CHAPTER

Chemical Bonding and Molecular Structure

Section-A

JEE Advanced/ IIT-JEE

Fill in the Blanks

- 1. The angle between two covalent bonds is maximum in (1981 - 1 Mark) (CH_4, H_2O, CO_2)
- Pair of molecules which forms strongest intermolecular 2. hydrogen bond is

(1981 - 1 Mark)

- There are π bonds in a nitrogen molecule. 3.
 - (1982 1 Mark)
- 4. hybrid orbitals of nitrogen atom are involved in the formation of ammonium ion. (1982 - 1 Mark)
- 5. The shape of $[CH_3]^+$ is (1990 - 1 Mark)
- The two types of bonds present in B₂H₆ are covalent and (1994 - 1 Mark)
- 7. When N_2 goes to N_2^+ , the N-N bond distance ..., and when O_2 goes to O_2^+ the O-O bond distance....

(1996 - 1 Mark)

True / False

- Linear overlap of two atomic p-orbitals leads to a sigma 1. (1983 - 1 Mark)
- All molecules with polar bonds have dipole moment. 2.

(1985 - ½ Mark)

- 3. SnCl₂ is a non-linear molecule. (1985 - ½ Mark)
- 4. In benzene, carbon uses all the three p-orbitals for hybridisation. (1987 - 1 Mark)
- 5. sp^2 hybrid orbitals have equal s and p character.

(1987 - 1 Mark)

- The presence of polar bonds in a poly-atomic molecule 6. suggests that the molecule has non-zero dipole moment.
 - (1990 1 Mark)
- The dipole moment of CH₂F is greater than that of CH₃Cl. 7. (1993 - 1 Mark)

C **MCQs with One Correct Answer**

The compound which contains both ionic and covalent 1. (1979)bonds is

- (a) CH₄ (b) H₂ (c) KCN (1979)The octet rule is not valid for the molecule
- (a) CO₂ (b) H₂O (d) CO (c) O₂3. Element X is strongly electropositive and element Y is strongly electronegative. Both are univalent. The compound formed would be (1980)
 - (a) X^+Y^- (b) $X^{-}X^{+}$ (c) X-Y (d) $X \rightarrow Y$ Which of the following compounds are covalent? (1980)
- (b) CaO (c) KCl (a) H₂ (d) Na₂S
- 5. The total number of electrons that take part in forming the (1980)bond in N₂ is
- (d) 10 (c) 6 Which of the following is soluble in water (1980)
 - (a) CS₂ (b) C₂H₅OH
- (c) CCl₄ (d) CHCl₃ If a molecule MX₃ has zero dipole moment, the sigma
 - bonding orbitals used by M (atomic number < 21) are (1981 - 1 Mark)
 - (a) pure p(b) sp hybrid
 - (c) sp^2 hybrid (d) sp^3 hybrid
- The ion that is isoelectronic with CO is 8. (1982 - 1 Mark)
 - (a) CN-(b) O_2^+ (c) O_2^-
- Among the following, the molecule that is linear is
 - (1982 1 Mark) (a) CO_2 (b) NO₂ (c) SO_2 (d) ClO₂
- The compound with no dipole moment is (1982 1 Mark) (b) carbon tetrachloride (a) methyl chloride (c) methylene chloride (d) chloroform
- Carbon tetrachloride has no net dipole moment because of
 - (a) its planar structure (1983 - 1 Mark)
 - its regular tetrahedral structure
 - similar sizes of carbon and chlorine
 - similar electron affinities of carbon and chlorine
- Which one among the following does not have the hydrogen bond? (1983 - 1 Mark)
 - (b) liquid NH₂ phenol (a)
 - (c) water (d) liquid HCl
- The types of bonds present in CuSO₄.5H₂O are only electrovalent and covalent (1983 - 1 Mark)
 - electrovalent and coordinate covalent
 - electrovalent, covalent and coordinate covalent
 - covalent and coordinate covalent

14.	On hybridization of one <i>s</i> and one <i>p</i> orbitals we get: (a) two mutually perpendicular orbitals (1984 - 1 Mark) (b) two orbitals at 180°		(c) unsymmetrical electron distribution(d) presence of more number of electrons in bonding orbitals
	(c) four orbitals directed tetrahedrally (d) three orbitals in a plane	29.	Pick out the isoelectronic structures from the following; (1993 - 1 Mark)
15.	The molecule having one unpaired electron is: (1985 - 1 Mark)		I. CH ₃ ⁺ II. H ₃ O ⁺
	(a) NO (b) CO (c) CN^- (d) O_2		III. NH ₃ IV CH ₃
16.	The bond between two identical non-metal atoms has a pair		3
	of electrons : (1986 - 1 Mark)		(a) I and II (b) III and IV
	(a) unequally shared between the two	30.	(c) I and III (d) II, III and IV Which one is most ionic: (1995S)
	(b) transferred fully from one atom to another	30.	` ,
	(c) with identical spins	21	(a) P_2O_5 (b) CrO_3 (c) MnO (d) Mn_2O_7
17	(d) equally shared between them The hydrogen hand is strongest in	31.	Number of paired electrons in O_2 molecule is: (1995S)
17.	The hydrogen bond is strongest in: (1986 - 1 Mark)	22	(a) 7 (b) 8 (c) 16 (d) 14
	(a) O-HS (b) S-HO (c) F-HF (d) F-HO	32.	Among the following species, identify the isostructural pairs NF ₃ , NO ₃ , BF ₃ , H ₃ O ⁺ , HN ₃ (1996 - 1 Mark)
18.	The hybridisation of sulphur in sulphur dioxide is:		111 3, 110 3, B1 3, 1130 , 1111 3 (1770 - 1 Mark)
	(1986 - 1 Mark)		(a) $[NF_3, NO_3^-]$ and $[BF_3, H_3O^+]$
10	(a) sp (b) sp^3 (c) sp^2 (d) dsp^2		(") [3,5][3,3]
19.	Hydrogen bonding is maximum in (1987 - 1 Mark) (a) Ethanol (b) Diethyl ether		(b) $[NF_3, HN_3]$ and $[NO_3, BF_3]$
20.	(c) Ethyl chloride (d) Triethylamine The species in which the central atom uses sp^2 hybrid		(c) $[NF_3, H_3O^+]$ and $[NO_3^-, BF_3]$
	orbitals in its bonding is (1988 - 1 Mark)		(d) $[NF_3, H_3O^+]$ and $[HN_3, BF_3]$
	(a) PH_3 (b) NH_3 (c) CH_3^+ (d) SbH_3	22	. 5, 5 . 5, 51
21.	The molecule that has linear structure is (1988 - 1 Mark)	33.	The number and type of bonds between two carbon atoms
21.	(a) CO_2 (b) NO_2 (c) SO_2 (d) SiO_2		in CaC_2 are: (1996 - 1 Mark)
22.	The molecule which has zero dipole moment is:		(a) one sigma (σ) and one pi (π) bonds
	(a) CH ₂ Cl ₂ (b) BF ₃ (1989 - 1 Mark)		(b) one sigma (σ) and two pi (π) bonds
	(c) NF_3 (d) ClO_2		(c) one sigma (σ) and one and a half pi (π) bonds
23.	The molecule which has pyramidal shape is:	24	(d) one sigma (σ) bond.
	(a) PCl ₃ (b) SO ₃ (1989 - 1 Mark)	34.	Which contains both polar and non-polar bonds?
			(a) NH ₄ Cl (b) HCN (1997 - 1 Mark)
	(c) CO_3^{2-} (d) NO_3^{-}	25	(c) H ₂ O ₂ (d) CH ₄
24.	The compound in which $\overset{*}{C}$ uses its sp^3 hybrid orbitals for	35.	The critical temperature of water is higher than that of O
27.	bond formation is: (1989 - 1 Mark)		because the H_2O molecule has (1997 - 1 Mark) (a) fewer electrons than O_2
	* *		2
	(a) $HCOOH$ (b) $(H_2N)_2CO$		(b) two covalent bonds
	(c) $(CH_3)_3^*COH$ (d) CH_3^*CHO	36.	(c) V-shape (d) dipole moment. Which one of the following compounds has sp^2
25.	Which of the following is paramagnetic? (1989 - 1 Mark)	30.	
20.			• • • • • • • • • • • • • • • • • • • •
	(a) O_2^- (b) CN^- (c) CO (d) NO^+	37.	
26.	The type of hybrid orbitals used by the chlorine atom in	37.	
			the central atom in BF ₃ is $(1998 - 2 Marks)$
	ClO_2^- is (1992 - 1 Mark)		(a) linear, sp (b) trigonal planar, sp ²
	(a) sp^3 (b) sp^2		(c) tetrahedral, sp ³ (d) pyramidal, sp ³ .
	(c) sp (d) none of these	38.	The correct order of increasing C — O bond length of CO,
27.	The maximum possible number of hydrogen bonds a water molecule can form is (1992 - 1 Mark)		CO_3^{2-}, CO_2 , is (1999 - 2 Marks)
28.	(a) 2 (b) 4 (c) 3 (d) 1 The cyanide ion, CN^- and N_2 are isoelectronic. But in		(a) $CO_3^{2-} < CO_2 < CO$ (b) $CO_2 < CO_3^{2-} < CO$
	contrast to CN ⁻ , N ₂ is chemically inert, because of (1992 - 1 Mark)		(c) $CO < CO_3^{2-} < CO_2$ (d) $CO < CO_2 < CO_3^{2-}$
	(a) low bond energy	39.	The geometry of H ₂ S and its dipole moment are
	(b) absence of bond polarity		(1999 - 2 Marks)
	()		(a) angular and non-zero(b) angular and zero(c) linear and non-zero(d) linear and zero

- Molecular shapes of SF₄, CF₄ and XeF₄ are (2000S)
 - the same, with 2, 0 and 1 lone pairs of electrons respectively
 - the same, with 1, 1 and 1 lone pairs of electrons respectively
 - different, with 0, 1 and 2 lone pairs of electrons respectively
 - different, with 1, 0 and 2 lone pairs of electrons respectively
- 41. The hybridisation of atomic orbitals of nitrogen in NO_2^+ ,

NO₃ and NH₄ are (2000S)

- (a) sp, sp³ and sp² respectively
- (b) sp, sp² and sp³ respectively
- (c) sp², sp and sp³ respectively
- (d) sp², sp³ and sp respectively
- The common features among the species CN⁻, CO and NO⁺ (2001S)are
 - bond order three and isoelectronic (a)
 - (b) bond order three and weak field ligands
 - (c) bond order two and π -acceptors
 - (d) isoelectronic and weak field ligands
- The correct order of hybridization of the central atom in the following species NH₃, [PtCl₄]²⁻, PCl₅ and BCl₃ is (2001S)
 - (a) dsp^2 , dsp^3 , sp^2 and sp^3 (b) sp^3 , dsp^2 , dsp^3 , sp^2
- (c) dsp^2 , sp^2 , sp^3 , dsp^3 (d) dsp^2 , sp^3 , sp^2 , dsp^3 Specify the coordination geometry around and hybridisation
- of N and B atoms in a 1:1 complex of BF₃ and NH₃ (a) N: tetrahedral, sp³; B: tetrahedral, sp³(2002S)
 - (b) N: pyramidal, sp³; B: pyramidal, sp³
 - (c) N: pyramidal, sp³; B: planar, sp²
 - (d) N: pyramidal, sp³; B: tetrahedral, sp³
- Identify the least stable ion amongst the following:

(2002S)

- (a) Li-(b) Be-(c) B-(d) C
- Which of the following molecular species has unpaired electron(s)? (2002S)
 - (a) N_2 (b) F₂
- (c) O_2^-
- (d) O_2^{2-}

2.

- Which of the following are isoelectronic and isostructural? $NO_3^-, CO_3^{2-}, CIO_3^-, SO_3^-$ (2003S)
 - (a) NO₃⁻, CO₃²⁻ (c) ClO₃⁻, CO₃²⁻
- (b) SO_3, NO_3
- (d) CO_3^{2-} , SO_3
- According to molecular orbital theory which of the following statement about the magnetic character and bond order is (2004S)correct regarding O2
 - (a) Paramagnetic and Bond order $< O_2$
 - (b) Paramagnetic and Bond order $> O_2$
 - (c) Diamagnetic and Bond order $< O_2$
 - (d) Diamagnetic and Bond order $> O_2$
- 49. Which species has the maximum number of lone pair of electrons on the central atom? (2005S)
- (a) $[ClO_3]^-$ (b) XeF_4 (c) SF_4 (d) Π_2
- **50.** Among the following, the paramagnetic compound is (2007)
 - (a) Na_2O_2 (b) O_3
- (c) N_2O
- (d) KO_2

- The species having bond order different from that in CO is
 - (a) NO-
- (b) NO⁺
- (c) CN-
- (d) N₂
- 52. Assuming that Hund's rule is violated, the bond order and magnetic nature of the diatomic molecule B₂ is (2010)
 - (a) 1 and diamagnetic
- (b) 0 and dimagnetic
- (c) 1 and paramagnetic (d) 0 and paramagnetic
- 53. The species having pyramidal shape is:
 - (a) SO_3
- (b) BrF₂
- (c) SiO_3^{2-}
- (d) OSF₂

(2010)

- 54. Geometrical shapes of the complexes formed by the reaction of Ni²⁺ with Cl⁻, CN⁻ and H₂O, respectively, are (2011)
 - (a) octahedral, tetrahedral and square planar
 - tetrahedral, square planar and octahedral
 - square planar, tetrahedral and octahedral
 - (d) octahedral, square planar and octahedral
- Assuming 2s-2p mixing is **NOT** operative, the paramagnetic species among the following is (JEE Adv. 2014)
 - (c) C₂ (a) Be₂ (b) B_2 (d) N_2
- The geometries of the ammonia complexes of Ni²⁺, Pt²⁺ and Zn²⁺ respectively, are (JEE Adv. 2016)
 - octahedral, square planar and tetrahedral
 - square planar, octahedral and tetrahedral
 - tetrahedral, square planar and octahedral
 - octahedral, tetrahedral and square planar

D MCQs with One or More Than One Correct

- 1. CO₂ is isostructural with: (1986 - 1 Mark)
 - (a) HgCl₂ (b) $SnCl_2$ (c) C_2H_2
 - (d) NO_2 (1991 - 1 Mark) The linear structure is assumed by:
 - (b) NCO^- (c) CS_2 (d) NO_2^+ (a) SnCl₂
- 3. Which of the following have identical bond order?
 - (1992 1 Mark)
 - (d) CN+ (a) CN-(b) O_{2}^{-} (c) NO⁺
- The molecules that will have dipole moment are 4. (1992 - 1 Mark)
 - (a) 2, 2-dimethylpropane (b) trans-2-pentene
 - (c) cis-3-hexene (d) 2,2,3,3-tetramethylbutane
- The compound(s) with TWO lone pairs of electrons on the 5. central atom is(are) (JEE Adv. 2016) (b) ClF₃ (a) BrF_5 (c) XeF_4 (d) SF_4
- According to Molecular Orbital Theory, (JEEAdv. 2016) 6.
 - (a) C_2^{2-} is expected to be diamagnetic
 - (b) O_2^{2+} is expected to have a longer bond length than O_2
 - N_2^+ and N_2^- have the same bond order
 - He⁺₂ has the same energy as two isolated He atoms

E **Subjective Problems**

- Water is liquid while H₂S is a gas at room temperature. (1978) 1.
- Write the Lewis dot structural formula for each of the following. Give, also, the formula of a neutral molecule, which has the same geometry and the same arrangement of the bonding electrons as in each of the following. An example is

given below in the case of H₃O⁺:

$$\begin{bmatrix} H \\ ... \\ H:O:H \end{bmatrix}^+ \begin{bmatrix} H \\ ... \\ H:N:H \end{bmatrix}$$
Lewis dot Neutral molecule

structure n (i) O_2^{2-} ; (ii) CO_3^{2-} ; (iii) CN^- ; (iv) NCS^-

 $(1983 - 1 \times 4 = 4 Marks)$

- 3. How many sigma bonds and how many pi-bonds are present in a benzene molecule? (1985 1 Mark)
- 4. Write the Lewis dot structure of the following:

(1986 - 1 Mark)

- 5. Arrange the following:
 - (i) N₂, O₂, F₂, Cl₂ in increasing order of bond dissociation energy. (1988 1 Mark)
 - (ii) Increasing strength of hydrogen bonding (X–H–X): (1991 1 Mark)

(iii) In the decreasing order of the O – O bond length present in them (2004 - 4 Marks)

 O_2 , KO_2 and O_2 [AsF₄]

- 6. The dipole moment of KCl is 3.336×10^{-29} Coulomb meters which indicates that it is a highly polar molecule. The interatomic distance between K⁺ and Cl⁻ in this molecule is 2.6×10^{-10} m. Calculate the dipole moment of KCl molecule if there were opposite charges of one fundamental unit located at each nucleus. Calculate the percentage ionic character of KCl. (1993 2 Marks)
- 7. Using the VSEPR theory, identify the type of hybridization and draw the structure of OF₂. What are the oxidation states of O and F? (1994 3 Marks)
- 8. A compound of vanadium has a magnetic moment of 1.73 BM. Work out the electronic configuration of the vanadium ion in the compound. (1997 2 Marks)
- 9. Interpret the non-linear shape of H_2S molecule and non-planar shape of PCl_3 using valence shell electron pair repulsion (VSEPR) theory. (Atomic numbers: H = 1, P = 15, S = 16, Cl = 17.) (1998 4 Marks)
- 10. Write the M.O. electron distribution of O₂. Specify its bond order and magnetic property. (2000 3 Marks)
- 11. Using VSEPR theory, draw the shape of PCl₅ and BrF₅.

 (2003 2 Marks)
- 12. Draw the structure of XeF₄ and OSF₄ according to VSEPR theory, clearly indicating the state of hybridisation of the central atom and lone pair of electrons (if any) on the central atom.
 (2004 2 Marks)

F Match the Following

1. Match the orbital overlap figures shown in List-I with the description given in List-II and select the correct answer using the code given below the lists. (*JEE Adv. 2014*)

List-II

 $p - d\pi$ antibonding

2. $d-d\sigma$ bonding

3. $p-d\pi$ bonding

4. $d-d\sigma$ antibonding

Code:
P Q R S

- (a) 2 1 3 4
- (b) 4 3 1 2
- (c) 2 3 1 4
- (d) 4 1 3 2

H Assertion & Reason Type Questions

1. Read the following Assertion and Reason and answer as per the options given below: (1998 - 2 Marks)

Assertion : The electronic structure of O_3 is O_2 .

Reason: Structure is not allowed because octet around O cannot be expanded.

- (a) If both assertion and reason are correct, and reason is the correct explanation of the assertion.
- (b) If both assertion and reason are correct, but reason is not the correct explanation of the assertion.
- (c) If assertion is correct but reason is incorrect.
- (d) If assertion is incorrect but reason is correct.
- Read the following Assertion and Reason and answer as per the options given below: (1998 2 Marks)
 Assertion: LiCl is predominantly a covalent compound.

Reason: Electronegativity difference between Li and Cl is too small.

- (a) If both assertion and reason are correct, and reason is the correct explanation of the assertion.
- (b) If both *assertion* and *reason* are correct, but *reason* is not the correct explanation of the *assertion*.
- (c) If assertion is correct but reason is incorrect.
- (d) If assertion is incorrect but reason is correct.

I Integer Value Correct Type

- 1. Based on VSEPR theory, the number of 90 degree F-Br-F angles in BrF_5 is (2010)
- 2. The total number of lone-pairs of electrons in melamine is (*JEE Adv. 2013*)

- A list of species having the formula XZ_4 is given below. XeF_4 , SF_4 , SiF_4 , BF_4^- , BrF_4^- , $[Cu(NH_3)_4]^{2+}$, $[FeCl_4]^{2-}$, $[CoCl_4]^{2-}$ and $[PtCl_4]^{2-}$.
 - Defining shape on the basis of the location of X and Z atoms, the total number of species having a square planar shape is (JEE Adv. 2014)
- Among the triatomic molecules/ions, BeCl₂, N₃, N₂O,

 NO_2^+ , O_3 , SCl_2 , ICl_2^- , I_3^- and XeF_2 , the total number of linear molecule(s)/ion(s) where the hybridization of the central atom does not have contribution from the d-orbital(s)

[Atomic number : S = 16, Cl = 17, I = 53 and Xe = 54] (JEE Adv. 2015)

Section-B

- In which of the following species the interatomic bond angle is 109° 28'? [2002]
 - (a) NH_3 , $(BF_4)^{-1}$
- (b) $(NH_4)^+$, BF₂
- (c) NH_3 , BF_4
- (d) $(NH_2)^{-1}$, BF₃.
- Which of the following are arranged in an increasing order 2. of their bond strengths?
 - (a) $O_2^- < O_2^- < O_2^+ < O_2^{2-}$ (b) $O_2^{2-} < O_2^- < O_2^- < O_2^+$
 - (c) $O_2^- < O_2^{2-} < O_2 < O_2^+$ (d) $O_2^+ < O_2 < O_2^{-} < O_2^{2-}$
- 3. Hybridisation of the underline atom changes in:
 - (a) AlH₃ changes to AlH₄
 - (b) H₂O changes to H₃O⁴
 - (c) NH₃ changes to NH₄⁺
 - (d) in all cases
- An ether is more volatile than an alcohol having the same molecular formula. This is due to [2003]
 - (a) alcohols having resonance structures
 - (b) inter-molecular hydrogen bonding in ethers
 - (c) inter-molecular hydrogen bonding in alcohols
 - (d) dipolar character of ethers
- Which one of the following pairs of molecules will have permanent dipole moments for both members? [2003]
 - (a) NO_2 and CO_2
- (b) NO_2 and O_3
- (c) SiF_4 and CO_2
- (d) SiF₄ and NO₂
- Which one of the following compounds has the smallest bond angle in its molecule?
 - (a) OH_2
- (b) SH₂
- (c) NH_2
- (d) SO_2
- The pair of species having identical shapes for molecules of 7. both species is [2003]
 - (a) XeF_2 , CO_2
- (b) BF₃, PCl₃
- (c) PF_5 , IF_5
- (d) CF_A , SF_A
- The correct order of bond angles (smallest first) in H₂S, 8. NH₂, BF₂ and SiH₄ is
 - (a) $H_2S < NH_3 < SiH_4 < BF_3$ (b) $NH_3 < H_2S < SiH_4 < BF_3$
 - (c) $H_2S \le SiH_4 \le NH_3 \le BF_3$ (d) $H_2S \le NH_3 \le BF_3 \le SiH_4$
- The bond order in NO is 2.5 while that in NO⁺ is 3. Which of 9. the following statements is true for these two species?

[2004]

- (a) Bond length in NO⁺ is equal to that in NO
- (b) Bond length in NO is greater than in NO⁺
- (c) Bond length in NO⁺ is greater than in NO
- (d) Bond length is unpredictable
- 10. The states of hybridization of boron and oxygen atoms in boric acid (H₃BO₃) are respectively [2004]

- (a) sp^3 and sp^2
- (b) sp^2 and sp^3
- (c) sp^2 and sp^2
- (d) sp^3 and sp^3
- Which one of the following has the regular tetrahedral structure? [2004]
 - (a) BF_{4}^{-}
- (b) SF_4
- (c) XeF₄
- (d) $[Ni(CN)_4]^{2-}$

(Atomic nos.: B = 5, S = 16, Ni = 28, Xe = 54)

- The maximum number of 90° angles between bond pair-bond pair of electrons is observed in [2004]
 - (a) dsp² hybridization
 - (b) sp³d hybridization
 - (c) dsp³ hybridization
 - (d) sp³d² hybridization
- Lattice energy of an ionic compound depends upon
 - (a) Charge on the ion and size of the ion

[2005]

- (b) Packing of ions only
- (c) Size of the ion only
- (d) Charge on the ion only
- Which of the following molecules/ions does not contain unpaired electrons? [2006]
- (a) N_2^+ (b) O_2 (c) O_2^{2-}
- (d) B_2
- In which of the following molecules/ions are all the bonds not equal? [2006]
 - (a) XeF_4
- (b) BF_4^-
- (c) SF_{4}
- (d) SiF_4
- The decreasing values of bond angles from NH₃ (106°) to 16. SbH₂ (101°) down group-15 of the periodic table is due to [2006]

(a) decreasing lp-bp repulsion

- (b) decreasing electronegativity
- (c) increasing bp-bp repulsion
- (d) increasing p-orbital character in sp³
- Which of the following species exhibits the diamagnetic behaviour? [2007]
 - (a) NO
- (b) O_2^{2-}
- (c) O_2^+
- (d) O_2 .
- The charge/size ratio of a cation determines its polarizing 18. power. Which one of the following sequences represents the increasing order of the polarizing power of the cationic

species, K⁺, Ca²⁺, Mg²⁺, Be²⁺?

[2007]

- (a) $Ca^{2+} < Mg^{2+} < Be^+ < K^+$
- (b) $Mg^{2+} < Be^{2+} < K^+ < Ca^{2+}$
- (c) $Be^{2+} < K^+ < Ca^{2+} < Mg^{2+}$
- (d) $K^+ < Ca^{2+} < Mg^{2+} < Be^{2+}$.
- In which of the following ionization processes, the bond order has increased and the magnetic behaviour has changed? [2007]
 - (a) $N_2 \rightarrow N_2^+$
- (b) $C_2 \rightarrow C_2^+$
- (c) $NO \rightarrow NO^+$
- (d) $O_2 \rightarrow O_2^+$.
- 20. Which of the following hydrogen bonds is the strongest?

[2007]

- (a) O-H---F
- (b) O-H---H
- (c) F-H---F
- (d) O-H---O.
- Which one of the following pairs of species have the same bond order? [2008]
 - (a) CN⁻ and NO⁺
- (b) CN⁻ and CN⁺
- (c) O_2^- and CN^-
- (d) NO⁺ and CN⁺
- The bond dissociation energy of B-F in BF₃ is 646 kJ mol⁻¹ whereas that of C - F in CF_4 is 515 kJ mol⁻¹. The correct reason for higher B-F bond dissociation energy as compared to that of C - F is
 - (a) stronger σ bond between B and F in BF₃ as compared to that between C and F in CF₄.
 - (b) significant $p\pi p\pi$ interaction between B and F in BF₃ whereas there is no possibility of such interaction between C and F in CF₄.
 - (c) lower degree of $p\pi p\pi$ interaction between B and F in BF₃ than that between C and F in CF₄.
 - (d) smaller size of B- atom as compared to that of C- atom.
- Using MO theory, predict which of the following species has the shortest bond length? [2008]
- (b) O_2^-
- (c) O_2^{2-}
- Among the following the maximum covalent character is shown by the compound [2011]
 - (a) FeCl₂
- (b) SnCl₂ (c) AlCl₃

- The hybridization of orbitals of N atom in NO_3^- , NO_2^+ and NH_{4}^{+} are respectively:
 - (a) sp, sp^2 , sp^3
- (b) sp^2 , sp, sp^3
- (c) sp, sp 3 , sp 2
- (d) sp^2 , sp^3 , sp
- **26.** The structure of IF_7 is
- [2011]
- (a) square pyramidal (c) octahedral
- (b) trigonal bipyramidal (d) pentagonal bipyramidal
- 27. Ortho-Nitrophenol is less soluble in water than p- and m-Nitrophenols because: [2012]
 - (a) o-Nitrophenol is more volatile steam than those of mand p-isomers.

- (b) o-Nitrophenol shows intramolecular H-bonding
- o-Nitrophenol shows intermolecular H-bonding
- Melting point of o-Nitrophenol is lower than those of *m*- and *p*-isomers.
- In which of the following pairs the two species are not isostructural? [2012]
 - (a) CO_3^{2-} and NO_3^{-}
 - (b) PCl₄ and SiCl₄
 - (c) PF₅ and BrF₅
- (d) AlF_6^{3-} and SF_6
- Which one of the following molecules is expected to exhibit diamagnetic behaviour? [JEE M 2013]
 - (a) C₂

(b) N_2

(c) O_2

- (d) S_2
- **30.** Which of the following is the wrong statement?

[JEE M 2013]

- (a) ONCl and ONO are not isoelectronic.
- (b) O₂ molecule is bent
- (c) Ozone is violet-black in solid state
- (d) Ozone is diamagnetic gas.
- In which of the following pairs of molecules/ions, both the species are not likely to exist? [JEE M 2013]
 - (a) H_2^+, He_2^{2-}
- (b) H_2^-, He_2^{2-}
- (c) H_2^{2+}, He_2
- (d) H_2^-, He_2^{2+}
- 32. Stability of the species Li₂, Li₂ and Li₂ increases in the order of: [JEE M 2013]

 - (a) $\text{Li}_2 < \text{Li}_2^+ < \text{Li}_2^-$ (b) $\text{Li}_2^- < \text{Li}_2^+ < \text{Li}_2$
 - (c) $\text{Li}_2 < \text{Li}_2^- < \text{Li}_2^+$ (d) $\text{Li}_2^- < \text{Li}_2 < \text{Li}_2^+$
- 33. For which of the following molecule significant $\mu \neq 0$? [JEE M 2014]

- (a) Only (i)
- (b) (i) and (ii)
- (c) Only(iii)
- (d) (iii) and (iv)
- 34. The species in which the N atom is in a state of sp hybridization is: [JEE M 2016]
 - NO_3 (a)
- (b) NO,
- NO_2^+
- (d) NO_{2}^{-}