the y-axis.

2. Assertion: $(2-\sqrt{3})$ is one zero of the quadratic polynomial then other zero will be $(2+\sqrt{3})$.

Reason: Irrational zeroes (roots) always occurs in pairs.

3. Assertion: The sum and product of the zeroes of a quadratic polynomial are $-\frac{1}{4}$ and $\frac{1}{4}$ respectively. Then the quadratic polynomial is $2x^2 + \frac{x}{2} + \frac{1}{2}$.

Reason: The quadratic polynomial whose sum and product of zeroes are given is $x^2 - (sum of zeroes)$. x + product of zeroes.

4. Assertion: If α , β , γ are the zeroes of $x^3 - 2x^2 + qx$ - r and $\alpha + \beta = 0$, then 2q = r.

Reason: If α , β , γ are the zeroes of $ax^3 + bx^2 + cx + d$

then

 $\alpha\beta + \beta\gamma + \gamma\alpha = -\frac{c}{a}$ $\alpha\beta\gamma = -\frac{d}{a}$

 $\alpha + \beta + \gamma = \frac{b}{c}$

5. Assertion: If one zero of polynomial p(x) = (k + 4) $x^2 + 13x + 3k$ is reciprocal of other, then k = 2.

Reason: If $(x - \alpha)$ is a factor of p(x), then $p(\alpha) = 0$ i.e. α is a zero of p(x).

Comprehension Type

Passage–I: If α , β and γ be the zeroes of the polynomial $ax^3 + bx^2 + cx + d$, then the value of

1. $\alpha^{2} + \beta^{2} + \gamma^{2}$ a. $\frac{b^{2} - ac}{a^{2}}$ b. $\frac{b^{2} - 2ac}{a}$ c. $\frac{b^{2} + 2ac}{b^{2}}$ d. $\frac{b^{2} - 2ac}{a^{2}}$ 2. $\frac{1}{\alpha^{2}} + \frac{1}{\beta^{2}} + \frac{1}{\gamma^{2}}$ is
a. $\frac{c^{2} - ab}{a^{2}}$ b. $\frac{b^{2} - 2ac}{a^{2}}$ c. $\frac{c^{2} - ab}{a^{2}}$ b. $\frac{b^{2} - 2ac}{a}$ c. $\frac{c^{2} - ab}{a^{2}}$ d. $\frac{c^{2} - 2bd}{a}$ c. $\frac{c^{2} + 2bd}{d^{2}}$ d. $\frac{c^{2} - 2bd}{d^{2}}$

Passage–II: Cricket is the most popular sport in India. Usually, cricket is played outdoors on a large field. The projectile of a cricket ball is in the form of a parabola respresenting quadratic polynomial.

1. The graph of parabola opens downwards, if _____

a. a = 0	b. a > 0
c. a < 0	d. None

2. In a polynomial if sum of zeroes = α + β = -8 and product of zeroes = αβ = 6, then find the polynomial whose zeroes are, 1/α and 1/β.
a. 6x² + 8x + 1
b. 6x² - 8x - 1
c. 6x² - 4x + 6
d. 6x² - 8x + 1

of these

3. In the graph, how many zeroes are there for the polynomial?

- 2. If a b = 3 and $a^3 b^3 = 117$, then a + b is a. 5 b. 7 c. $21 \div \sqrt[3]{27}$ d. 11
- **3.** If a three digit prime number is such that the digit in the units place is equal to the sum of the other two, then the total number of such primes is
 - a. 6
 - b. 4
 - c. 2

d. Value of the smallest composite number

- 4. If $x^2 1$ is a factor of $ax^4 + bx^3 + cx^2 + dx + e$, then
 - a. a + c + e = 0b. a + b + c = 0c. b + d = 0d. None of these

Olympiad & NTSE Type Questions

- 1. An unknown polynomial yields a remainder 2 upon division by x 1, and remainder of 1 upon division by x 2, then find the remainder if this polynomial is divided by (x 1)(x 2)
 - a. x 3 b. 2x 5
 - c. -x + 3 d. None of these
- **2.** Factorisation of $(a^2 b^2)^3 + (b^2 c^2)^3 + (c^2 a^2)^3$ is a. $3(a + b)^2 (b + c)^2 (c + a)^2$
 - b. $3(a^2 + b^2) (b^2 + c^2) (c^2 a^2)$
 - c. $3(a^2 b^2) (b^2 c^2) (c^2 a^2)$
 - d. None of these
- **3.** P(x) is a degree 2 polynomial in x. It leaves remainder 5 on division by (x 1) and remainder 2 on division by (x + 2). When P(x) is divided by (x 1) (x + 2), then the remainder will be
 - a. 2x 7b. x - 5c. 4 - xd. x + 4
- 4. If (x k) is the H.C.F. of $x^2 + x 12$ and $2x^2 kx 9$, then the value of k is
 - a.--3 b. 3
 - c. Both (a) and (b) d. None of these
- If the polynomial x⁴ + x³ + 8x² + ax + b is divisible by x² + 1, then the value of a + b is
 - a. 7 b. 4
 - c. 8
- 6. The zeroes of the polynomial $f(x) = x^3 12x^2 + 39x 28$, if it is given that the zeroes are in A.P. are

d. 3

- a. 1, 3, 5b. 1, 5, 7c. 1, 7, 9d. None of these
- 7. The value of a and b, if $(x^2 2x 3)$ is a factor of the polynomial $x^3 3x^2 + ax b$ are

a.
$$a = 1, b = 3$$
b. $a = -1, b = 3$ c. $a = -1, b = -3$ d. $a = 3, b = 4$

- 8. $f(x) = x^4 2x^3 + 3x^2 ax + b$ leaves remainder 5 and 19 on division by (x - 1) and (x + 1) respectively. If f(x) divided by (x - 3), the remainder is
 - a. 0 b. 23 c. 47 d. -47

- 9. A cubic polynomial f(x) is such that f(1) = 1, f(2) = 4, f(3) = 9 and f(4) = 20, then the value of f(7) is
 - a. 16b. 139c. 68d. 129
- 10. If the polynomial $3x^4 7x^3 7x^2 + 21x 6$ has one of its zero as $-\sqrt{3}$, then find the values of other zeroes.
 - a. $\sqrt{3}$, 2, $\frac{1}{3}$ b. $\sqrt{3}$, $\frac{1}{\sqrt{3}}$, -2 c. $-\sqrt{3}$, 2, $-\frac{1}{3}$ d. $\sqrt{2}$, 2, $-\frac{1}{3}$
- 11. If the value of $x \frac{1}{x} = 2$, then find the value of
 - $x^{4} + \frac{1}{x^{4}}$. a. 4 b. 38 c. 36 d. 34
- **12.** If a + 2b + 3c = 0, then $a^3 + 8b^3 + 27c^3$ is equal to a. 9 abc b. 6 abc
 - c. 21 abc d. 18 abc
- 13. The value of p and q, such that $x^4 + px^3 + 2x^2 3x + q$ is divisible by $(x^2 1)$ are
 - a. -3, -3
 b. -3, 3

 c. 3, -3
 d. 4, 2
- 14. If $f(x) = x + x^9 + x^{25} + x^{49} + x^{81}$ is divided by $(x^3 x)$, then the remainder is
 - a. x^{27} b. $x^2 + 5x + 1$
 - c. $5x^2$ d. 5x
- 15. If $a = x + \frac{1}{x}$, $b = x \frac{1}{x}$, then find the value of

$$a^{2} + 2ab - 3b^{2}.$$
a. $4x^{2}\left(\frac{2}{x^{2}} - 1\right)$
b. $\frac{4}{x^{2}}\left(2x^{2} - 1\right)$
c. $4\left(1 - \frac{2}{x^{2}}\right)$
d. $8\left(\frac{1}{x^{2}} - \frac{1}{2}\right)$

Explanations

Subjective Questions

Very Short Answer Type Questions

- Here, zeroes are 4 and 6
 Sum of the zeroes = 4 + 6 = 10
 Product of the zeroes = 4 × 6 = 24
 Hence the polynomial formed
 = x² (sum of zeroes) x + Product of zeroes
 = x² 10x + 24
- Here, sum and product of zeroes are given.
 Sum of the zeroes = 6

Product of the zeroes = 7

Hence the polynomial formed

= x^2 - (sum of zeroes) x + Product of zeroes = $x^2 - 6x + 7$

3. Sum of zeroes =
$$-\frac{\text{Coefficient of } x^2}{\text{Coefficient of } x^3}$$

= $-\frac{(-3)}{1}$

- using factor theorem f(2) = f(0) = 0 $f(2) = 2(2)^3 - 5(2)^2 + a(2) + b = 0$ \Rightarrow 16 - 20 + 2a + b= 0 \Rightarrow 2a + b = 4...(i) $f(0) = 2(0)^3 - 5(0)^2 + a(0) + b$ Also 0 = b \Rightarrow By putting b = 0 in (i), we get 2a = 4a = 2 \Rightarrow a + b = 2 + 0 = 2So.
- 5. Using factor theorem

1 - 2x = 0 $\Rightarrow \qquad 2x = 1$ $\Rightarrow \qquad x = \frac{1}{2}$

By using the factor theorem the value of polynomial

f(x) at x =
$$\frac{1}{2}$$
 is the remainder when f(x) is divided
by g(x) = 1 - 2x.
f $(\frac{1}{2}) = (\frac{1}{2})^3 - 6(\frac{1}{2})^2 + 2(\frac{1}{2}) - 4$
= $\frac{1}{8} - \frac{3}{2} + 1 - 4$
= $\frac{1 - 12 + 8 - 32}{8} = -\frac{35}{8}$
6. Given, x = 3 is a root of f(x)
 \Rightarrow f(3) = 0
 \Rightarrow (3)³ - (4).(3)² + 6k = 0
 \Rightarrow -9 + 6k = 0
Or $k = \frac{9}{6} = \frac{3}{2}$
7. When f(x) is divided by x - 1, then using factor
theorem remainder is f(1)
f(1) = (1)^3 + (1)^2 + 2(1) + 3
= 1 + 1 + 2 + 3
= 7
 \therefore The value of remainder is 7.
8. When P(x) is divided by x + 2, then remainder is
P(-2).
 \therefore P(-2) = 16 - 6(8) + 13(4) - 12(2) + 6
= 74 - 72
= 2
Hence remainder is 2.
9. If (x - 3) is a factor of f(x), then f(3) = 0
 \Rightarrow f(3) = (3)^2 - a(3) + 9
 \Rightarrow 18 - 3a = 0
 \Rightarrow a = 6
10. f(x) = xⁿ + aⁿ
If x + a is a factor of f(x) then f(-a) should be zero.
f(-a) = (-a)ⁿ + aⁿ
= [(-1)ⁿaⁿ + aⁿ]
= [(-1)ⁿaⁿ + aⁿ]
= ((-1)ⁿaⁿ + aⁿ] = [(-1)ⁿaⁿ + aⁿ]

Hance proved

Hence proved.

Short Answer Type Questions

1. We shall use middle term splitting to factorise the given polynomial and find its zero.

$$6x^{2} - 13x + 6 = 6x^{2} - 4x - 9x + 6$$

$$= 2x (3x - 2) -3 (3x - 2)$$

$$= (3x - 2) (2x - 3)$$
Therefore, the zeroes of $6x^{2} - 13x + 6$ are $\frac{2}{3}$ and $\frac{3}{2}$
Sum of the zeroes $= \frac{2}{3} + \frac{3}{2}$

$$= \frac{13}{6}$$

$$= \frac{-(-13)}{6}$$

$$= \frac{-\text{coefficient of } x^{2}}{\text{coefficient of } x^{2}}$$
Product of the zeroes $= \frac{2}{3} \times \frac{3}{2}$

$$= \frac{6}{6}$$

$$= \frac{\text{constant term}}{\text{coefficient of } x^{2}}$$
Hence, verified.

2. Let α and β be the zeroes of polynomial

 $ax^{2} + bx + c$, then according to factor theorem, $(x - \alpha)$, $(x - \beta)$ are the factors of the polynomial $ax^{2} + bx + c$.

 $\Rightarrow ax^{2} + bx + c = k (x - \alpha) (x - \beta)$ $\Rightarrow ax^{2} + bx + c = k \{x^{2} - (\alpha + \beta) x + \alpha\beta\}$ $\Rightarrow ax^{2} + bx + c = kx^{2} - k (\alpha + \beta) x + k\alpha\beta ...(1)$

By comparing the coefficients of x^2 , x and constant terms of (1) of both sides, we get

 $a = k, b = -k (\alpha + \beta) \text{ and } c = k\alpha\beta$ $\Rightarrow \qquad \alpha + \beta = -\frac{b}{k} \text{ and } \alpha\beta = \frac{c}{k}$ $\alpha + \beta = \frac{-b}{a} \text{ and } \alpha\beta = \frac{c}{a}$ [$\because k = a$]
Sum of the zeroes = $\frac{-b}{a} = \frac{-\text{coefficient of } x}{\text{coefficient of } x^2}$ Product of the zeroes = $\frac{c}{a} = \frac{c}{a} = \frac{constant \text{ term}}{coefficient \text{ of } x^2}$ Hence, verified.

3. As α and β are the zeroes of the polynomial $ax^2 + bx + c$.

$$\therefore \qquad \alpha + \beta = -\frac{b}{a}; \ \alpha\beta = \frac{c}{a}$$
(i)
$$(\alpha - \beta)^{2} = (\alpha^{2} + \beta^{2} - 2\alpha\beta)$$

$$= (\alpha^{2} + \beta^{2} + 2\alpha\beta - 4\alpha\beta)$$

$$= (\alpha + \beta)^{2} - 4\alpha\beta$$

$$= (\alpha + \beta)^{2} - 4\alpha\beta$$

$$= \frac{b^{2}}{a^{2}} - \frac{4c}{a}$$

$$= \frac{b^{2} - 4ac}{a^{2}}$$

$$\alpha - \beta = \pm \frac{\sqrt{b^{2} - 4ac}}{a}$$
(ii)
$$\alpha^{2} + \beta^{2} = \alpha^{2} + \beta^{2} + 2\alpha\beta - 2\alpha\beta$$

$$= (\alpha + \beta)^{2} - 2\alpha\beta$$

$$= (\alpha + \beta)^{2} - 2\alpha\beta$$

$$= (\frac{-b}{a})^{2} - 2(\frac{c}{a})$$

$$= \frac{b^{2} - 2ac}{a^{2}}$$

4. Since α and β are the zeroes of polynomial $ax^2 - bx + c$

$$\therefore \qquad \alpha + \beta = -\left(\frac{-b}{a}\right) = \frac{b}{a}, \ \alpha\beta = \frac{c}{a}$$
$$\alpha^2 - \beta^2 = (\alpha + \beta) (\alpha - \beta)$$
$$= \frac{b}{a} \sqrt{(\alpha - \beta)^2}$$
$$= \frac{b}{a} \sqrt{\alpha^2 + \beta^2 - 2\alpha\beta}$$
$$= \frac{b}{a} \sqrt{\alpha^2 + \beta^2 + 2\alpha\beta - 4\alpha\beta}$$
$$= \frac{b}{a} \sqrt{(\alpha + \beta)^2 - 4\alpha\beta}$$
$$= \frac{b}{a} \sqrt{\left(\frac{b}{a}\right)^2 - 4\frac{c}{a}}$$
$$= \frac{b}{a} \sqrt{\frac{b^2 - 4ac}{a^2}}$$
$$= \frac{b\sqrt{b^2 - 4ac}}{a^2}$$

5. Given 1, 2 and -3 are the zeroes of the cubic polynomial. Sum of zeroes = 1 + 2 + (-3) = 0 Sum of product of zeroes taken two at a time = 1(2) + 2(-3) + (-3)(1) = -7 Product of zeroes = 1 × 2 × (-3) = -6 We know that cubic polynomial can be written asx³ - (sum of zeroes)x² + (sum of product of zeroes taken two at a time)x - (product of zeroes) = x³ - 0x² + (-7)x - (-6) x³ - 7x + 6 is the required cubic polynomial.
6. Since α and β are the zeroes of ax² + bx + c ∴ α + β = -b/a, αβ = c/a

Sum of the zeroes $= \frac{1}{\alpha} + \frac{1}{\beta}$ $= \frac{\beta + \alpha}{\alpha\beta}$ $= \frac{\frac{-b}{a}}{\frac{c}{a}}$ $= \frac{-b}{c}$ Product of the zeroes $= \frac{1}{\alpha} \cdot \frac{1}{\beta}$ $= \frac{1}{\frac{c}{a}}$ $= \frac{1}{\frac{c}{a}}$ $= \frac{a}{c}$

The required polynomial can be written as $x^2 - (sum of zeroes)x + Product of zeroes$

$$\Rightarrow x^{2} - \left(\frac{-b}{c}\right)x + \left(\frac{a}{c}\right) = x^{2} + \frac{b}{c}x + \frac{a}{c}$$

7. Given,

$$p(x) = 3x^{3} + 4x + 11, g(x) = x^{2} - 3x + 2$$

$$3x + 9$$

$$x^{2} - 3x + 2$$

$$3x^{3} + 0x^{2} + 4x + 11$$

$$3x^{3} - 9x^{2} + 6x$$

$$- + -$$

$$9x^{2} - 2x + 11$$

$$9x^{2} - 27x + 18$$

$$- + -$$

$$25x - 7$$

Hence, we get quotient = 3x + 9 and remainder = 25x - 7.

Hence, $g(x) = x^2 - 2x + 3$

9. The given polynomial

10.

 $p(x) = x^4 - 6x^3 - 26x^2 + 138x - 35$ is a quartic polynomial $ax^4 + bx^3 + cx^2 + dx + e = 0$ i.e., it has a degree 4. let α , β , γ and δ be its zeroes We know that,

$$\alpha + \beta + \gamma + \delta = \frac{-b}{a} = -\frac{(-6)}{1} = 6$$

$$\therefore \text{ Sum of other two zeroes} = 6 - 4 = 2$$

We have, $x^2 + x^2y^2 + x^2y^4 = 525$

 $\Rightarrow x^{2} (1 + y^{2} + y^{4}) = 525 ...(i)$ And $x + xy + xy^{2} = 35$

$$\Rightarrow \qquad x(1 + y + y^2) = 35 \qquad \dots (ii)$$

squaring the equation (ii)

$$x^{2}(1 + y + y^{2})^{2} = 1225$$
 ...(iii)

$$\frac{x^{2}(1+y+y^{2})^{2}}{x^{2}(1+y^{2}+y^{4})} = \frac{1225}{525}$$
$$\Rightarrow \frac{(1+y+y^{2})^{2}}{(1+y^{2}+y^{4})} = \frac{7}{3}$$
$$\Rightarrow \frac{1+2y+3y^{2}+2y^{3}+y^{4}}{1+y^{2}+y^{4}} = \frac{7}{3}$$

 $[using (a + b + c)^{2} = a^{2} + b^{2} + c^{2} + 2ab + 2bc + 2ac]$

$$\Rightarrow 3 + 6y + 9y^{2} - 6y^{3} + 3y^{4} = 7 + 7y^{2} + 7y^{4}$$

$$\Rightarrow 4y^{4} - 6y^{3} - 2y^{2} - 6y + 4 = 0$$

$$\Rightarrow 2y^{4} - 3y^{3} - y^{2} - 3y + 2 = 0 \qquad \dots (iv)$$

Using hit and trial method 2 and 1/2 are the roots of the above equation.

$$\frac{2y^4 - 3y^3 - y^2 - 3y + 2}{(y - 2)(y - \frac{1}{2})} = \frac{2y^4 - 3y^3 - y^2 - 3y + 2}{y^2 - \frac{5}{2}y + 1}$$
$$= (2y^2 - 5y + 2)$$

Hence from equation (iv)

$$2y^{4} - 3y^{3} - y^{2} - 3y + 2 = (y - 2)\left(y - \frac{1}{2}\right)(2y^{2} - 5y + 2) = 0$$

⇒ $(y - 2)\left(y - \frac{1}{2}\right)(2y^{2} - 5y + 2) = 0$
The term $(2y^{2} - 5y + 2)$ has complex roots.
∴ sum of real values of $y = \frac{1}{2} + 2 = \frac{5}{2}$

Long Answer Type Questions

1.
$$f(x) = 2x^{3} + x^{2} - 5x + 2$$

$$f\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right)^{3} + \left(\frac{1}{2}\right)^{2} - 5\left(\frac{1}{2}\right) + 2$$

$$= \frac{1}{4} + \frac{1}{4} - \frac{5}{2} + 2$$

$$= 0$$

$$f(1) = 2(1)^{3} + (1)^{2} - 5(1) + 2$$

$$= 2 + 1 - 5 + 2$$

$$= 0$$

$$f(-2) = 2(-2)^{3} + (-2)^{2} - 5(-2) + 2$$

$$= -16 + 4 + 10 + 2$$

$$= 0$$
Let $\alpha = \frac{1}{2}, \beta = 1$ and $\gamma = -2$
Now, Sum of zeroes $= \alpha + \beta + \gamma$

$$= \frac{1}{2} + 1 - 2 = -\frac{1}{2}$$
Also,
sum of zeroes $= -\frac{(\text{Coefficient of } x^{2})}{\text{Coefficient of } x^{3}} = -\frac{1}{2}$
sum of zeroes $= \alpha + \beta + \gamma = -\frac{(\text{Coefficient of } x^{2})}{\text{Coefficient of } x^{3}}$
Sum of product of zeroes taken two at a time
 $= \alpha\beta + \beta\gamma + \gamma\alpha$

$$= \frac{1}{2} \times 1 + 1 \times (-2) + (-2) \times \frac{1}{2} = -\frac{5}{2}$$

Also,
$$\alpha\beta + \beta\gamma + \gamma\alpha = \frac{\text{Coefficient of } x}{\text{Coefficient of } x^3} = \frac{-5}{2}$$

So, sum of product of zeroes taken two at a time

$$= \alpha\beta + \beta\gamma + \gamma\alpha = \frac{\text{Coefficient of } x}{\text{Coefficient of } x^3}$$

Now,

Product of zeroes = $\alpha\beta\gamma$

$$=\left(\frac{1}{2}\right)(1)(-2)=-1$$

Also,

Product of zeroes =
$$\frac{\text{Constant term}}{\text{Coefficient of } x^3}$$

= $\frac{-2}{2} = -1$
 \therefore Product zeroes = $\alpha\beta\gamma = -\frac{\text{Constant term}}{\text{Coefficient of } x^3}$

2. Since α and β are the zeroes of the polynomial $x^2 + 4x + 3$.

Then, $\therefore \alpha + \beta = -4$, $\alpha\beta = 3$

For the required polynomial, Sum of the zeroes

$$= 1 + \frac{\beta}{\alpha} + 1 + \frac{\alpha}{\beta}$$

$$= \frac{\alpha\beta + \beta^{2} + \alpha\beta + \alpha^{2}}{\alpha\beta}$$

$$= \frac{\alpha^{2} + \beta^{2} + 2\alpha\beta}{\alpha\beta}$$

$$= \frac{(\alpha + \beta)^{2}}{\alpha\beta} = \frac{(-4)^{2}}{3} = \frac{16}{3}$$
Product of the zeroes
$$= \left(1 + \frac{\beta}{\alpha}\right) \left(1 + \frac{\alpha}{\beta}\right)$$

$$= 1 + \frac{\alpha}{\beta} + \frac{\beta}{\alpha} + \frac{\alpha\beta}{\alpha\beta}$$

$$= 2 + \frac{\alpha^{2} + \beta^{2}}{\alpha\beta} = \frac{2\alpha\beta + \alpha^{2} + \beta^{2}}{\alpha\beta}$$

$$= \frac{(\alpha + \beta)^{2}}{\alpha\beta} = \frac{(-4)^{2}}{3} = \frac{16}{3}$$

The required polynomial is x^2 – (sum of zeroes) x + product of zeroes

or
$$x^2 - \frac{16}{3}x + \frac{16}{3}$$
 or $k\left(x^2 - \frac{16}{3}x + \frac{16}{3}\right)$

3. Factors of
$$45 = \pm 1, \pm 3, \pm 5, \pm 9, \pm 15, \pm 45$$

If we put $x = 1$ in $p(x)$
 $p(1) = 2(1)^4 - 7(1)^3 - 13(1)^2 + 63(1) - 45$
 $p(1) = 2 - 7 - 13 + 63 - 45$
 $= 65 - 65 = 0$
 $\therefore x = 1$ or $x - 1$ is a factor of $p(x)$.
If we put $x = -1$ in $p(x)$
 $p(-1) = 2(-1)^4 - 7(-1)^3 - 13(-1)^2 + 63(-1) - 45$
 $= 2 + 7 - 13 - 63 - 45 = -112$
 $\therefore x = -1$ is not a factor of $p(x)$.
Similarly if we put $x = 3$ in $p(x)$
 $p(3) = 2(3)^4 - 7(3)^3 - 13(3)^2 + 63(3) - 45$
 $p(3) = 162 - 189 - 117 + 189 - 45$
 $= 162 - 162$
 $= 0$

Hence, x = 3 or (x - 3) = 0 is the factor of p(x). Now we shall factorise the given polynomial using is that (x - 1) and (x - 3) $p(x) = 2x^4 - 7x^3 - 13x^2 + 63x - 45$ $\therefore p(x) = 2x^3 (x - 1) - 5x^2 (x - 1) - 18x(x - 1)$ + 45(x - 1) $\Rightarrow p(x) = (x - 1) (2x^3 - 5x^2 - 18x + 45)$ $\Rightarrow p(x) = (x - 1) [2x^2 (x - 3) + x(x - 3) - 15(x - 3)]$ $\Rightarrow p(x) = (x - 1) (x - 3) (2x^2 + x - 15)$

$$\Rightarrow p(x) = (x - 1) (x - 3) (2x^{2} + 6x - 5x - 15)$$

$$\Rightarrow p(x) = (x - 1) (x - 3)[2x(x + 3) - 5(x + 3)]$$

$$\Rightarrow p(x) = (x - 1) (x - 3) (x + 3) (2x - 5).$$

4. We know that,

 $f(x) = g(x) \times q(x) + r(x)$ $f(x) - r(x) = g(x) \times q(x)$ $f(x) + \{-r(x)\} = g(x) \times q(x)$

LHS is completely divisible by g(x).

Hence we can say, if we add -r(x) to f(x), then the resulting polynomial is divisible by g(x).

$$3x^{2} - 5x + 22$$

$$x^{2} + 6x - 7) \underbrace{3x^{4} + 13x^{3} - 29x^{2} + 100x - 77}_{3x^{4} + 18x^{3} \mp 21x^{2}}$$

$$-5x^{3} - 8x^{2} + 100x - 77$$

$$+ \underbrace{-5x^{3} - 30x^{2} \pm 35x}_{22x^{2} + 65x - 77}$$

$$\underbrace{22x^{2} + 132x - 154}_{-67x + 77}$$
∴ $r(x) = -67x + 77$

Therefore, we should add -r(x) = 67x - 77 to f(x), such that resulting polynomial is divisible by g(x).

5. Let

$$P(x) = \frac{(x-y)^2}{(y-z)(z-x)}$$

Multiplying numerator and denominator by (x - y), we get

$$P(x) = \frac{(x-y)^{3}}{(x-y)(y-z)(z-x)} \qquad ...(i)$$

let

Multiplying numerator and denominator by (y - z), we get

 $Q(x) = \frac{(y-z)^2}{(x-y)(z-x)}$

Q(x) =
$$\frac{(y-z)^3}{(x-y)(y-z)(z-x)}$$
 ...(ii)

Let

we get

 $R(x) = \frac{(z-x)^2}{(x-y)(y-z)}$

$$R(x) = \frac{(z-x)^3}{(x-y)(y-z)(z-x)} \qquad ...(iii)$$

- x),

Adding (i), (ii) and (iii)

$$=\frac{(x-y)^{3}}{(x-y)(y-z)(z-x)} + \frac{(y-z)^{3}}{(x-y)(y-z)(z-x)} + \frac{(z-x)^{3}}{(x-y)(y-z)(z-x)}$$
$$=\frac{(x-y)^{3} + (y-z)^{3} + (z-x)^{3}}{(x-y)(y-z)(z-x)} \qquad \dots (iv)$$
Special case: If a + b + c = 0, then a³ + b³ + c³ = 3abc

As x - y + y - z + z - x = 0 $\therefore (x - y)^3 + (y - z)^3 + (z - x)^3 = 3(x - y)(y - z)(z - x)$ $= \frac{3(x - y)(y - z)(z - x)}{(x - y)(y - z)(z - x)} = 3$

Integer Type Questions

1. Given, 2 is the zero of the polynomial.

We know that if α is a zero of the polynomial p(x), then $p(\alpha) = 0$

Substituting x = 2 in $x^2 + 3x + p$,

$$2^{2} + 3(2) + p = 0$$

$$\Rightarrow \qquad 4 + 6 + p = 0$$

$$\Rightarrow \qquad 10 + p = 0$$

$$\Rightarrow \qquad p = -10$$

- 2. As, (a + x) is a factor of $2a^2 + 2xa + 5a + 10$ \therefore $f(-x) = 2x^2 - 2x^2 - 5x + 10 = 0$
 - $\Rightarrow -5x + 10 = 0$
- $\Rightarrow \qquad x = 2$ **3.** Here a = 3, b = -m, c = 6

Sum of the zeroes, $(\alpha + \beta) = -\frac{b}{\alpha}$

 $\Rightarrow \qquad \frac{-(-m)}{3} = 3$ $\Rightarrow \qquad m = 9$

4. Let us suppose m be one of zero, then according to the question 1/m will be another zero

Now $m \times \frac{1}{m} = \frac{p}{a}$ $\Rightarrow \qquad p = 3$

 \Rightarrow

5. As 1 is zero of the quadratic polynomial

$$f(1) = 1^2 + 3(1) + m$$

m = -4

= 0

6. We have given m and n are the zeroes of polynomial $x^2 + mx + n$. Then,

Sum of zeroes =
$$-\frac{\text{Coefficient of } x}{\text{Coefficient of } x^2}$$

 $\Rightarrow m + n = \frac{-m}{1}$
 $\Rightarrow 2m + n = 0$...(i)
Product of zeroes = $\frac{\text{Constent term}}{\text{Coefficient of } x^2}$
 $\Rightarrow m \times n = \frac{n}{1}$
 $\Rightarrow m = 1$
By putting the value of m in equation (i),
 $2 \times 1 + n = 0$
 $\Rightarrow n = -2$
 $\therefore m - n = 1 + 2$
 $= 3$

7. As, a and b are the zeroes of polynomial $x^2 - 4x + 3$

Sum of zeroes =
$$\frac{\text{Coefficient of } x}{\text{Coefficient of } x^2}$$

 $a + b = \frac{-(-4)}{1} = 4$
And, product of zeroes = $\frac{\text{Constant term}}{2}$

nd, product of zeroes = $\frac{\text{Constant term}}{\text{Coefficient of } x^2}$

$$ab = \frac{3}{1} = 3$$

 $a^4b^3 + a^3b^4 = a^3b^3(a + b)$

= $(ab)^3 (a + b)$ = 27 × 4 [:: ab = 3, (a + b) = 4] = 108

8. As p, q and r are the zeroes of polynomial $6x^3 + 3x^2 - 5x + 1$

Sum of the product of zeroes taken two at a time

$$= \frac{\text{Coefficient of } x}{\text{Coefficient of } x^3}$$

$$pq + qr + pr = \frac{-5}{6}$$

Product of the zeroes = $\frac{-\text{Constant term}}{\text{Coefficient of } x^3}$

$$pqr = -\frac{1}{6}$$

Now

$$\frac{1}{p} + \frac{1}{q} + \frac{1}{r} = \frac{pq + qr + pr}{pqr} = \frac{\frac{-5}{6}}{\frac{-1}{6}} = 5$$

9. Given HCF = x + 5, which means x + 5 is a factor of both the polynomials.

As
$$(x + 5)$$
 is a factor of $x^2 + 2mx - 15$,

$$f(-5) = (-5)^2 + 2m(-5) - 15$$

= 0
$$\Rightarrow 25 - 15 - 10m = 0$$

$$\Rightarrow m = 1$$

One of the factor of $(x - 3)(x + n)$ is x - other factor is $(x + 5)$.

3 and the

$$\therefore (x-3) (x + n) = (x - 3) (x + 5)$$

$$\Rightarrow x + n = x + 5$$

$$\Rightarrow n = 5$$
So, m + n = 1 + 5
$$= 6$$

10. To find the degree of such polynomials, divide the highest power variable in numerator by highest power variable in denominator.

$$\frac{3x^3 + 10x^2 + x - 14}{3x^2 + 13x + 14} = x^{3-2} = x^1$$

 \therefore The degree is 1.

Multiple Choice Questions

Level-I

1. (c) Let m be the zero of the polynomial $ax^2 + bx + c = 0$ b

$$\therefore m + m = -\frac{b}{a}$$

Also, m × m = $\frac{c}{a}$ \Rightarrow m² = $\frac{c}{a}$

 $m^2 > 0$ (Since square of any number cannot be negative) which is only possible when a and c have same sign.

2. (d) The polynomial with zeroes -2 and 5 is

$$f(x) = x^{2} - (-2 + 5)x + (-2)5$$

$$f(x) = x^{2} - 3x - 10$$

But as we can multiply this polynomial with any number, The number of polynomials having zeroes as -2 and 5 can be infinite.

For example:

 \Rightarrow

 \Rightarrow

 \Rightarrow

 \Rightarrow

 \Rightarrow

 \Rightarrow

(i) $2(x^2 - 3x - 10) = 2x^2 - 6x - 20$ (ii) $3(x^2 - 3x - 10) = 3x^2 - 9x - 30$.

- 3. (d) Multiply the highest degree variable in first bracket with the highest degree variable in second bracket. Hence, the highest power we obtain is 5.
- 4. (d) Sum of zeroes is

$$2 + (-3) = -\frac{\text{coefficient of } x}{\text{coefficient of } x^2}$$
$$-1 = -\frac{a+1}{1}$$
$$a + 1 = 1$$
$$a = 0$$

Product of zeroes is

$$2 \times (-3) = \frac{\text{constant term}}{\text{coefficient of } x^2}$$
$$-6 = \frac{b}{1}$$
$$b = -6$$

5. (a) As -3 is a zero of the given polynomial, so

$$P(-3) = (a - 1)(-3)^{2} + a(-3) + 1$$

$$0 = 9a - 9 - 3a + 1$$

$$0 = 6a - 8$$

$$\Rightarrow \qquad a = \frac{4}{3}$$

6. (c) The polynomial is $x^2 - (\alpha + \beta)x + \alpha\beta$ $= x^2 - (-3 + 4)x + (-3)4$ $= x^2 - x - 12$

By dividing the whole polynomial with 2, we get

$$=\frac{x^2}{2}-\frac{x}{2}-6$$

7. (a) Since (x - 2) is one of the factor, so f(2) = 0 $f(2) = (2)^3 + 4(2)^2 - p(2) + 8$ \Rightarrow 0 = 8 + 16 - 2p + 8 \Rightarrow

- 2p = 32 \Rightarrow \Rightarrow p = 16 $\therefore \sqrt{p} = 4$
- 8. (d) Let γ and δ are the zeroes of given polynomial, then

 $\gamma + \delta = -\frac{1}{6}$ *.*.. $\gamma \delta = \frac{c}{6}$ Also Given $\gamma^2 + \delta^2 = \frac{25}{36}$ $\Rightarrow (\gamma + \delta)^2 - 2\gamma \delta = \frac{25}{36}$ $\Rightarrow \left(\frac{-1}{6}\right)^2 - 2\left(\frac{c}{6}\right) = \frac{25}{36}$ $\frac{-2c}{6} = \frac{24}{36}$ c = -2 \Rightarrow

9. (a) As m and n are zeroes of polynomial $x^2 - 4x + 1$,

$$m + n = \frac{-(-4)}{1} = 4$$

o, $mn = 1$

Also,

Therefore,

....

$$\frac{1}{m} + \frac{1}{n} - mn = \frac{m+n}{mn} - mn$$
$$= \frac{4}{1} - 1 = 3$$

10. (b) $x^2 - 2x - 8 = x^2 - 4x + 2x - 8$

$$= x(x - 4) + 2(x - 4)$$
$$= (x - 4)(x + 2)$$

Therefore, x = 4, -2.

11. (d) Explanation: Sum of zeroes = $\alpha + \beta = \sqrt{2}$

Product of zeroes =
$$\alpha\beta = \frac{1}{3}$$

 \therefore If α and β are zeroes of any quadratic polynomial, then the polynomial can be written as

$$k[x^{2} - (\alpha + \beta)x + \alpha\beta] = kx^{2} - (\sqrt{2})x + \left(\frac{1}{3}\right)$$
$$= k\left[3x^{2} - 3\sqrt{2}x + 1\right]$$

12. (d) Degree is the highest power of the variable in any polynomial. Therefore, degree of given polynomial is 9.

13. (b) Since one zero is
$$-1$$
, $\therefore P(-1) = 0$
 $P(x) = x^3 + ax^2 + bx + c$
 $P(-1) = (-1)^3 + a(-1)^2 + b(-1) + c$

$$0 = -1 + a - b + c$$

 $c = 1 - a + b$

Product of zeroes,

$$\alpha\beta\gamma = -\frac{\text{constant term}}{\text{coefficient of } x^3}$$

 $\Rightarrow \qquad (-1)\beta\gamma = -\frac{c}{1}$ $\Rightarrow \qquad \beta\gamma = b - a + 1 [:: c = 1 - a + b]$

- 14. (a) If P(a) = 0 for any polynomial, then 'a' is the zero of that polynomial.
- **15.** (a) The number of zeroes is equal to the number of times graph touches or intersect x-axis.
- 16. (d) Maximum number of zeroes of a polynomial = Degree of the polynomial
- 17. (b) Given,

 $x^2 - 8 = 0$ $x^2 = 8$ \Rightarrow $x = \pm \sqrt{8}$ \Rightarrow $x = \pm 2\sqrt{2}$ \Rightarrow **18.** (b) Let $P(x) = x^2 - mx + 2$ As, (x - 2) is a factor of P(x), $\therefore P(2) = 0$ $\Rightarrow 2^2 - m(2) + 2 = 0$ 4 - 2m + 2 = 0 \Rightarrow 6 = 2m \Rightarrow m = 3 \Rightarrow

19. (d) Let
$$P(x) = (x + 1)^5 + (2x + k)^3$$

As $(x + 2)$ is a factor of $P(x)$, $\therefore P(-2) = 0$
 $P(-2) = (-2 + 1)^5 + [(2(-2) + k)]^3$
 $= 0$
 $\Rightarrow (-1)^5 + [-4 + k]^3 = 0$
 $\Rightarrow -1 + [-4 + k]^3 = 0$
 $\Rightarrow (-4 + k)^3 = 1$
 $\Rightarrow -4 + k = 1$
 $\Rightarrow k = 5$

20. (c) In the polynomial, $p(x) = ax^2 + bx + c$, if a = b = c = 0, then the expression becomes a zero polynomial.

Here, $p(x) = x^0$ or p(x) = 1 is a constant polynomial but not a zero polynomial as $c \neq 0$. **21.** (c) Quartic polynomial is a polynomial in which highest power of the variable is 4.

Thus, degree of Quartic polynomial is 4.

22. (a) If a polynomial f(x) is divided by (x - a) then remainder will be equal to f(a)

$$f(x) = 2x^{3} - 13x^{2} + 17x + 12$$

$$f(-2) = 2(-2)^{3} - 13(-2)^{2} + 17(-2) + 12$$

$$= -16 - 52 - 34 + 12$$

$$= -90$$

23. (c) Let $P(x) = ax^2 + bx + c$

$$\therefore \qquad P\left(\frac{-b}{a}\right) = a\left(\frac{-b}{a}\right)^2 + b\left(\frac{-b}{a}\right) + c$$
$$= \frac{a \times b^2}{a^2} + \frac{b \times -b}{a} + c$$
$$= \frac{b^2}{a} - \frac{b^2}{a} + c$$
$$= c$$

24. (b) Given, $p(x) = x^2 - 2\sqrt{2}x + 1$

When p(x) is divided by $(x-2\sqrt{2})$, the remainder will be $p(2\sqrt{2})$

$$\therefore \qquad p(2\sqrt{2}) = (2\sqrt{2})^2 - 2\sqrt{2}(2\sqrt{2}) + 1$$
$$= 8 - 8 + 1$$
$$= 1$$

Thus, the remainder is 1.

25. (a) $3x^{3}(4x^{2}) + 7x^{5} = 12x^{5} + 7x^{5} = 19x^{5}$ To find the value of the expression for x=3, we have

to substitute x = 3. So, $19(3)^5 = 19(243)$ = 4617

26. (b)
$$x^3 - 3x - 2 = 0$$

х

Using hit and trial, x = -1 is one solution of the equation, hence (x + 1) is a factor of the equation On dividing this polynomial by x + 1 and then factorising the quotient, we shall find the other two roots as follows:

$$\begin{array}{r} x^2 - x - 2 \\ x^3 + 0x^2 - 3x - 2 \\ x^3 + x^2 \\ \hline - - \\ - \\ x^2 - 3x - 2 \\ - \\ x^2 - x \\ + \\ + \\ \hline \\ -2x - 2 \\ -2x - 2 \\ + \\ + \\ \hline \\ 0 \end{array}$$

Now factorising the quotient

$$x^{2} - x - 2 = 0$$

$$\Rightarrow x^{2} + 2x - x - 2 = 0$$

$$\Rightarrow x(x + 2) - 1 (x + 2) = 0$$

$$\Rightarrow (x - 1) (x + 2) = 0$$
Factors

$$(x + 1)(x - 1)(x + 2) = 0$$
Roots = -1, 1, -2
27. (c) Let

$$f(x) = x^2 + 3x + 2.$$

When f(x) is divided by (x - 1), the remainder will be f(1).

$$f(1) = (1)^2 + 3(1) + 2$$

= 1 + 3 + 2
= 6

Thus, the remainder obtained is 6.

28. (b) Do it yourself.

3

29. (b) Let $p(x) = ax^3 + 3x^2 - 3$ and $f(x) = 2x^3 - 5x + a$

According to factor theorem. If p(x) is divided by (x - 4), then R₁ will be

$$p(4) = ax^{3} + 3x^{2} - 3$$

= (4)³ a + 3(4)² - 3
= 64a + 48 - 3
= 64a + 45 -----R₁

Similarly if f(x) is divided by (x - 4), then R_2 will be

$$f(4) = 2x^{3} - 5x + a$$

$$= 2(4)^{3} - 5(4) + a$$

$$= 128 - 20 + a$$

$$= 108 + a - - - R_{2}$$
Given, $2(R_{1}) - R_{2} = 0$
 $2(64a + 45) - 108 - a = 0$
 $\Rightarrow 128a + 90 - 108 - a = 0$
 $\Rightarrow 127a = 18$
 $\Rightarrow 127a = 18$
 $\Rightarrow a = \frac{18}{127}$
30. (a) $(l + m)^{2} - 4lm = l^{2} + 2 lm + m^{2} - 4 lm$
 $= l^{2} - 2 lm + m^{2}$
 $= (l - m)^{2}$
31. (c) $(s - r)^{2} - (s + r)^{2} = s^{2} - 2sr + r^{2} - s^{2} - 2sr - r^{2}$
 $= -4sr$

- 32. (a) Given, 2x + 3 is a factor of the polynomial $p(x) = 2x^3 + 9x^2 - x - b$ Therefore, by factor theorem $p\left(-\frac{3}{2}\right) = 0$ $\Rightarrow 2\left(-\frac{3}{2}\right)^3 + 9\left(-\frac{3}{2}\right)^2 - \left(-\frac{3}{2}\right) - b = 0$ $\Rightarrow -\frac{27}{4} + \frac{81}{4} + \frac{3}{2} - b = 0$ $\Rightarrow \frac{-27+81+6}{4} - b = 0 \Rightarrow b = \frac{60}{4} = 15$: b = 15**33.** (c) Let $p(x) = 2x^2 + kx + \sqrt{2}$ If (x - 1) is a factor of p(x), then p(1) = 0 $2(1)^2 + k(1) + \sqrt{2} = 0$ $\Rightarrow 2 \times 1 + k + \sqrt{2} = 0$ $\Rightarrow 2 + k + \sqrt{2} = 0$ $k = -2 - \sqrt{2}$ \Rightarrow $k = -(2 + \sqrt{2})$ \Rightarrow **34.** (a) $3x(4x - 5) + 3 = 3x \times 4x - 3x \times 5 + 3$ $= 12x^2 - 15x + 3$ $f\left(\frac{1}{2}\right) = 3 \times \frac{1}{2} \left(4 \times \frac{1}{2} - 5\right) + 3$ $=\frac{3}{2}\times -3+3=-\frac{9}{2}+3=-\frac{3}{2}$
- **35.** (b) Given, $p(x) = x^3 ax^2 + 6x a$ When p(x) is divided by x - a, the value of f(a) will be the remainder

:.
$$p(a) = a^3 - a^3 + 6a - a$$

 $p(a) = 5a$

Thus, the required remainder is 5a

Level-II

1. (c) In a quadratic equation, $ax^2 + bx + c$, if a and c are of opposite sign then the roots of the equation will always be of opposite sign.

Hence, both the zeroes of given polynomial $x^2 + 99x - 127$ are of opposite signs.

2. (b) Let $P(x) = ax^3 + bx^2 + cx + d$

Since one of the zero of the cubic polynomial is zero, therefore P(0) = 0

 $P(x) = ax^3 + bx^2 + cx + d$ $P(0) = a(0)^3 + b(0)^2 + c(0) + d$ \Rightarrow \Rightarrow d = 0

Now polynomial reduces to $ax^3 + bx^2 + cx$

Let the zeroes be α , β and γ and $\alpha = 0$ (given), then

...

$$\alpha \times \beta + \beta \times \gamma + \gamma \times \alpha = \frac{\text{coefficient of } x}{\text{coefficient of } x^3}$$
$$\Rightarrow \qquad \beta \gamma = \frac{c}{a}$$

So the product of other two zeroes is $\frac{c}{a}$.

3. (a) If one of the zeroes (say α) of a quadratic polynomial $x^2 + ax + b$ is the negative of the other, then sum of zeroes is:

$$\alpha + (-\alpha) = -a$$

 \Rightarrow a = 0, which means polynomial has no linear term. Product of zeroes is:

 $\alpha(-\alpha) = b$ $b = -\alpha^2$

b has to be negative, which means constant term is negative.

Therefore polynomial has no linear term and the constant term is negative.

4. (a) Let, $f(x) = x^2 - 6x + p$

 \Rightarrow

As

....

If $\alpha,\,\beta$ are zeroes, then

$$(\alpha + \beta) = 6 \qquad \dots(1)$$

$$\alpha\beta = p \qquad \dots(2)$$

$$3\alpha + 2\beta = 20 \qquad (given)$$

$$\alpha + 2\alpha + 2\beta = 20$$

$$\alpha + 2(\alpha + \beta) = 20$$

$$\alpha + 2 \times 6 = 20$$

$$\alpha = 8$$

$$\alpha \text{ is one of the zeroes of } f(x), f(\alpha) = 0$$

$$f(8) = 8^2 - 6(8) + p$$

$$54 - 48 + p = 0$$

$$\Rightarrow \qquad p = -16$$

$$5. (a) p(x) = x^4 - x^3 + 2x^2 - px + 4$$
Since x - 2 is a factor of p(x), p(2) = 0
So, p(2) = 2^4 - 2^3 + 2(2)^2 - p(2) + 4 = 0
$$\Rightarrow \qquad 16 - 8 + 8 - 2p + 4 = 0$$

$$\Rightarrow \qquad 2p = 20$$

$$\Rightarrow \qquad p = 10$$

6. (c) As 2 and 3 are the zeroes of the quadratic polynomial, we know

Sum of zeroes = 2 + 3= -a $\Rightarrow a = -5$

Similarly,

product of zeroes
$$= b$$

= 6

b = 6a + b = 1So, 7. (d) $f(x) = 2x^2 - x + 1$ $f(1) = 2 \times 1^2 - 1 + 1$ *.*.. = 2 $g(x) = x^3 - 3x + 1$ $g(-1) = (-1)^3 - 3 \times (-1) + 1$ *.*.. = 3 f(1) + g(-1) = 2 + 3.... = 5 $f(x) = 4x^2 + 3x - 7$ 8. (d) $f(1) = 4(1)^2 + 3(1) - 7$ So, f(1) = 4 + 3 - 7= 09. (c) Given, $f(x) = x^3 - 6x^2 + ax + b$ Since it is exactly divisible by (x - 3), f(3) = 0 $f(3) = 3^3 - 6 \times 3^2 + 3a + b$ \Rightarrow = 03a + b = 27 \Rightarrow ...(1) And since it leaves a remainder of -55 when divided by (x + 2)f(-2) = -55i.e., $(-2)^3 - 6 \times (-2)^2 - 2a + b = -55$ \Rightarrow -2a + b = -23 \Rightarrow ...(2) Solving equations (1), (2), we get a = 10, b = -3Hence, the value of a + b is 7. $P(x) = x^2 + 5x + 6$ 10. (c) Since $x + \lambda$ is a factor of p(x), by factor theorem $P(-\lambda) = 0$ $\lambda^2 - 5\lambda + 6 = 0$ $(\lambda - 3) (\lambda - 2) = 0$ $\lambda = 2, 3$ \Rightarrow 11. (d) $x^4 + \frac{1}{x^4} = 119$ $\Rightarrow \left(x^2 + \frac{1}{x^2}\right)^2 - 2 = 119$ $\Rightarrow \left(\mathbf{x}^2 + \frac{1}{\mathbf{x}^2}\right)^2 = 121$ $\Rightarrow \left(x^2 + \frac{1}{x^2}\right) = 11$ $\Rightarrow \mathbf{x}^2 + \frac{1}{\mathbf{x}^2} - 2 + 2 = 11$

a = -5,

$$\Rightarrow \qquad \left(x - \frac{1}{x}\right)^2 = 9$$

$$\Rightarrow \qquad x - \frac{1}{x} = 3$$

Now,
$$x^3 - \frac{1}{x^3} = \left(x - \frac{1}{x}\right) \left(x^2 + \frac{1}{x} \cdot x + \frac{1}{x^2}\right)$$

$$= 3(11 + 1) = 36$$

12. (a) When $6x^9 + 3x^{16} - p$ is divisible by $x + 1$, the remainder is 20.
Let
$$f(x) = 6x^9 + 3x^{16} - p$$

$$\Rightarrow \qquad f(-1) = 20$$

$$\Rightarrow \qquad 6(-1)^9 + 3(-1)^{16} - p = 20$$

$$\Rightarrow \qquad 6(-1) + 3 (1) - p = 20$$

$$\Rightarrow \qquad -p = 23$$

$$\Rightarrow \qquad p = -23$$

13. (c) Let $f(x) = ax^2 + bx + c$ be the quadratic polynomial which is divisible by (2x - 1) and (x + 3).

: $ax^2 + bx + c = k(2x - 1)(x + 3)$

f(x) leaves remainder 12 on division by (x - 1)

$$\Rightarrow f(1) = 12$$

$$\Rightarrow k(2-1)(1+3) = 12$$

$$\Rightarrow k = 3$$

$$\therefore f(x) = 3(2x-1)(x+3)$$

$$= 6x^2 + 15x - 9$$

14. (c) Given, $f(x) = x^3 - 6x^2 - 45x + 162$ Roots are a - b - a + b

$$-coefficients = 0, -a, a + 0$$

sum of zeroes =
$$\frac{-\text{coefficient of } x}{\text{coefficient of } x^3}$$

$$\Rightarrow a-b-a+a+b = -\frac{(-6)}{1}$$
$$\Rightarrow a = 6$$

15. (b) Here, $p(x) = ax^3 + bx^2 + cx + d$ and factor is ax + b

$$\therefore \qquad p\left(-\frac{b}{a}\right) = a\left(-\frac{b}{a}\right)^3 + b\left(-\frac{b}{a}\right)^2 + c\left(-\frac{b}{a}\right) + d$$

$$p\left(-\frac{b}{a}\right) = -\frac{b^3}{a^2} + \frac{b^3}{a^2} - \frac{bc}{a} + d$$

$$p\left(-\frac{b}{a}\right) = -\frac{bc}{a} + d$$

$$p\left(-\frac{b}{a}\right) = \frac{1}{a}(ad - bc)$$

$$\therefore \text{ The remainder is } \frac{1}{a}(ad - bc)$$

Assertion Reason Type

- (c) Assertion (A) is true but reason (R) is false. As the number zero of polynomial f(x) is the number of points at which f(x) cuts (intersects) the x -axis and number of zero in the given figure is 5. So A is correct but R is incorrect.
- 2. (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).

As irrational roots/zeroes always occurs in pairs therefore, if one zero is $(2-\sqrt{3})$ then other will be $(2+\sqrt{3})$.

3. (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).

Sum of zeroes
$$= -\frac{1}{4}$$
 and
product of zeroes $= \frac{1}{4}$
Quadratic polynomial be $x^2 - \left(-\frac{1}{4}\right)x +$
 $\Rightarrow x^2 + \frac{1}{4}x + \frac{1}{4} \Rightarrow \frac{1}{2}\left(2x^2 + \frac{x}{2} + \frac{1}{2}\right)$

Quadratic polynomial be $4x^2 + x + 1$. So, both A and R are correct and R explains A.

 $\frac{1}{4}$

4. (c) Assertion is true but reason (R) is false.

Clearly, Reason is false. [Standard Result]

Sum of zeroes = $\alpha + \beta + \gamma$

$$= -(-2)$$

$$= 2$$

$$0 + \gamma = 2$$

$$\gamma = 2$$
...(i)
of zeroes = aby

Product of zeroes = $\alpha\beta\gamma$

$$= -(-r)$$

$$= r$$

$$\alpha\beta(2) = r \qquad (using (i))$$

$$\alpha\beta = \frac{r}{2} \qquad ...(ii)$$
Sum of product of zeroes = $\alpha\beta + \beta\gamma + \gamma\alpha = q$

$$\frac{r}{2} + \gamma(\alpha + \beta) = q \qquad (using (ii))$$
$$\frac{r}{2} + \gamma(0) = q$$
$$r = 2q (Assertion is true).$$

5. (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A). Reason is true.

Let
$$\alpha$$
, $\frac{1}{\alpha}$ be the zeroes of $p(x)$, then

$$\alpha \times \frac{1}{\alpha} = \frac{3k}{k+4}$$

$$\Rightarrow \qquad 1 = \frac{3k}{k+4}$$

$$\Rightarrow \qquad k+4 = 3k$$

$$\Rightarrow \qquad k = 2$$

Assertion is true but, Reason is not correct explanation for Assertion.

Case Based Type Questions

Case-Based-I

1. (d) If α , β and γ are the zeroes of the polynomial $ax^3 + bx^2 + cx + d$

Then

$$\alpha + \beta + \gamma = -\frac{b}{a}$$
$$\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}$$
$$\alpha\beta\gamma = -\frac{d}{a}$$

Using identity,

$$\begin{aligned} \alpha^2 + \beta^2 + \gamma^2 &= (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha) \\ \alpha^2 + \beta^2 + \gamma^2 &= \left(-\frac{b}{a}\right)^2 - 2\left(\frac{c}{a}\right) \\ \alpha^2 + \beta^2 + \gamma^2 &= \frac{b^2}{a^2} - \frac{2c}{a} \\ \alpha^2 + \beta^2 + \gamma^2 &= \frac{b^2 - 2ac}{a^2} \end{aligned}$$

Therefore, the value of $\alpha^2 + \beta^2 + \gamma^2 = \frac{b^2 - 2ac}{a^2}$

2. (c) $ax^3 + bx^2 + cx + d$

since α , β , γ are the roots of the equation,

$$\begin{aligned} \alpha + \beta + \gamma &= -\frac{b}{a} \\ \alpha\beta + \beta\gamma + \gamma\alpha &= \frac{c}{a} \\ \alpha\beta\gamma &= -\frac{d}{a} \\ \frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2} &= \frac{\alpha^2\beta^2 + \beta^2\gamma^2 + \gamma^2\alpha^2}{\alpha^2\beta^2\gamma^2} \end{aligned}$$

$$= \frac{(\alpha\beta + \beta\gamma + \gamma\alpha)^2 - 2(\alpha\beta^2\gamma + \alpha\beta\gamma^2 + \alpha^2\beta\gamma)}{\alpha^2\beta^2\gamma^2}$$
[Using $(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)$

$$\Rightarrow a^2 + b^2 + c^2 = (a + b + c)^2 - 2(ab + bc + ca)]$$

$$= \frac{(\alpha\beta + \beta\gamma + \gamma\alpha)^2 - 2\alpha\beta\gamma(\alpha + \beta + \gamma)}{(\alpha\beta\gamma)^2}$$

$$= \frac{\left[\frac{c}{a}\right]^2 - 2\left[-\frac{d}{a}\right]\left[-\frac{b}{a}\right]}{\left[-\frac{d}{a}\right]^2}$$

$$= \frac{\frac{c^2}{a^2} - \frac{2bd}{a^2}}{\frac{d^2}{a^2}}$$

$$= \frac{c^2 - 2bd}{d^2}$$

3. (b) α , β and γ are the zeroes of a polynomial

$$P(x) = ax^{3} + bx^{2} + cx + d$$

$$\alpha \cdot \beta \cdot \gamma = -\frac{d}{a} \qquad \dots(i)$$

...(ii)

and
$$\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}$$

Now,

 \Rightarrow

$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\alpha\beta + \beta\gamma + \gamma\alpha}{\alpha\beta\gamma}$$
$$= \frac{\frac{c}{a}}{-\frac{d}{a}} = -\frac{c}{d}$$

Case-Based-II

1. (c) The graph of parabola opens downward when a < 0.

2. (a) Sum of zeroes
$$= \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\beta + \alpha}{\alpha\beta} = \frac{-8}{6} = \frac{-4}{3}$$

Product of zeroes $= \frac{1}{\alpha} \cdot \frac{1}{\beta} = \frac{1}{\alpha\beta} = \frac{1}{6}$

The required polynomial can be written as $x^2 - (sum of zeroes) x + product of zeroes$

:
$$x^{2} - \left(\frac{-4}{3}\right)x + \frac{1}{6}$$
 i.e., $6x^{2} + 8x + 1$

3. (c) As the given graph touches or intersects the x-axis at 5 places. So, there are total 5 zeroes.

Multi Correct MCQs

1. (a, d)We are given $2x^2 + xy - 3y^2 + x + ay - 10$ = (2x + 3y + b)(x - y - 2)= 2x(x - y - 2) + 3y(x - y - 2) + b(x - y - 2) $= 2x^2 - 2xy - 4x + 3xy - 3y^2 - 6y + bx - by - 2b$ $\therefore 2x^2 + xy - 3y + x + 2y - 10$ $= 2x^2 + xy - 3y^2 + (b - 4)x + (-b - 6)y - 2b$ Equating both sides. -2ab = -10 \Rightarrow b = 5 And a = -b - 6 = -5 - 6 = -112. (b, c) a - b = 3 and $a^3 - b^3 = 117$ Given, $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$ As, On putting the value of a - b and $a^3 - b^3$, we get $a^2 + ab + b^2 = 39$ *.*.. $\Rightarrow a^2 + ab + b^2 - 2ab + 2ab = 39$ $\Rightarrow a^2 - 2ab + b^2 + 3ab = 39$ \Rightarrow $(a - b)^2 + 3ab = 39$ ab = 10 \Rightarrow $(a + b)^2 = a^2 + b^2 + 2ab$ *.*.. $= a^2 + b^2 - 2ab + 4ab$ $= (a - b)^2 + 4ab$ = 9 + 40= 49 (a + b) = 7... $(a + b) = 21 \div \sqrt[3]{27}$ or 3. (b, d)

For a 3-digit number to be a prime, last digit has to be odd i.e., 1, 3, 5, 7 or 9.

Last digit can't be 1 as it doesn't satisfy the option of summing.

If we choose last digit as 3, possible numbers are 123 and 321 which are not a prime number

Last digit 5 is not a prime i.e., 235 and 325 are not prime numbers.

Similarly for last digit 9, numbers are 189 and 819 which are not prime.

: Only possibility is 7.

Thus numbers are 167, 617, 347, 437, 257 and 527 out of which 527 and 437 are not prime.

Hence, there are total 4 such prime numbers.

As we know that 4 is the smallest composite number. Hence option (d) is also correct.

4. (a, c)

Given $x^2 - 1 = (x + 1)(x - 1)$ is a factor of $f(x) = ax^4 + bx^3 + cx^2 + dx$ +e, then by using factor theorem. f(+1) = 0

i(+1) = 0 $\Rightarrow a + b + c + d + e = 0 \qquad ...(i)$ And, f(-1) = 0 $\Rightarrow a - b + c - d + e = 0 \qquad ...(i)$ Adding, (i) and (ii), we get a + c + e = 0Subtracting (ii) from (i), we get b + d = 0

Olympiad & NTSE Type

 (c) Let the unknown polynomial be p(x) and let q(x) be quotient and r(x) = ax + b, the remainder Dividend = Divisor × Quotient + Remainder

$$\Rightarrow \qquad p(x) = (x - 1)(x - 2)q(x) + ax + b$$
...(i)

By substituting x = 1 and x = 2, successively, in (i), and applying the remainder theorem we obtain the two equations,

$$p(1) = a + b = 2$$
 ...(ii)

$$p(2) = 2a + b = 1$$
 ...(iii)

Solving (ii) and (iii), we get a = -1, b = 3By substituting a & b in ax + b we get, -x + 3. Hence, the remainder is -x + 3.

2. (c) Here, consider $a^2 - b^2 = x$, $b^2 - c^2 = y$, $c^2 - a^2 = z$ Now, $x^3 + y^3 + z^3 - 3xyz$ $= (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx)$ \Rightarrow if x + y + z = 0, then $x^3 + y^3 + z^3 = 3xyz$ In given question, $x + y + z = a^2 - b^2 + b^2 - c^2 + c^2 - a^2 = 0$

$$\Rightarrow x^{3} + y^{3} + z^{3} = 3xyz$$

$$\therefore \text{ Factors of } (a^{2} - b^{2})^{3} + (b^{2} - c^{2})^{3} + (c^{2} - a^{2})^{3}$$

$$= 3(a^{2} - b^{2}) (b^{2} - c^{2}) (c^{2} - a^{2})$$

3. (d) Do it yourself.

4. (b) Let $p(x) = x^2 + x - 12$ Since (x - k) is a factor of p(x) then using factor theorem P(k) = 0 $k^2 + k - 12 = 0$ \Rightarrow (k + 4)(k - 3) = 0 \Rightarrow k = -4 \Rightarrow k = 3...(i) or $q(x) = 2x^2 - kx - 9$ Let Since (x - k) is a factor of q(x), then using Factor theorem q(k) = 0 $2k^2 - k^2 - 9 = 0$ \Rightarrow $k^2 = 9$ \Rightarrow $k = \pm 3$...(ii) \Rightarrow From equation (i) and equation (ii), we get k = 3 as the only common solution, therefore the value of k will be 3. 5. (c) $x^4 + x^3 + 8x^2 + ax + b$ is divisible by $x^2 + 1$ Remainder = 0· · . $x^{2} + 1 \underbrace{\sum_{x^{4} + x^{3} + 8x^{2} + ax + b}^{x^{4} + x^{3} + 8x^{2} + ax + b}}_{x^{3} + 7x^{2} + ax + b}$ $\frac{x^{3}}{7x^{2}+x(a-1)+b}$ $\frac{-7x^2}{x(a-1)+b-7}$ x(a-1) + (b-7) = 0a - 1 = 0, b - 7 = 0 \Rightarrow a = 1, b = 7 \Rightarrow a + b = 8So. 6. (d) Let $\alpha = a - d$, $\beta = a$, $\gamma = a + d$ be the zeroes of the polynomial $f(x) = x^3 - 12x^2 + 39x - 28$ Sum of zeroes = $-\frac{\text{coefficient of } x^2}{\text{coefficient of } x^3}$ $\alpha + \beta + \gamma = -\left(\frac{-12}{1}\right) = 12$ a - d + a + a + d = 123a = 12a = 4...(i) And, Product of zeroes = $-\frac{\text{Constant term}}{\text{Coefficient of } x^3}$ $\alpha\beta\gamma = \frac{-(-28)}{1}$

 \Rightarrow (a - d) (a) (a + d) = 28

 \Rightarrow (4 - d) 4 (4 + d) = 28 [from eq. (i) a = 4] $\Rightarrow 4(16 - d^2) = 28$ $\Rightarrow 16 - d^2 = 7$ $\Rightarrow d = \pm 3$ Now $\alpha = a - d$ = 4 - 3 or 4 + 3= 1 or 7 $\beta = a = 4$ $\gamma = a + d = 4 + 3 \text{ or } 4 - 3$ = 7 or 1Hence zeroes of the polynomial are 1, 4 and 7. 7. (c) Given, $x^2 - 2x - 3$ is a factor of $x^3 - 3x^2 + ax - b$ On factorising, $x^2 - 2x - 3$, we have $\Rightarrow x^2 - 3x + x - 3 = x(x - 3) + 1(x - 3)$ = (x + 1) (x + 3)(x - 3) and (x + 1) are factors of f(x) $f(3) = 3^3 - 3(3^2) + a(3) - b$ 3a - b = 0or. ...(i) $f(-1) = (-1)^3 - 3(-1)^2 + a(-1) - b = 0$ -1 - 3 - a - b = 0a + b = -4or. ...(ii) By solving eqⁿ (i) and (ii), we get a = -1 and b = -38. (c) f(1) = 5[using factor theorem] $\Rightarrow (1)^4 - 2(1)^3 + 3(1)^2 - a(1) + b = 5$ $\Rightarrow 1 - 2 + 3 - a + b = 5$ $\Rightarrow 2 - a + b = 5$ $\Rightarrow -a + b = 3$...(i) And f(-1) = 19[using factor theorem] $\Rightarrow (-1)^4 - 2(-1)^3 + 3(-1)^2 - a(-1) + b = 19$ \Rightarrow 1 + 2 + 3 + a + b = 19 $\Rightarrow a + b = 13$...(ii) On adding equation (i) and (ii) 2b = 16 \Rightarrow b = 8 On putting the value of b in equation (i) -a + 8 = 3 $\Rightarrow -a = -5$ $\Rightarrow a = 5$ Hence a = 5 and b = 8By putting the value of a and b in f(x) $= x^4 - 2x^3 + 3x^2 - ax + b$ we get $f(x) = x^4 - 2x^3 + 3x^2 - 5x + 8$

When f(x) is divided by (x - 3), then using factor theorem. Remainder = f(3) $= (3)^4 - 2(3)^3 + 3(3)^2 - 5(3) + 8$ $= 81 - 2 \times 27 + 3 \times 9 - 15 + 8$ = 81 - 54 + 27 - 15 + 8= 47 Hence remainder is 47 when $f(x) = x^4 - 2x^3 + 3x^2$ -5x + 8 is divided by (x - 3). 9. (d) Let the cubic polynomial f(x) = k(x - 1) (x - 2)(x - 3) + remainder $f(1) = 1 = 1^2$ As $f(2) = 4 = 2^2$ $f(3) = 9 = 3^2$ \therefore remainder for $f(x) = x^2$ \Rightarrow required polynomial = k(x - 1) (x - 2) (x - 3) + x² f(4) = k(4-1) (4-2) (4-3) + 16Now, $20 = \mathbf{k} \times \mathbf{3} \times \mathbf{2} \times \mathbf{1} + \mathbf{16}$ \Rightarrow $k = \frac{4}{6} = \frac{2}{3}$ \Rightarrow $f(7) = \frac{2}{3}(7-1)(7-2)(7-3) + 49 = 129$ $= \frac{2}{3} \times 6 \times 5 \times 4 + 49$ = 80 + 49= 129 10. (a) Let $f(x) = 3x^4 - 7x^3 - 7x^2 + 21x - 6$ As one of its zeroes are $-\sqrt{3}$ and $\sqrt{3}$ \therefore Using factor theorem $(x - \sqrt{3}) (x + \sqrt{3}) = x^2 - 3$ will be the factor of $f(x) = 3x^4 - 7x^3 - 7x^2 + 21x - 6$

Now, applying long division method

$$3x^{2} - 7x + 2$$

$$x^{2} - 3 \underbrace{)3x^{4} - 7x^{3} - 7x^{2} + 21x - 6}_{3x^{4} + -9x^{2}}$$

$$-7x^{3} + 2x^{2} + 21x - 6$$

$$+ \frac{-7x^{3} - +21x}{2x^{2} - 6}$$

$$- \frac{2x^{2} + -6}{0}$$

$$\therefore f(x) = (x^{2} - 3) (3x^{2} - 7x + 2)$$

$$= (x + \sqrt{3})(x - \sqrt{3})(3x^{2} - 6x - x + 2)$$

$$= (x + \sqrt{3})(x - \sqrt{3})[3x(x-2) - 1(x-2)]$$

$$= (x + \sqrt{3})(x - \sqrt{3})(3x - 1)(x - 2)$$
∴ Other roots are $\sqrt{3}$, 2, and $\frac{1}{3}$.
11. (c)
Given, $x - \frac{1}{x} = 2$
On squaring both sides
 $x^{2} + \frac{1}{x^{2}} - 2 = 4$ [(a-b)² = a² + b² - 2ab]
 $\Rightarrow x^{2} + \frac{1}{x^{2}} = 6$
Again
 $\Rightarrow (x^{2})^{2} + (\frac{1}{x^{2}})^{2} + 2 \times x^{2} \times \frac{1}{x^{2}} = 36 [(a + b)^{2} = a^{2} + b^{2} - 2ab]$
 $\Rightarrow x^{4} + \frac{1}{x^{4}} + 2 = 36$
 $\Rightarrow (x^{2})^{2} + (\frac{1}{x^{2}})^{2} + 2 \times x^{2} \times \frac{1}{x^{2}} = 36 [(a + b)^{2} = a^{2} + b^{2} - 2ab]$
 $\Rightarrow x^{4} + \frac{1}{x^{4}} = 36 - 2$
 $\therefore x^{4} + \frac{1}{x^{4}} = 34$
12. (d) As we know that,
 $a^{3} + b^{3} + c^{3} - 3abc = (a + b + c)(a^{2} + b^{2} + c^{2} - ab - bc - ac)$
 $\therefore (a)^{3} + (2b)^{3} + (3c)^{3} - 3(a)(2b)(ac)$
 $= (a + 2b + 3c) [(a)^{2} + (2b)^{2} + (3c)^{2} - (a)(2b) - (2b) - (2b) - (3c) - (a)(3c)]$
 $\Rightarrow a^{3} + 8b^{3} + 27c^{3} - 18abc = 0$
[Given a + 2b + 3c = 0]
 $\Rightarrow a^{3} + 8b^{3} + 27c^{3} = 18abc$
Hence the value of a^{3} + 8b^{3} + 27c^{3} is equal to 18 abc.
13. (c) Given, x⁴ + px^{3} + 2x^{2} - 3x + q is divisible by
 $x^{2} - 1 = (x - 1) (x + 1) [a^{2} - \beta^{2} = (a - \beta) (a + \beta]$
 $\therefore (x - 1) and (x + 1) are the factors of given polynomial, i.e., f(1) = f(-1) = 0$
 $f(1) = 1 + p + 2 - 3 + q = 0$
 $\Rightarrow p + q = 0$...(i)
 $f(-1) = 1 - p + 2 + 3 + q = 0$
 $\Rightarrow - p + q = -6$...(ii)

By solving eq^n (i) and (ii), we get p = 3 and q = -3

14. (d) We know that the degree of remainder is always less than the degree of divisor. Hence, the remainder will be a quadratic.

Let remainder $R(x) = ax^2 + bx + c$ $f(x) = x + x^9 + x^{25} + x^{49} + x^{81}$ Given. $f(x) = Q(x).(x^3 - x) + R(x)$ According to the question, f(x) = Q(x).x(x + 1)(x - 1) + R(x)f(0) = R(0)So, = c = 0f(1) = R(1)= a + b + c5 = a + b + ca + b = 5 \Rightarrow ...(i) f(-1) = R(-1) $-5 \Rightarrow a - b + c$ a - b = -5...(ii) \Rightarrow

By solving eqⁿ (i) and (ii), we get a = 0, b = 5 \therefore $R(x) = ax^2 + bx + c$ $= ox^2 + 5x + o = 5x$ 15. (b) Given, $a = x + \frac{1}{x}$ and $b = x - \frac{1}{x}$ Squaring both sides and simplifying we get $\therefore a^2 = x^2 + \frac{1}{x^2} + 2$ and $b^2 = x^2 + \frac{1}{x^2} - 2$ Now, $a^2 + 2ab - 3b^2$ $= x^2 + \frac{1}{x^2} + 2 + 2\left(x + \frac{1}{x}\right)\left(x - \frac{1}{x}\right) - 3\left(x^2 + \frac{1}{x^2} - 2\right)$ $[\because (a + b) (a - b) = a^2 - b^2]$ $= x^2 + \frac{1}{x^2} + 2 + 2x^2 - \frac{2}{x^2} - 3x^2 - \frac{3}{x^2} + 6$ $= \frac{-4}{x^2} + 8 = \frac{4}{x^2}(2x^2 - 1)$