

Periodic Table

Single Correct Option Type Questions

- In which block will copper be placed if the Aufbau principle is not followed and the filling of electrons takes 0.1 place in the following sequence, 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 4f ... ? (A) s (B) p (C) d (D) f
- What is the atomic number of the element which belongs to the 5th period and Group 16 ? 0.2 (A) 50 (B) 34 (C) 52 (D) 53
- 0.3 Which of the following valence shell electronic configuration is correct for d-block element ? (A) $ns^2 np^{1-6}$ (B) ns^{1-2} (C) $ns^{0-2}(n-1) d^{1-10}$ (D) none of these
- 0.4 If an element X forms the highest oxide of the formula XO3, then it belongs to Group -(A) 14 (B) 15 (C) 16 (D) 2
- 0.5 The set representing the correct order of ionic radius is (A) $Na^+ > Mg^{2+} > Al^{3+} > Li^+ > Be^{2+}$ (B) $Na^+ > Li^+ > Mg^{2+} > Al^{3+} > Be^{2+}$ (D) $Na^+ > Mg^{2+} > Li^+ > Be^{2+}$ (C) $Na^+ > Mg^{2+} > Li^+ > Al^{3+} > Be^{2+}$
- Q.6 The electronic configuration of four elements are (I) [Kr] 5s¹ (II) [Rn] $5f^{14} 6d^1 7s^2$ (III) [Ar] $3d^{10} 4s^2 4p^5$ (IV) [Ar] $3d^6 4s^2$ Consider the following statements (i) I shows variable oxidation state (ii) II is a d-block element (iii) The compound formed between I and III is covalent (iv) IV shows single oxidation state. Which statement is True (T) or False (F). (A) FTFF (B) FTFT (C) FFTF (D) FFFF
- Which of the following statement is correct regarding following process. 0.7 (i) Cl $\xrightarrow{E.A.}$ Cl (ii) $C\Gamma \xrightarrow{I.E.} C1$ (iii) Cl $\xrightarrow{\text{LE.}}$ Cl⁺ (iv) $Cl^+ \xrightarrow{LE} Cl^{2+}$ (A) | I.E. of process (ii) | = | E.A. of process (i) |(B) | I.E. of process (iii) | = | I.E. of process (ii) | (C) | I.E. of process (iv) | = | E.A. of process (i) |(D) | I.E. of process (iv) | = | I.E. of process (iii) |
- 0.8 Select the incorrect statement :
 - (A) IE1 of nitrogen atom is less than IE1 of oxygen atom
 - (B) Negative value of electron gain enthalpy of oxygen is less than selenium
 - (C) Electronegativity of Mullikan scale is 2.8 times than electronegativity on Pauling scale
 - (D) Positive values of electron gain enthalpies of berrylium and magnesium are nearly same

- Which of the following statement is/are incorrect? (1) On moving in a period electron gain enthalpy decreases. (2) On moving top to bottom in a group usually ionization energy decreases. (3) As atomic number increases atomic radius decreases. (4) Size of ions change as $C^{-4} < N^{-3} < O^{-2} < F^{-3}$ (5) Electron affinity for addition of electron in different orbitals of 4^{th} shell in order of 4s > 4p > 4d > 4f. (6) Polarising power of cation in a 1st group from top to bottom decreases. (A) 3 and 6 (B) 3. 5 and 6 (C) 2 and 6 (D) 1, 3 and 4 Q.10 In which choice are the sodium halides listed in order of increasing lattice energy ? (Consider magnitude of lattice energy only)
 - (A) NaF, NaCl, NaBr (B) NaBr. NaCl. NaF (C) NaCl, NaF, NaBr (D) NaCl, NaBr, NaF
- Q.11 The incorrect order among the following is (B) $O^{-2} > F^{-} > Na^{+} > Mg^{2+}$ (Ionic size) (A) Cl > F > Br > I (Electron affinity) (D) F > O > N > Br (Electronegativity) (C) N > O > B > Be (1st ionization energy, IE₁)
- 0.12 Which of the following sequence given below is correct regarding ionization potential? (A) N > F > S > P(B) F > N > S > P(C) F > N > P > S(D) F > S > P > N

Statement Based Questions

0.9

0.13 Statement-1: In Lother Meyer Curve the alkali elements occupy maxima of the curve. Statement-2: Alkali elements have largest volume in a period. (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (B) Statement-1 is True. Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. (C) Statement-1 is True, Statement-2 is False. (D) Statement-1 is False, Statement-2 is True.

Multiple Correct Option Type Questions

- Q.14 Choose the correct ionization energy order for the given species - $(A) O > S > S^{-}$ (B) $F > F^- > C\Gamma > C1$ (C) $O > O^- > S^- > S$ (D) $F > Cl > Cl^{-1}$
- Q.15 Which of the following statements are correct ?
 - (A) The electron affinity of Si is greater than that of C (B) BeO is amophoteric while B2O3 is acidic (C) The ionization energy of Tl is less than that of Al (D) The ionization energy of elements of Cu-group is less than that of the respective elements of Zn-group
- Q.16 Choose the incorrect statements from the following -
 - (A) Ionization energy of atom may be negative
 - (B) Ionization energy of an ion may be positive
 - (C) Ionization energy is inversely proportional to radius
 - (D) Electron present in p orbital is in need of less energy for its removal as compared to electron present in d orbital having the same principal quantum number

Q.17	Select the correct order of	f periodic prope	erties of sn	ecies	
~	(A) $\operatorname{Fe}^{2+} < \operatorname{Fe}^{3+}$: ionic rad			(B) $N < O$: second ionisation	energy
	(C) Cu < Zn : Atomic Rad	lius		(D) In $< T\ell$: first ionisation er	
Q.18	CORRECT match is/are :				
	(A) AIN > MgO > MgF ₂	:	Lattice e	energy	
	(B) $N_2 > N > O > O_2$:	Ionisatic	on energy	
	(C) $SF_6 > PF_5 > SiF_4$:	Lewis ac	cidic character	
	(D) SiCl ₄ > SiBr ₄ > Sil ₄	:	Electron	negativity of Si	
	8				
Q.19	Which of the following st	atement is are o	correct ?		
	(A) The electron Affinity	of Si in greater	than that o	ofC	
	(B) BeO is amphotaric w	hile B ₂ O ₃ is aci	idic		
	(C) The I.E. of Tl is less the	han that of Al			
	(D) The ionisation energy	(I.E.) of eleme	ents of Cu	group is less that of the respect	ive elements of Zn group
Q.20	The formation of the oxi- below	de ion O ²⁻ (g) 1	require firs	st an exothermic and then an	endothermic step as shown
	$O_{(g)} + e^- \longrightarrow O^{(g)} \Delta$	$H^{\circ} = -142 \text{ kJ/r}$	mole		
	$O^{-}(g) + e^{-} \longrightarrow O^{2-}(g) \Delta$				
	Which is not the cause of				
	(A) Oxygen is more electr				
	(B) Oxygen has high elect	•			
	(C) O ⁻ ion has comparativ		than oxyge	en atom	
	(D) O ⁻ ion will tend to res				
Q.21	In which of the following	statements in t	he correct	order with respect to the given	property 2
Q.21	(A) $\underline{Fe}^{+3}(aq) > Fe^{+2}(aq)$	Ionic mobility		order with respect to the given	property ?
	., 2 . 2	Hydrated radi			
	(B) $\operatorname{Ba}^{-}_{(aq)} < \operatorname{Cl}^{-}_{(aq)} < \operatorname{F}^{-}_{(aq)}$		ius order		
·	(C) $SbH_3 > AsH_3 > PH_3$	M-H bond pola	arity order		
	(D) S > C > H > B	Electronegativ	vity order		
Q.22	Select the correct statemer	nts			
	(A) The value of electron	gain enthalpy of	of an eleme	ent can be negative or positive	
	(B) In the periodic table, across the period	metallic chara	acter of th	e elements increases down th	e group the and decreases
	(C) Ionization enthalpy of	an atom is equ	al to electr	ron gain enthalpy of cation	2
×.	(D) The Cl ⁻ and S ²⁻ are iso	pelectronic spec	cies but fir	st one is bigger in size than the	second
Q.23	Which of the following is/	are the effect o	of f-orbital	contraction effect ?	
	(A) Similarity in the size of	of Zr, Hf			
	(B) High electron affinitie	s among the po	ost lanthani	ides	
	(C) High I.E. of Hg as con	npare to Tl			
	(D) High I.E. of Tl as com	pare to ln			

Q.24	22.44 kJ energy i	is required to convert 8 gm	of gaseous atom of metal l	M to $M^+_{(g)}$ if I.E. ₁ of metal M = 374 kJ/mole.					
	Select correct for	Select correct for above metal M.							
	(A) 0.6 mole ga	(A) 0.6 mole gaseous ion (M ⁺) are formed							
	(B) Same energ	y can convert all $M^+_{(g)}$ to	M ²⁺ _(g)						
	(C) Atomic mas	s of metal = 133.33							
	(D) 3.613 × 10 ²	² atoms of M are converted	d to $M^+_{(g)}$						
Q.25		rect statement (s) among the		to distance to other at an algorithm					
		ionization potential of bor		ted atom to attract an electron					
	• •	s almost zero electron gain							
	., .	ectron affinity of fluorine i		orine					
		-							
Pass	age Based Q	uestions							
Passag	ge # 1 (Ques. 26 -	27)							
	The I.E.1 and the	e I.E. ₂ in kJ mol ⁻¹ of a few	elements designated by I	P, Q, R, S are shown below :					
	Atom	I.E. ₁	I.E. ₂						
	Р	2372	5251						
	Q	520	7300						
	R	900	1760						
	S	1680	3380						
	Based on the ab	ove information, answer th	e following questions :						
0.26	Which of the al	ement is likely to be reacti	ive metal ?						
Q.20	(A) P	(B) Q	(C) R	(D) S					
	(A) r	(b) Q							
Q.27	Which of the el	ements is likely to be reac	tive non-metal?						
	(A) P	(B) Q	(C) R	(D) S					

Passage # 2 (Ques. 28 - 30)

The electronegatives of four elements A, B, C, D are 4, 3.17, 0.7 and 2.85 respectively and the electronegatives of hydrogen (H) and oxygen (O) atoms are 2.1 and 3.5 respectively.

Q.28	Which of the following bonds in most polar ?						
	(A) B – C	(B) A – D	(C) B – D	(D) C – D			
Q.29	Which of the follow	ing bonds is least polar ?					
	(A) O – H	(B) O – C	(C) A – C	(D) H – D			
Q.30	Which of the follow	ing compounds does not	act as acid ?				
	(A) H - O - A	(B) H - O - B	(C) H - O - C	(D) H - O - D			

Passage # 3 (Ques. 31 - 32)

Pauling gave method to calculate univalent ion radii by assuming that

(i) In ionic crystals (let M⁺X⁻) cations and anions are in contact with each other and sum of their radii is equal to interionic distance.

i.e.
$$d_{(M^*-X^*)} = r_{(M^*)} + r_{(X^*)}$$

(ii) The radius of an ion having noble gas configuration is inversely proportional to the effective nuclear charge left at the periphery of the ion i.e.

$$r_{(M^*)} = \frac{C}{Z_{eff}(M^*)}$$
 and $r_{(X^-)} = \frac{C}{Z_{eff}(X^-)}$

Here C is constant of proportionally whose value depends on electronic configuration of ion, Thur

$$\mathbf{d}_{(\mathbf{M}^+ - \mathbf{X}^-)} = \left(\frac{\mathbf{C}}{\mathbf{Z}_{\text{eff}}(\mathbf{M}^+)} + \frac{\mathbf{C}}{\mathbf{Z}_{\text{eff}}(\mathbf{X}^-)}\right) \mathbf{p}\mathbf{m}$$

 Z_{eff} is the effective nuclear charge whose value can be calculated by the formula : $Z_{eff} Z - \sigma$. Here σ is shielding constant and for neon, the value of σ when calculate by Slater's rule is found to be 4.5.

- 0.31 The value of constant C for NaF crystal is (given that interionic distance of NaF = 231 pm) (B) 115.5 (A) 231 (C) 614.5 (D) 307.25
- 0.32 The value of univalent radii for F as calculated using Pauling method is (given that interionic distance of NaF = 231 pm) (A)

A) 94.5 pm	(B) 136.5 pm	(C) 111.68 pm	(D) 115.5 pm

Column Matching Type Questions

Q.33	Match the column :	
	Column -I	Column-II
	(A) Energy released	$(P) \ S \rightarrow S^{-}$
	(B) Energy absorbed	$(Q) O^- \rightarrow O^{2-}$
	(C) Inert gas configuration is a achieved	(R) $Sr \rightarrow Sr^{2+}$
	(D) Half filled configuration is achieved	(S) $N \rightarrow N^{-}$
		(T) Ge \rightarrow Ge ⁻

Q.34 Most elements form oxides and hydroxides and often regular periodic trends of characteristics of oxides and hydroxides are observed. Match the following :

	Column-I (Solvent)			Column-II (Solubility)
(P)	BeO			1.	Acidic
(Q)	B_2O_3			2.	Basic
(R)	Al ₂ O ₃			3.	Amphoteric
(S)	Tl_2O_3			4.	Neutral
Code	es:				
	Р	Q	R		S
(A)	4	1	3		2
(B)	3	1	3		2
(C)	1	3	3		2
(D)	1	4	2		3

Numeric Response Type Questions

0.35 The number of elements among the following, which have lower electronegativity than oxygen atom, based on Pauling scale, is

F, Cl, Br, I, H, S, P, K, Ca

- 0.36 The first four successive ionization energies for an element are 6.113, 11.871, 50.908, 67.01 (in eV) respectively. The number of valence shell electron is
- Q.37 The number of species among the following, having inert gas configuration is K2+, Ca2+, S-, S-, Br-, Se2-, H+, H-, Mn2+
- 0.38 How many elements of the 3d-series have ionisation energy more than V?
- A metal has electronic configuration $[Ar] 3d^7 4s^2$. On the basis of this electronic configuration, find out the 0.39 group member.
- 0.40 Consider the following order (i) $HF > HCl > HBr > HI \rightarrow Lewis basic character$ (ii) CH₄ > CCl₄ > CF₄→ electronegativity of central C-atom (iii) $Mg^{+2} < K^+ < S^{-2} < Se^{-2} \rightarrow ionic radius$ (iv) Ni > Pd > Pt \rightarrow Ionisation energy (v) $As^{+5} > Sb^{+5} > Bi^{+5} \rightarrow$ stable oxidation state (vi) $LiF > NaF > KF > RbF \rightarrow lattice energy$ (vii) $F_{(ac)}^- > Cl_{(ac)}^- > Br_{(ac)}^- > I_{(ac)}^- \rightarrow electrical conductance$ (viii) $Li^+ < Mg^{+2} < Al^{+3} \rightarrow$ hydration energy (ix) $Cl > Br > F > I \rightarrow$ electron affinity (x) $BeCl_2 < AlCl_3 < SiCl_4 \rightarrow Lewis$ acidic character The calculation value of $|x - y|^2$. Where x and y correct and incorrect order respectively.

ANSWER KEY

Single Cor	rect Option type	e Questions				
1. (A)	2. (C)	3. (C)	4. (C)	5. (B)	6. (D)	7. (A)
8. (A)	9. (D)	10. (B)	11. (C)	12. (C)		

Statement Based Questions

13. (A)

Multiple Cor	rect Option type	Questions				×
14. (A,D)	15. (A,B,D)	16. (A,D)	17. (B,C,D)	18. (A,B,D)	19. (A,B,D)	20. (A,B,C)
21. (B,C,D)	22. (A,B,C)	23. (A,B,D)	24. (C,D)	25. (B,C,D)		

Passage Based Questions

16. (B)	27. (D)	28. (A)	29. (D)	30. (C)	31. (C)	32. (B)
. (D)	21. (D)	20. (11)	2). (D)	50.(0)	51.(0)	J. (D)

Column Matching Type Questions

33. $[A \rightarrow P,T; B \rightarrow Q,R,S; C \rightarrow Q,R; D \rightarrow T]$ **34.** [B]

2.1

Numerica	al Response Type			
			10.2	100 100

35. (8) **36.** (2) **37.** (4) **38.** (7) **39.** (9) **40.** (4)