Control System

Time Domain Response Analysis

Transient and Steady state response

Transient Response:

This part reduces to zero as $t \to \infty$ i.e., $\lim_{t \to \infty} C_{tr}(t) = 0$

Steady state response:

- This is the response of the system as $t \to \infty$
- Mathematically, we can have expressed the time response C(t) as

$$C(t) = C_{tr}(t) + C_{ss}(t)$$

where,

Ctr(t) is the Transient Response.

C_{ss}(t) is the Steady State Response.

Time Response of a zero order control

Example: Potentiometer, tachometers etc.

Time Response of a First order control system

$$\frac{C(s)}{R(s)} = \frac{1}{1+sT}$$

Time response to different Input signals

Input Signals	Time Response		
Unit impulse, δ(t)	$C(t) = \frac{1}{T}e^{-\frac{t}{T}} \qquad $		
Unit step, u(t)	$C(t) = 1 - e^{-\frac{t}{T}}$		
Unit ramp, r(t)	$C(t) = (t - T + Te^{-\frac{t}{T}})$		

Time Response of a Second order control system

With characteristics equation:

$$s^2 + 2\xi\omega_n s + \omega_n^2 = 0$$

Roots: $-\xi\omega_n \pm \omega_n \sqrt{\xi^2 - 1} = -\xi\omega_n \pm j\omega_d$

 ξ is called damping ratio and it is given as:

$$\xi = \frac{\textit{Actual Damping}}{\textit{Critical Damping}} = \frac{\xi \omega_n}{\omega_n}$$

Time response specifications of second order (under-damped) control system subjected to unit step input function

Response is given by

$$C(t) = \underbrace{1}_{steady \ state} - \frac{e^{-\xi\omega_n t}}{\sqrt{1-\xi^2}} \left[\sin[\omega_d t + \tan^{-1}\left(\frac{\sqrt{1-\xi^2}}{\xi}\right) \right]_{Transient \ state}$$

where,

$$\label{eq:constraint} \begin{split} \hline \omega_d &= \omega_n \sqrt{1-\xi^2} \\ \tan^{-1} \left(\frac{\sqrt{1-\xi^2}}{\xi} \right) &= \cos^{-1}(\xi) \end{split}$$
 is damped frequency of oscillations

Step response of second order systems

- When poles are real & lie on the left half of s-plane, step response approaches a steady state value without oscillations.
- When poles are complex & lie on left half of s-plane, step response approaches a steady state value with damped oscillations.
- When complex conjugate poles lie on imaginary axis, step response will have fixed amplitude oscillations.
- When poles are complex & lie on right half of s-plane, step response approaches infinite with negatively damped oscillations.
- When poles are real & lie on the right half of s-plane, step response approaches an infinite without any oscillations.

Time Constant of under damped response

$$\tau = \frac{1}{\xi \omega_n}$$

Delay time (t_d)

$$t_d = \frac{1 + 0.7\xi}{\omega_n}$$

Rise time (t_r)

Where,

$$t_r = \frac{\pi - \phi}{\omega_n \sqrt{1 - \xi^2}}$$

$$\phi = \tan^{-1}\left(\frac{\sqrt{1-\xi^2}}{\xi}\right) = \cos^{-1}(\xi)$$

Peak time (t_p)

$$t_p = \frac{n\pi}{\omega_d} \, ; \,$$

 $n = 1, 3, 5, \dots$ For overshoots

 $n = 2, 4, 6, \dots$ For undershoots

Peak Overshoot (M_p)

Peak percent overshoot, $\% M_p = \frac{C(t_p) - C(\infty)}{C(\infty)} \times 100\%$

Or,

$$\%M_p = e^{-\frac{n\pi\xi}{\sqrt{1-\xi^2}}} \times 100$$

Here, $n = 1, 3, 5, \dots$ For overshoots

 $n = 2, 4, 6, \dots$ For undershoots

Note: Lowest value of damping ratio will provide maximum peak value of overshoot.

Dynamic Error Coefficients

$$K_0 = \lim_{s \to 0} F(s)$$
$$K_1 = \lim_{s \to 0} \frac{d}{ds} F(s)$$
$$K_2 = \lim_{s \to 0} \frac{d^2}{ds^2} F(s)$$

Where, $F(s) = \frac{1}{1+G(s)H(s)}$

Relation between Static and Dynamic Error constants

- $K_1 \simeq \frac{1}{K_v}$
- $K_2 \simeq \frac{1}{K_a}$
- $K_0 \simeq \frac{1}{1+K_p}$

Steady state error & static error coefficients vary with system type

Type '0' system	Step input	Ramp input	Parabolic input
Steady State formula	$\frac{1}{1+K_p}$	$\frac{1}{K_{\nu}}$	$\frac{1}{K_a}$
Static Error Constant	$K_p = constant$	$K_v = 0$	K _a = 0
Error	$\frac{1}{(1+K_p)}$	ω	œ

Type '1' system	Step input	Ramp input	Parabolic input
Steady State formula	$\frac{1}{(1+K_p)}$	$\frac{1}{K_v}$	$\frac{1}{K_a}$
Static Error Constant	$K_p = \infty$	$K_v = constant$	K _a = 0
Error	0	$\frac{1}{K_v}$	ø

Type '2' system	Step input	Ramp input	Parabolic input
Steady State formula	$\frac{1}{\left(1+K_p\right)}$	$\frac{1}{K_{v}}$	$\frac{1}{K_a}$
Static Error Constant	K _p = ∞	K _v = ∞	$K_a = constant$
Error	0	0	$\frac{1}{K_a}$

Points to Remember

- Finite steady state error varies inversely proportional to the forward path gain.
- As the type of system becomes higher, more steady-state errors are eliminated.
- For type-0 system, steady state error for position input (step input) will be finite.
- For type-1 system, steady state error for velocity input (ramp input) will be finite.
- For type-2 system, steady state error for acceleration input (parabolic input) will be finite.

Settling time (t_s)

 $t_s = 3\tau = \frac{3}{\xi\omega_n}$; for 5% tolerance band $t_s = 4\tau = \frac{4}{\xi\omega_n}$; for 2% tolerance band

Steady State Error

$$e_{ss} = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)H(s)}$$

- le_{ss}l depends on the input and the open-loop transfer function.
- This above formula is only valid for unity feedback system.
- Steady state error is defined only for stable system.
- Steady state error depends on the type of input (i.e., ramp, step etc.) as well as the system type.

Static Error Coefficients

• Static position error coefficient (K_p)

$$K_p = \lim_{s \to 0} G(s) H(s)$$

• Static velocity error coefficient (K_v)

$$K_v = \lim_{s \to 0} s \ G(s) H(s)$$

• Static acceleration error coefficient (K_a)

$$K_a = \lim_{s \to 0} s^2 G(s) H(s)$$

Important Points

1) For unit step input

settling time $T_s = \frac{\ln\left[\frac{100}{x}\right]}{\xi w_n}$

Where x = tolerance % i.e if Tolerance = 2% then x = 2 This formula is only valid for underdamped system i.e. $0 < \xi < 1$

2) If roots of transfer function are real & unequal

i.e.,
$$T(s) = \frac{1}{(ST_1+1)(ST_2+1)}$$

Then it is overdamped system.

$$T_s = \ln\left(\frac{100}{x}\right) \times T$$

Where $T = max (T_1 and T_2)$

3) For critically damped system T_s is found by conventional method

But
$$T_s = \frac{5.8}{\xi w_n}$$
 for 2% Tolerance

4)
we know
$$\frac{d}{dt}(step \ response) = Impulse \ Response$$

Step response = \int (impulse Response) dt + C(constant) To find 'c' we use Boundary condition i.e., at t = 0, step response = 0 etc.