
Physics

Syllabus

 ӽ Centre of mass and its motion: Rigid body, Properties of rigid body; Centre of mass-centre of mass of two 
particles, centre of mass of N-particles, centre of mass of homogeneous bodies; Motion of centre of mass, 
velocity of centre of mass, acceleration of centre of mass; Centre of mass and toppling stability.

 ӽ Angular velocity and its relationship with linear velocity: Angular displacement, angular velocity, 
relationship between linear and angular velocity, angular acceleration, equations of rotational kinematics.

 ӽ Torque and angular momentum: Torque, angular momentum, relationship between torque and angular 
momentum; Law of conservation of angular momentum.

 ӽ Equilibrium of a rigid body: Translatory equilibrium, rotatory equilibrium; State of equilibrium; Principle 
of moments; Centre of gravity.

 ӽ Moment of inertia: Moment of inertia of various objects; Relationship between angular momentum and 
moment of inertia; Perpendicular and parallel axis theorem.

 ӽ Kinetic energy, work and power of rotational motion: Introduction, Analogy between translatory and 
rotatory motion.

 ӽ Rolling motion: Kinetic energy of rolling body.

SYSTEM OF 

PARTICLES 

AND 

ROTATIONAL 

MOTION

Rigid Body (Body with a perfectly definite, unchanging shape and size)

Centre of Mass (Point where whole mass of system is supposed to be concentrated)

Terms Related to Rotational Motion

Torque (Measure of force that can cause an object to rotate about an axis)t = ×
 
r p

Angular Momentum (Rate of change of angular momentum of a body is equal to 

external torque acting upon the body) 


t ext =
dL

dt

Moment of Inertia I m ri i= ∑ 2
Theorem of perpendicular axes I I Iz x y= +  

Theorem of Parallel axes I I MRcm= + 2  
Kinetic Energy, 

Work and Power
KE, E Ik =

1
2

2ω Work, W =t θ∆ Power, P =t ω.

Rolling Motion (Motion that is a combination of rotational and translational motion)

MIND MAP

Mind Map 1: System of Particles and Rotational Motion
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Position of Centre of Mass of System
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CENTRE OF MASS 

(Point where whole mass 
of system is supposed to be 

concentrated)

Angular Displacement  
(The angle through which a 

point or line has been rotated) 
S r= . θ

Angular Velocity  
(Measure of how fast a body is 

changing its angle) ω
θ

=
d

dt

TERMS RELATED TO 

ROTATIONAL MOTION

Translatory Equilibrium 
(If centre of mass of a body possesses no 

linear acceleration) 
Fext∑ = 0

Rotatory Equilibrium  
(If a body possesses no angular 

acceleration)

 t
  

ext i ir F∑ ∑= ×
=

ext  

0

RIGID BODY 

(Body with a perfectly definite and 
unchanging shape and size)

Mind Map 2: Rigid Body 

Mind Map 3: Centre of Mass

Mind Map 4: Terms Related to Rotational Motion

Velocity of Centre of Mass of System
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Angular Acceleration  
(Measure of how fast a body is 
changing its angular velocity)

α
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RECAP

Centre of Mass and its Motion

Rigid Body

 ӽ It is an idealization of a body that does not deform or change its shape. Formally, it is defined as a collection of 
particles with the property that the distance between particles remains unchanged during motion of the body.

 ӽ Positions of different particles with respect to each other remains same even under the application of force.

 ӽ Has definite shape and size as distance between different pairs of particles does not change on applying force on it.

 ӽ No body is truly rigid as real bodies deform under action of force applied on them. e.g.; Copper rod, stone etc.

Properties of Rigid Body Motion

 ӽ Arbitrary rigid body motion have one of three categories:

 ■ Translational rectilinear and curvilinear: Motion 
in which every line in the body remains parallel to its 
original position. The motion of the body is completely 
specified by the motion of any point in the body. All 
points of the body have the same velocity and same 
acceleration.

 ■ Rotation about a fixed axis: All particles move in 
circular paths about the axis of rotation. The motion 
of the body is completely determined by the angular 
velocity of the rotation.

 ■ General plane motion: Any plane motion that is neither a 
pure rotational nor a translational, falls into this class.

 ӽ The motion of a rigid body which is not pivoted or fixed in 
some way is either a pure translational or a combination 
of translational and rotational. The motion of a rigid body 
which is pivoted or fixed in some way is rotational.

Centre of Mass

 ӽ It is the point where whole mass of the particle system is 
concentrated. 

 ӽ In a uniform gravitational field, the centre of mass and the 
centre of gravity of a system are coincident.

 ӽ For simple rigid objects with uniform density, the centre of 
mass is located at the centroid. For example, the centre of mass 
of a uniform disc shape would be at its centre. Sometimes the 
centre of mass doesn’t fall anywhere on the object. The centre of 
mass of a ring for example is located at its centre, where there 
isn’t any material.

Centre of Mass for two Particles

 ӽ For a system of two particles of masses m1 and m2 having their position vectors as 
 
r r1 2 and respectively, with 

respect to origin of the coordinate system, the position vector 

RCM of the centre of mass is given by

 

  

  

R
m r m r

m m

m m m

R
r r

CM

CM

 If say), 

then 

=
+
+

= =

=
+

1 1 2 2

1 2

1 2

1 2

2

(

 ӽ For a system of two particles with equal masses, CM is the point that lies exactly in the middle of both.

Figure: Centre of mass for some simple 
geometric shapes (dots)
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Centre of Mass for N-Particles

 ӽ For a system of N-particles of masses m m m mN1 2 3, , .......  having their position vectors r1, r2, r3,....rN respectively, 
then the centre of mass 


RCOM  for a system of N-particles, 
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 ӽ The coordinates of centre of mass are given by
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Centre of Mass of Homogeneous Bodies

 ӽ Homogeneous bodies have uniformly distributed mass around body, e.g.; spheres, rings, etc. They have regular 
shape. We can assume that the CM for these regular bodies lies at their geometric centres.

Motion of Centre of Mass

 ӽ Now extend the concept of the centre of mass to velocity and acceleration, and thus give the tools to describe the 
motion of a system of particles.

Velocity of Centre of Mass

 ӽ Taking a simple time derivative of our expression for RCM
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Acceleration of Centre of Mass

 ӽ Differentiating again to generate an expression for acceleration.
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 ӽ Hence, the total mass of the system times the acceleration of its centre of mass is equal to vector sum of all the forces 
acting on the group of particles.

 ӽ If total external force acting on the system is zero, then the total linear momentum of the system is conserved. Also, 
when the total external force acting on the system is zero, the velocity of centre of mass remains constant.

Centre of Mass and Toppling Stability

 ӽ One useful application of the centre of mass is determining the 
maximum angle that an object can be tilted before it will topple over.

 ӽ Figure shows a cross section of a truck. The truck has been poorly loaded 
with many heavy items, loaded on the left-hand side. The centre of mass 
is shown by a dot. A dark line extends down from the centre of mass, 
representing the force of gravity. Gravity acts on all the weight of the 
truck through this line.

 ӽ If truck is tipped at angle θt then all the weight of the truck will be supported 
by the left-most edge of the left wheel. 

 ӽ If the angle is increased further, then truck will get topple over because 
a vertical line from its centre of gravity falls outside its base. Then this angle θt is the topple limit.

Figure: Topple limit of a poorly loaded 
truck.
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Angular Velocity and its Relationship with Linear Velocity

Angular Displacement

 ӽ It is ‘the angle in radians (degrees, revolutions) through which point or line has been rotated in specified sense about 
specified axis’. It is the angle of the movement of a body in a circular path.

 
Figure: A body is moving 

in circular direction

v

v

r
θ

r
sθ =

r
vω =

  
Figure: Example of angular 

displacement

 ӽ If object moves θ angle on circular path of radius r. Then linear displacement is related to angular displacement 
as

 
S r= . ...( )

( )

θ i

The equation i is the angular displacement equatioo .n

Angular Velocity

 ӽ Like the linear motion, circular/rotational motion has too all the equivalent quantities.

 ӽ Measure of how fast a body is changing its angle. It is measured in radians per second. The angular velocity is 
represented by ω and hence it is defined as the time rate of change of angular displacement and is given by

 ω
θ

ω
θ

= =
t

d

dt
or, ii)...(

 ӽ It is directed along axis of rotation and is vector quantity. Its SI unit is rad/s and dimensional formula is 
[M0L0T−1].

Relationship between Linear Velocity and Angular Velocity

 ӽ Let us consider a body P moving along the circumference of a circle of radius r with linear velocity v and angular 
velocity ω. Let it move from P to Q in time dt and dθ be the angle swept by the radius vector.

 ӽ Let PQ = ds, be the arc length covered by the particle moving along the circle, then the angular displacement dθ is 
expressed as dθ = dS/r. But dS = vdt.
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 ӽ For given angular velocity ω, linear velocity v of particle is directly 
proportional to distance from centre of circular path.

Angular Acceleration

 ӽ Measure of how fast a body is changing its angular velocity. The angular acceleration is measured in rad per sec2.

 ӽ Represented by α and hence it is defined as the time rate of change of angular velocity and it is given by
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Figure: Relationship between linear 
velocity and angular velocity
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 ӽ Angular acceleration is a vector quantity and its dimensional formula is [M0L0T−2].
Equations of Rotational Kinematic

 ӽ The kinematics equations for rotational motion at constant angular acceleration are,
 ■ Angular velocity after a time t second: ωf = ωi + αt

 ■ Angular displacement after t second: θf = θi + ωit + 1/2αt2

 ■ Angular velocity after a certain rotation: ω2
f = ω2

i + 2α(θf – θi)
 ■ Angle traversed in nth second: θnth = ωi + α/2(2n–1)

Torque and Angular Momentum

Torque
 ӽ It is measure of force that can cause an object to rotate about an axis.
 ӽ It is the rotational analogue of force. It is also termed as the moment of force and 

denoted by τ.
 ӽ It is a vector quantity. The direction of the torque vector depends on the direction of 

the force on the axis.
 ӽ The SI unit of torque is Newton-metre (Nm).

Mathematical Expression of the Torque
 ӽ Magnitude of torque vector τ for torque produced by given force F is t θ= ⋅F r sin .
 ӽ Direction of torque vector is found by convention using right-hand grip rule. If hand 

is curled around axis of rotation with fingers pointing in direction of the force, then 
torque vector points in the direction of the thumb.

Angular Momentum
 ӽ Torque and angular momentum are closely related to each other. Angular 

momentum is the rotational analogue of linear momentum p and is denoted by L.
 ӽ It is a vector product. Angular momentum of the particle is

 
  
L r p L rp= × =; sinIn magnitude, θ

 ӽ Angular momentum is a vector quantity. Its SI unit is kgm2s−1 and its dimensional 
formula is [ML2T−1].

Angular Momentum for an Object Rotating about a Fixed Axis
 ӽ Consider an object rotating about a fixed axis, as shown in the figure.
 ӽ If a particle P in the body that rotates about the axis as shown above, the expression of total angular momentum for 

this system can be given by:

 L r Pi
i

N

i= ×
=
∑

1

Relationship between Torque and Angular Momentum
 ӽ Rate of change of angular momentum of a body is equal to the external torque acting 

upon the body.

 



t ext =

dL

dt

Law of Conservation of Angular Momentum
 ӽ When the net external torque acting on a an object or system about a given axis is zero, the total angular momentum 

of the system about that axis remains constant. Mathematically,

 






t ext

Then,  
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=

=
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0
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dt

L

 ӽ For systems that consist of many rigid bodies and/or particles, the total angular momentum about any axis is the 
sum of the individual angular momenta. The conservation of angular momentum also applies to such systems. In 
the absence of external forces acting on the system, the total angular momentum of the system remains constant.

Figure: Direction of the 
torque vector found with 
the right-hand rule

Figure: Angular Momentum

axis of 
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Figure: Angular 
Momentum for an object 
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Equilibrium of a Rigid Body

 ӽ Accordingly, the equilibrium is classified into following two categories:
 ■ Translatory equilibrium: When centre of mass of body possesses no linear acceleration in an inertial frame 

of reference. Basic condition is that the vector sum of all the external forces acting on the body should be 
zero, then body at rest will remain at rest. This is static equilibrium. A body moving with uniform velocity, 
along a straight line, will keep on doing so. This is dynamic translatory equilibrium.

 ■ Rotatory equilibrium: Concept is equivalent to Newton’s 1st law for rotational system. Object at rest, remains 
at rest or object rotating, continues to rotate with constant angular velocity unless acted on by external torque. 
Body is in rotatory equilibrium if it possesses no angular acceleration about any axis in inertial frame. To be in 
rotatory equilibrium vector sum of all the external torques acting on the body is zero.

 ӽ For a body to be in equilibrium it must satisfy both the conditions stated above simultaneously, i.e.,
 ■ The vector sum of all the external forces acting on the body should vanish.
 ■ The vector sum of all the external torque acting on the body should vanish.

State of Equilibrium
 ӽ Equilibrium can be classified into three categories:

 ■ Stable equilibrium: On being slightly disturbed, it tends to 
come back to its original position.

 ■ Unstable equilibrium: On being slightly disturbed, it shows 
no tendency to come back to its original position and moves 
away from it.

 ■ Neutral equilibrium: On being slightly displaced, it 
remains in the new position.

Principle of Moments
 ӽ A body will be in rotational equilibrium if algebraic sum of the 

moments of all forces acting on the body, about a fixed point 
is zero.

Centre of Gravity
 ӽ The centre of gravity of a body is that point where the total gravitational torque on the body is zero.

Moment of Inertia

 ӽ It is sum of products of masses of different particles constituting body and square of their distances from axis of rotation. 
It depends upon following factors: Mass of body and Distribution of mass about the axis of rotation.

 ӽ It does not depend upon state of motion of rotating body. It is same for body at rest, rotating slowly or rotating fast 
about given axis. The general definition of moment of inertia, also called rotational inertia, for a rigid body is  
I = Σ mi I m ri i= ∑ 2  and it is measured in S.I. units of  kilogram-metres2.

Moments of Inertia of Various Objects
Table: Moments of inertia of various objects

S. No. Shape of Regular body Axis of rotation Moment of inertia

1 Thin rod of mass M and length L (a) Centre of rod and perpendicular to 
length

ML2

12

(b) One end and perpendicular to length ML2

3
2 Circular ring of mass M and radius 

R
(a) Through centre, perpendicular to the 

plane of the ring
MR2

(b) Any diameter 1
2

2MR

(c) Any tangent in the plane of the ring 3
2

2MR

(d) Any tangent perpendicular to the 
plane of the ring

2 2MR

equilibrium state

stable equilibrium

disturbance

unstable equilibrium

neutral equilibrium

Figure: States of Equilibrium
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3 Circular disc of mass M and radius 
R

(a) Through centre, perpendicular to the 
plane of the disc

1
2

2MR

(b) Any diameter 1
4

2MR

(c) Tangent in the plane of the disc 5
4

2MR

(d) Tangent perpendicular to the plane of 
the disc

3
2

2MR

4 Flat annular disc of mass M and in-
ner and outer radii R1 and R2

(a) Through centre and perpendicular to 
the plane

M
R R

2 1
2

2
2+( )

(b) About its diameter M
R R

4 1
2

2
2+( )

(c) About tangential axis lying in its plane M
R R

4
5 1

2
2
2+( )

(d) About tangential axis perpendicular to 
the plane

M
R R

2
3 1

2
2
2+( )

5 Solid sphere of mass M and radius 
R

(a) Any diameter 2
5

2MR

(b) Any tangent 7
5

2MR

6 Hollow sphere of mass M and 
radius R

(a) Diameter 2
3

2MR

(b) Tangent 5
3

2MR

7 Cylinder of mass M, radius R and 
length L

(a) Own axis 1
2

2MR

(b) Through centre perpendicular to 
length M

R L2 2

4 12
+











(c) Through end face and perpendicular 
to length M

R L2 2

4 3
+











8 Rectangular lamina of mass M, 
length L and breadth B

(a) Length of lamina and in its plane MB2

3
(b) Breadth of lamina and in its plane ML2

3
(c) Centre of mass of lamina and perpen-

dicular to its plane M
L B2 2

12
+









(d) Centre of length and perpendicular to 
its plane M

L B2 2

12 3
+











(e) Centre of breadth and perpendicular 
to its plane M

L B2 2

3 12
+










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9. Rectangular block of mass M, 
length L, breadth B and height H

(a) Through centre of block and parallel to
1. Length

M
B H2 2

12
+









2. Breadth
M

H L2 2

12
+









3. Height
M

L B2 2

12
+









(b) Through end face and parallel to
1. Length

M
H B2 2

3 12
+











2. Breadth
M

L H2 2

3 12
+











3. Height
M

B L2 2

3 12
+











 ӽ Radius of gyration is perpendicular distance from axis of rotation to point where total mass of  body is concentrated, 
so that about axis may remain same. Gyration is distribution of components of object. 

 ӽ It is denoted by K. If M is mass of the body and I is moment of inertia of the body then,

 
I MK

K
I

M

=

∴ =

2

Relation between Angular Momentum and Moment of Inertia

 ӽ The angular momentum of a rigid object is also defined as the product of the moment of inertia and the angular velocity.
 ӽ It is analogous to linear momentum and is subject to the fundamental constraints of the conservation of angular 

momentum principle, if there is no external torque on the object. Angular momentum is vector quantity, derivable 
from expression for angular momentum of particle.

Relation between Angular and Linear Momentum

 ӽ Angular momentum and linear momentum are examples 
of parallels between linear and rotational motion. They 
have the same form and are subject to constraints of 
conservation laws, conservation of momentum and 
angular momentum.

Theorems of Perpendicular and Parallel Axes

 ӽ Parallel axes theorem: The moment of inertia I of a body about any axis is equal 
to the moment of inertia ICM about a parallel axis through the centre of gravity of 
the body plus MR2, where M is the mass of the body and R is the distance between 
the two axes.

 I = ICM + MR2

 ӽ Perpendicular axes theorem: For any plane body (a rectangular sheet of metal) the 
moment of inertia about any axis perpendicular to the plane is equal to the 
sum of the moments of inertia about any two perpendicular axes in the 
plane of the body which intersect the first axis in the plane. This theorem 
is useful when considering a body which is of regular form (symmetrical) 
about two out of the three axes. If the moment of inertia about these axes 
is known, then that about the third axis may be calculated.

 Iz = Ix + Iy 

Figure: Parallel axes theorem

Figure: Perpendicular axes theorem

R

CM

I
Z

I
Y
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Kinetic Energy, Work and Power of Rotational Motion

 ӽ A rigid body rotating with uniform angular speed ω about a fixed axis possesses kinetic energy of rotation. Its 
value may be calculated by summing up the individual kinetic energies of all the particles of which the body is 
composed.

 ӽ Particle of mass mi at distance ri from axis of rotation has kinetic energy given by 1/2 miv
2

i, where vi is the speed 
of the particle. There will be a similar term for each particle making up the body, so for the total kinetic energy Ek.

E m v m v m v m vk n n i i= + + + = ∑1
2

1
2

1
2

1
21 1

2
2 2

2 2 2

 ӽ Each particle of a rigid body rotates with uniform angular speed ω. Let us express the instantaneous linear speed 
of each particle in terms of the common angular speed. Remembering that v = ωr, we substitute for v in the above 
equation to find

 
E m r m r m r m r m r m rk n n n n= + + + = + + +

1
2

1
2

1
2

1
21 1

2 2
2 2

2 2 2 2 2
1 1

2
2 2

2ω ω ω ω;   22( )
= + + + = ∑

= ω

= + + + = + + +
2 2 2 2

ω ω ω ω 

1 1
2

2 2
2 2 2

( )
= + + + = ∑Replace,

so that the kineti

I m r m r m r m rn n i i

cc energy of the rotating body may be written as E Ik =
1
2

2ω

 ӽ We know that when we apply force on any object in direction of the displacement of the object, work is said to 
be done.

 ӽ Similarly force applied to the rotational body does work on it and this work done can be expressed in terms of moment 
of force (torque) and angular displacement θ.

 ӽ A force F acts on the wheel of radius R pivoted at point O so that it can rotate through point O. This force F rotates 
the wheel through angle dθ and dθ is small enough to regard force to be constant during corresponding time 
interval dt. Work done by this force is

  dW = FdS

 but   dS = Rdθ  

 So,  dW = FRdθ
 ӽ Now FR is the torque  t due to force F so we have

 
dW d=t θ ....(i)

 ӽ If the torque is constant while angle changes from θ1 to θ2 then
  W = t (θ2 – θ1) = t∆θ  ...(ii)

 ӽ Thus, work done by the constant torque is equal to the product of the torque and angular displacement.
 ӽ We know that rate of doing work is the power input of torque so

 
P dW dt d dt P= = = =/ /t θ tω t ω( ) ; .

Analogy between Translatory and Rotatory Motion

 ӽ Each physical concept used to analyse rotational motion has its translational concomitant. Every law of physics 
governing rotational motion has a translational equivalent. 

Table: Analogy between translatory and rotatory motion

Rotational motion about a fixed axis Translatory motion

Mass, m Moment of inertia, I

 Angular speed, /ω θ= d dt  Translational speed, /v dx dt=

 Angular acceleration, /α ω= d dt  Translational acceleration, /a dv dt=

 Net torque, St α= I  Net force, SF ma=

 If 

 constant α

ω ω α

θ θ ω α

ω ω α θ θ
=







= +

= + +

= + −

f i

f i i

f i f

t

t t
1
2

2

2

2 2
ii( )






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


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 If 

 constant 
 

a

v v at

x x v t at

v v a x

f i

f i i
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 Work, W d
i

f= ∫ t θ
θ

θ
 Work, W F dxxx

x

i

j= ∫

Rotational kinetic energy, K IR =
1
2

2ω  Kinetic energy, K mv=
1
2

2

Power, P =tω Power, P Fv=

Angular momentum,
L I

L IE

=

=

ω

2

Linear momentum, p mv=

Net torque, /St = dL dt Net force, /SF dp dt=

Rolling Motion

 ӽ A motion that is a combination of rotational and translational motion, e.g.; a wheel rolling downs the road.

   

v cmv cm

+

v cm

v cm

2v cm

–v cm

Vcm =

Figure: Motion of wheel is sum of rotational and translational motion
 ӽ Rolling without slipping is combination of translation and rotation where the point of 

contact is instantaneously at rest.
 ӽ When object experiences pure translational motion, all of its points move with same 

velocity as CM; that is in the same direction and with same speed. v r v( ) = centre of mass 

 ӽ The object will also move in a straight line in the absence of a net external force.
 ӽ When an object experiences pure rotational motion about its centre of mass, all 

its points move at right angles to the radius in a plane perpendicular to the axis of 
rotation with a speed proportional to the distance from the axis of rotation.

 v r r( ) = ω

 ӽ Thus, points on opposite sides of the axis move in opposite directions, points on the 
axis do not move at all since r = 0 there vcentre of mass = 0 and points on the outer edge 
move at the maximum speed.

 ӽ When an object experiences rolling motion the point of the object in contact with the 

surface is instantaneously at rest, vpoint of contact = 0 and is the instantaneous axis of 
rotation. Thus, the centre of mass of the object moves with speed v Rcentre of mass = ω  
and the point farthest from the point of contact moves with twice that speed,

 
v v Rcmopposite the point of contact = =2 2 ω

Kinetic Energy of a Rolling Body

 ӽ If an object is rolling without slipping, then its kinetic energy can be expressed 
as the sum of the translational kinetic energy of its centre of mass plus the 
rotational kinetic energy about the centre of mass.

 Kinetic energy of a rolling body = translational kinetic energy (Kr) + rotational 
kinetic energy (KR) 

= + = +










1
2

1
2

1
2

12 2 2
2

2
Mv I Mv

K

R
Kω (where  is the radius of gyrration)

 ӽ The angular velocity is of course related to the linear velocity of the centre of mass, so the energy can be expressed 
in terms of either of them as the problem dictates, such as in the rolling of an object down an incline.

Figure: Wheel of radius 
R in pure translational 

motion

pure translation

Figure: Wheel of radius R in 
pure rotational motion

pure rotational

Rolling without slipping

Figure: Wheel of Radius R in 
Rolling Without Slipping
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 ӽ The moment of inertia used must be the moment of 
inertia about the centre of mass. If it is known about 
some other axis, then the parallel axis theorem may be 
used to obtain the needed moment of inertia.

 ӽ When a body rolls down an inclined plane of inclination 
θ without slipping its velocity at the bottom of incline is 
given by

 

v
h

K

R

=
+

2

1
2

2

g

 ӽ When a body rolls down on an inclined plane without 
slipping, its acceleration down the inclined plane is 
given by

 a
K

R

=
+

gsinθ

1
2

2

 ӽ When a body rolls down on an inclined plane 
without slipping, time taken by body to reach bottom 
is given by

 

t

l
K

R
=

+








2 1

2

2

gsinθ

PRACTICE TIME

Centre of Mass and its Motion

1. The centre of mass of a body:
(a) lies always outside the body
(b) may lie within, outside or on the surface of the 

body
(c) lies always inside the body
(d) lies always on the surface of the body

2. Three identical spheres, each of mass 1 kg are kept as 
shown in figure, touching each other, with their cen-
tres on a straight line. If their centres are marked P, 
Q, and R respectively, the distance of centre of mass 
of the system from P is:

P Q R

(a) 
PQ PR QR+ +

3
 (b) 

PQ PR+
3

(c) 
PQ QR+

3
 (d) 

PR QR+
3

3. Two identical particles are located at 
 
x y and with 

reference to the origin of three-dimensional coordi-
nate system. The position vector of centre of mass of 
the system is given by:
(a) 

 
x y−  (b) 

 
x y+

2
(c) ( )

 
x y−  (d) 

 
x y−

2

4. The centre of mass of three bodies each of mass 1 kg 
located at the points (0, 0), (3, 0), and (0, 4) in the XY-
plane is:

(a) 
4
3

1,






  (b) 

1
3

2
3

,








(c) 
1
2

1
2

,






  (d) 1

4
3

,








5. Two spheres A and B of masses m and 2 m and radii 2 R  
and R respectively are placed in contact as shown. 
The CM of the system lies:

A

B

2R R

(a) inside A
(b) inside B
(c) at the point of contact
(d) None of these

6. The motion of a rigid body which is not pivoted or 
fixed in some way is either a pure ___A___ or a com-
bination of translation and rotation. The motion of a 
rigid body which is pivoted or fixed in some way is 
___B___ Here, A and B refer to:
(a) rotation and translation
(b) translation and rotation
(c) translation and the combination of rotation and 

translation
(d) None of the above

7. In rotation of a rigid body about a fixed axis, every 
___A___ of the body moves in a ___B___, which lies 
in a plane ___C___ to the axis and has its centre on 
the axis. Here, A, B, and C refer to:
(a) particle, perpendicular, and circle
(b) circle, particle, and perpendicular
(c) particle, circle, and perpendicular
(d) particle, perpendicular, and perpendicular
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8. Consider the following statements and choose for 
correct option.
I. Position vector of centre of mass of two particles 

of equal mass is equal to the position vector of 
either particle.

II. Centre of mass is always at the mid-point of the 
line joining two particles.

III. Centre of mass of a body can lie where there is 
no mass.

(a) I and II (b) II only
(c) III only (d) I, II, and III

9. The motion of binary stars, S1, and S2 is the combina-
tion of ___X___ and ___Y___ Here, X and Y refer to:

(a) motion of the CM and motion about the CM
(b) motion about the CM and motion of one star
(c) position of the CM and motion of the CM
(d) motion about CM and position of one star

10. Three masses are placed on the x-axis: 300 g at origin, 
500 g at x = 40 cm and 400 g at x = 70 cm. The dis-
tance of the centre of mass from the origin is:
(a) 40 cm (b) 45 cm
(c) 50 cm (d) 30 cm

11. A body A of mass M while falling vertically down-
wards under gravity breaks into two parts; a body B 
of mass M/3 and a body C of mass 2/3 M. The centre 
of mass of bodies B and C taken together shifts com-
pared to that of body A:

(a) does not shift
(b) depends on height of breaking
(c) towards body B
(d) towards body C

12. A system consists of three particles, each of mass m 
and located at (1, 1), (2, 2), and (3, 3). The coordi-
nates of the centre of mass are:
(a) (1, 1) (b) (2, 2)
(c) (3, 3) (d) (6, 6)

13. Position vector of centre of mass of two particles sys-
tem is given by:

(a) 
  
R

m r m r

m m
=

−
+

1 1 2 2

1 2

 (b) R
m m

r

r r

r


 
 

=
⋅

+
1 2 2

2

1

1

(c) R
m r m r

r r


 
 =

+

+
1 1 2 2

1 2

 (d) R
m m r

m m

r
 

=
+
+

1 1 2 2

1 2

14. The position of centre of mass of a system of particles 
does not depend upon the:
(a) mass of particles

(b) symmetry of the body
(c) position of the particles
(d) relative distance between the particles

15. The mass per unit length of a non-uniform rod of 
length L varies m x= λ λ where  is constant.  The 
centre of mass of the rod will be at:

(a) 
2
3

L  (b) 
3
2

L

(c) 
1
2

L  (d) 
4
3

L

16. The motion of the centre of mass depends on:
(a) total external forces (b) total internal forces
(c) Sum of (a) and (b) (d) None of these

Angular Velocity and its Relationship 
with Linear Velocity

17. A pulley fixed to the ceiling carries a string with 
blocks of mass m and 3 m attached to its ends. The 
masses of string and pulley are negligible. When the 
system is released, its centre of mass moves with what 
acceleration?

(a) 0 (b) −
g
4

(c)
 

g
2  

(d)
 −

g
2

18. In rotatory motion, linear velocities of all the parti-
cles of the body are:
(a) same (b) different
(c) zero (d) Cannot say

19. A wheel of moment of inertia 2.5 kg m2 has an ini-
tial angular velocity of 40 rad/s. A constant torque of  
10 N m acts on the wheel. The time during which the 
wheel is accelerated to 60 rad/s2 is:
(a) 4.4 s (b) 6 s
(c) 5 s (d) 2.5 s

20. A rod PQ of mass M and length L is hinged at end 
P. The rod kept horizontal by a massless string 
tied to point Q as shown in the figure. When 
string is cut, the initial angular acceleration of the 
rod is:

P Q

L

(a) 
3
2

g
L

 (b) 
g
L

 

(c) 
2g
L

 (d) 
2
3

g
L
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21. A solid cylinder of mass 50 kg and radius 0.5 m is, 
free to rotate about the horizontal axis. A massless 
string is wound round the cylinder with one end 
attached to it and other hanging freely. Tension in the 
string required to produce an angular acceleration of 
2 revolution s−2 is:
(a) 25 N (b) 50 N
(c) 78.5 N (d) 157 N

22. A wheel rotates with a constant acceleration of  
2.0 rad/s2. If the wheel starts from rest, the number of 
revolutions it makes in first 10 seconds is:
(a) 8 (b) 16
(c) 24 (d) 32

23. A rigid body rotates about a fixed axis with variable 
angular velocity equal to (a − bt) at time t where a 
and b are constants. The angle through which it 
rotates before it comes to rest is:

(a) 
a

b

2

 (b) 
a

b

2

2
 (c) 

a

b

2

4
 (d) 

a

b

2

22

24. A round disc of moment of inertia I2 about its axis 
perpendicular to its plane and passing through its 
centre is placed over another disc of moment of iner-
tia I1 rotating with an angular velocity ω about the 
same axis. The final angular velocity of the combina-
tion of disc is:

(a) 
I

I I
2

1 2

ω
+

 (b) ω

(c) 
I

I I
1

1 2

ω
+  (d) I I

I

1 2

1

+( )ω

25. An athlete throws a discus from rest to a final angular 
velocity of 15 rad/s in 0.270 s before releasing it. Dur-
ing acceleration, discus moves a circular arc of radius 
0.810 m. Acceleration of discus before it is released is:
(a) 45 m/s2 (b) 182 m/s2

(c) 187 m/s2 (d) 192 m/s2

26. Two bodies of masses 2 kg and 4 kg are moving 
with velocities 2 m/s and 10 m/s respectively along 
same direction. Then the velocity of their centre of 
mass will be:
(a) 8.1 m/s (b) 7.3 m/s
(c) 6.4 m/s (d) 5.3 m/s

27. In the figure shown, ABC is a uniform wire. If centre 
of mass of wire lies vertically below point A, then 
BC
AB  is close to:

A

CB
60°

(a) 1.85 (b) 1.5
(c) 1.37 (d) 3

28. A circular disc of radius R is removed from a bigger 
circular disc of radius 2R such that the circumfer-
ences of the discs coincide. The centre of mass of the 
new disc is α/R from the centre of the bigger disc. The 
value of α is:
(a) 1/4 (b) 1/3
(c) 1/2 (d) 1/6

29. Which of the following is incorrect?
(a) 

  
v r= ×ω  (b) 

  
a v r= ×

(c) a
d

dt
=

ω
 (d) None of these

30. Concrete mixture is made by mixing cement, stone 
and sand in a rotating cylindrical drum. If the drum 
rotates too fast, the ingredients remain stuck to the 
wall of the drum and proper mixing of ingredients 
does not take place. The maximum rotational speed 
of the drum in revolutions per minute (rpm) to 
ensure proper mixing is close to (take the radius of 
the drum to be 1.25 m and its axle to be horizontal):
(a) 27 (b) 0.4
(c) 1.3 (d) 8

31. Angular velocity of each particle of a rotating rigid 
body about axis of rotation is:
(a) same
(b) different
(c) depends on relative position
(d) None of these

32. A wheel rotates with a constant acceleration of  
4.0 rad/s2. If the wheel starts from rest, the number 
of revolutions it makes in the first 10 seconds will be 
approximately:
(a) 8 (b) 31
(c) 24 (d) 32

33. A cord is wound over the rim of a flywheel of mass 
20 kg and radius 25 cm. A mass 2.5 kg attached to the 
cord can fall under gravity. The angular acceleration 
of the flywheel is:
(a) 25 rad/s2 (b) 20 rad/s2

(c) 10 rad/s2 (d) 5 rad/s2

34. Initial angular velocity of a circular disc of mass M is 
ω1 . Then, two small spheres of m are attached gently 
to two diametrically opposite points on the edge of 
the disc. What is the final angular velocity of the disc?

(a) 
M m

M

+





ω1  (b) 

M m

m

+





ω1

(c) 
M

M m+






4 1ω  (d) 

M

M m+






2 1ω

35. A rope of negligible mass is wound around a hollow 
cylinder of mass 3 kg and radius 40 cm. What is the 
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angular acceleration of the cylinder, if the rope is 
pulled with a force of 30 N? Assume that there is no 
slipping:
(a) 10 rad/s2 (b) 15 rad/s2

(c) 20 rad/s2 (d) 25 rad/s2

36. When the disc rotates with uniform angular velocity. 
Which of the following is not true?
(a) The sense of rotation remains same.
(b) The orientation of the axis of rotation remains 

same.
(c) The speed of rotation is non-zero and remains 

same.
(d) The angular acceleration is non-zero and 

remains same.
37. A flywheel of moment of inertia 3 × 102 kgm2 is 

rotating with uniform angular speed of 4.6 rad/s. If 
a torque of 6.9 × 102 N m retards the wheel, then the 
time in which the wheel comes to rest is:
(a) 1.5 s (b) 2 s
(c) 0.5 s (d) 1 s

38. A thin circular ring of mass m and radius r is rotating 
about its axis with a constant angular momentum, ω. 
Four objects each of mass, m are kept gently to the 
opposite ends of two perpendicular diameters of the 
ring. The angular velocity of the ring will be:

(a) 
M

M m

ω
+







4

 (b) 
( )M m

M

+ 4 ω

(c) 
( )M m

M m

−
+
4
4

ω
 (d) 

M

m

ω
4









39. If the frequency of the rotating platform is v and the 
distance of a boy from the centre is r, what is the area 
swept out per second by the line connecting the boy 
to the centre?
(a) πrv  (b) 2πrv

(c) πr v2
 (d) 2 2πr v

40. A thin and circular disc of mass M and radius R is 
rotating in a horizontal plane about an axis passing 
through its centre and perpendicular to its plane with 
an angular velocity ω. If another disc of same dimen-
sions but of mass M/4 is placed gently on the first disc 
coaxially, then the new angular velocity of the system is:
(a) 5ω/4 (b) 2ω/3
(c) 4ω/5 (d) 3ω/2

41. A uniform rod of length l and mass m is free to rotate 
in a vertical plane about A. the rod initially in hori-
zontal position is released. The initial angular accel-
eration of rod is:

[Hint: Moment of inertia of rod about A is 
ml2

3
.]

(a) 
3
2
g
l

 (b) 
2
3

l

g

(c) 
3
2 2

g
l

 (d) m
l

g
2

42. When a ceiling fan is switched on, it makes 10 revo-
lutions in the first 3 s. Assuming a uniform angular 
acceleration, how many rotations it will make in the 
next 3 s?
(a) 10 (b) 20
(c) 30 (d) 40

43. A uniform rod of mass M and length L is free to 
rotate in XY-plane, i.e., about y-axis. If a force of 
F i j k= + +( )3 2 6    N  is acting on (L/2, 0, 0) in the 
situation as shown in figure. The angular acceleration 
of rod is: (Take, M = 6 kg, L = 4 m)

Y

X

Z

(a) − +
3
2

1
2

i k   (b) −
3
2

j

(c) 
1
2

k  (d) 4 j

44. A tube of length L is filled completely with an incom-
pressible liquid of mass m and closed at both ends. 
The tube is then rotated in a horizontal plane about 
one of its ends with a uniform angular velocity, ω. 
The force exerted by the liquid at the other end is:

(a) M Lω2 2/  (b) M Lω2

(c) M Lω2 4/  (d) M Lω2 2 2/

45. If 2 kg mass is rotating on a circular path of radius 
0.8 m with angular velocity of 44 rad/sec. If radius of 
the path becomes 1 m, then what will be the value of 
angular velocity?
(a) 28.16 rad/sec (b) 19.28 rad/sec
(c) 8.12 rad/sec (d) 35.26 rad/sec

Torque and Angular Momentum

46. Angular momentum of a body is defined as the prod-
uct of:
(a) mass and angular velocity
(b) centripetal force and radius
(c) linear velocity and angular velocity
(d) moment of inertia and angular velocity

47. The drive shaft of an automobile rotates at 3600 
rpm and transmits 80 HP up from the engine to the 
rear wheels. The torque developed by the engine is:
(a) 16.58 Nm (b) 0.022 Nm
(c) 158.31 Nm (d) 141.6 Nm

48. A particle of mass 1 kg is moving along the line  
y = x + 2 (here x and y are in metres) with speed 2 
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m/s. The magnitude of angular momentum of parti-
cle about origin is:
(a) 4 kg m2s-1 (b) 2√2 kg m2s-1

(c) 4√2 kg m2s-1 (d) 2 kg m2s-1

49. In an orbital motion, the angular momentum vector is:
(a) along the radius vector
(b) parallel to the linear momentum
(c) in the orbital plane
(d) perpendicular to the orbital plane

50. A rigid horizontal smooth rod AB of mass 0.75 kg 
and length 40 cm can rotate freely about a fixed verti-
cal axis through its mid-point O. Two rings each of 
mass 1 kg initially at rest are placed at a distance of 
10 cm from O on either side of the rod. The rod is set 
in rotation with an angular velocity of 30 radian per 
sec and when the rings reach the ends of the rod, the 
angular velocity in rad/sec is:
(a) 5 (b) 10
(c) 15 (d) 20

51. A couple consisting of two forces F1 and F2 each 
equal to 5 N is acting at the rim of a disc of mass 2 
kg and radius ½ m for 5 sec. Initially, the disc is at 
rest, the final angular momentum of the disc is:

(a) 15 (b) 20
(c) 25 (d) 30

52. A particle is moving along a straight line parallel to 
x-axis with constant velocity. Its angular momentum 
about the origin:
(a) decreases with time (b) increases with time
(c) remains constant (d) is zero

53. A solid sphere is rotating in free space. If the radius of 
the sphere is increased keeping mass same which one 
of the following will not be affected?
(a) Moment of inertia
(b) Angular momentum
(c) Angular velocity
(d) Rotational kinetic energy

54. The radius vector and linear momentum are respec-

tively given by vectors 2 2 3i j k i j k     + + − + and . Then 
the angular momentum is:
(a) 2 4i k −  (b) 4 8i k −

(c)
 

2 4 2i j k − +
 

(d)
 4 8i j−

55. A mass is whirled in a circular path with constant 
angular velocity and its angular momentum is L. If 
the string is now halved keeping the angular velocity 
the same, the angular momentum is:
(a) L/4 (b) L/2
(c) L (d) 2L

56. The position of a particle is given j  by 
   r i k= + −2 j

and its linear momentum is given by 
   p i j k= + −3 4 2 .  

Then its angular momentum, about the origin is per-
pendicular to:
(a) yz-plane (b) z-axis
(c) y-axis (d) x-axis

57. If r denotes the distance between the Sun and the 
Earth, then the angular momentum of the Earth 
around the Sun is proportional to:

(a) r r3 /  (b) r

(c) r  (d) r2

58. If I is the moment of inertia and E is the kinetic 
energy of rotation of a body, then its angular momen-
tum will be:
(a) ( )EI  (b) 2EI

(c) E I/  (d) ( )2EI

59. A particle of mass m in the XY-plane with a velocity v 
along the straight line AB. If the angular momentum 
of the particle with respect to origin O is LA when it 
is at B, then:

Y

A
B

XO

(a) L LA B>

(b) L LA B=

(c) The relationship between LA and LB depends 
upon the slope of the line AB

(d)   < A BL L

60. Total angular momentum of a rotating body 
remains constant, if the net torque acting on the 
body is:
(a) zero (b) maximum
(c) minimum (d) unity

Equilibrium of a Rigid Body

61. Four equal and parallel forces are acting on a rod 
of length 100 cm, as shown in figure, at distances of  
20 cm, 40 cm, 60 cm, and 80 cm respectively from 
one end of the rod. Under the influence of these 
forces, the rod: (neglecting its weight)
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(a) experiences no torque
(b) experiences torque
(c) experiences a linear motion
(d) experiences torque and also a linear motion

62. A uniform horizontal metre scale of mass m is sus-
pended by two vertical strings attached to its two 
ends. A body of mass 2 m is placed on the 75 cm 
mark. The tensions in the two strings are in the 
ratio is:
(a) 1:2 (b) 1:3
(c) 2:3 (d) 3:4

63. A metre stick is balanced on a knife edge at its cen-
tre. When two coins, each of mass 5 g are put one 
on top of the other at the 12.0 cm mark, the stick is 
found to be balanced at 45.0 cm. What is the mass 
of the metre stick?
(a) 56 g (b) 66 g
(c) 76 g (d) 86 g

64. A rigid rod of length 2 L is acted upon by some 
forces. All forces labelled F have the same magnitude. 
Which cases have a non-zero net torque acting on the 
rod about its centre?

(a) I and II only
(b) II and III only
(c) I and III only
(d) The net torque is zero in all cases

Moment of Inertia

65. The moment of inertia of a ___A___ body about an 
axis ___B___ to its plane is equal to the sum of its 
moments of inertia about two ___C___ axes concur-
rent with perpendicular axis and lying in the plane of 
the body. Here, A, B, and C refer to:
(a) three dimensional, perpendicular, and perpen-

dicular
(b) planar, perpendicular, and parallel
(c) planar, perpendicular, and perpendicular
(d) three dimensional, parallel, and perpendicular

66. A thin rod of length l and mass m is bent at mid-
point O at angle of 60°. The moment of inertia of the 
rod about an axis passing through O and perpendic-
ular to the plane of the rod will be:

(a) 
ml2

3
 (b) 

ml2

6

(c) 
ml2

8
 (d) 

ml2

12

67. Three-point masses, each of mass, m are placed at the 
corner of an equilateral triangle of side, l. Then the 
moment of inertia of this system about an axis along 
one side of the triangle is:

(a) 3 2ml  (b) ml2

(c) 
3
4

2ml  (d) 
3
2

2ml

68. The moment of inertia of a uniform circular disc of 
radius, R and mass, M about an axis passing from the 
edge of the disc and normal to the disc is:
(a) MR2  (b) 

1
2

2MR

(c) 
3
2

2MR  (d) 
7
2

2MR

69. Moment of inertia of a hollow cylinder of mass M 
and radius r about its own axis is:

(a) 
2
3

2  Mr  (b) 
2
5

2Mr

(c)
 

1
3

2Mr
 

(d) Mr2

70. A constant torque of 3.14 N m is exerted on a piv-
oted wheel. If the angular acceleration of the wheel is  
4π rad/s2, then the moment of inertia of the wheel is:
(a) 0.25 kg m2 (b) 2.5 kg m2

(c) 4.5 kg m2 (d) 25 kg m2

71. Which of the following has the highest moment of 
inertia when each of them has the same mass and the 
same outer radius:
(a) a ring about its axis, perpendicular to the plane 

of the ring.
(b) a disc about its axis, perpendicular to the plane 

of the disc.
(c) a solid sphere about one of its diameters.
(d) a spherical shell about one of its diameters.

72. The moment of inertia of a thin uniform rod of mass 
M and length l about an axis perpendicular to the rod 
through its centre is I. The moment of inertia of the 
rod through its end point is:
(a) 

I

4
 (b) 

I

2

(c) 2I (d) 4I

73. The correct relation between moment of inertia I, 
radius of gyration K and mass M of the body is:
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(a) K I M= 2  (b) K IM= 2

(c) K
M

I
=  (d) K

I

M
=

74. The radius of gyration of a uniform rod of length L 
about an axis passing through its centre of mass is:

(a) 
L

12
 (b) 

L2

12

(c) 
L

3
 (d) L

2

75. A thin wire of length l and mass m is bent in the form 
of a semicircle as shown in the figure. Its moment of 
inertia about an axis joining its free ends will be:

m

O
r

(a) ml2  (b) 0

(c) ml2 2/π  (d) ml2 22/ π
76. If two circular discs A and B are of same mass but of 

radii r and 2r respectively, then the moment of inertia 
of A is:
(a) the same as that of B.

(b) twice that of B.

(c) four times that of B.

(d) ¼ that of B.

77. For a given mass and size, moment of inertia of a 
solid disc is:
(a) more than that of a ring
(b) less than that of a ring
(c) equal to that of a ring
(d) depend on the material of ring and disc

Kinetic Energy, Work and Power of 
Rotational Motion

78. A solid cylinder of mass 20 kg rotates about its axis 
with angular speed 100 rad/s. The radius of the cylin-
der is 0.25 m. The kinetic energy associated with the 
rotation of the cylinder is:
(a) 3025 J (b) 3225 J
(c) 3250 J (d) 3125 J

79. A child is standing with folded hands at the centre of 
a platform rotating about its central axis. The kinetic 
energy of the system is K. The child now stretches 
his arms so that the moment of inertia of the system 
becomes doubled. The kinetic energy of the system 
now is:
(a) 2K (b) K/2
(c) K/4 (d) 4K

80. A circular disc rolls down an inclined plane. The ratio 
of rotational kinetic energy to total kinetic energy is:
(a) 1/2 (b) 1/3
(c) 2/3 (d) 3/4

81. A mass m moves in a circle on a smooth horizon-
tal plane with velocity v0 at a radius R0. The mass is 
attached to a string which passes through a smooth 
hold in the plane as shown in figure:

m

v0

 The tension in the string is increased gradually and 

finally m moves in a circle of radius
 

R
0

2
. The final 

value of the kinetic energy is:

(a)
 

1

4
0

2
mv

 
(b)

 
2

0

2
mv

(c)
 

1

2
0

2
mv

 
(d)

 
mv

0

2

Rolling Motion

82. A tangential force F acts at the top of a thin spherical 
shell of mass m and radius R. The acceleration of the 
shell, if it rolls without slipping is:

F

R

(a) 
5
6

F

m
 (b) 

6
5

F

m

(c) 
7
2

m

F  (d) 
2
7

m

F

83. A solid sphere, disc and solid cylinder all of the same 
mass and made up of same material are allowed to 
roll down (from rest) on inclined plane, then:
(a) solid sphere reaches the bottom first
(b) solid sphere reaches the bottom late
(c) disc will reach the bottom first
(d) all of them reach the bottom at the same time

84. An inclined plane makes an angle 30° with the hori-
zontal. A solid sphere rolling down this inclined 
plane from rest without slipping has a linear accel-
eration equal to:
(a) g/3 (b) 2g/3
(c) 5g/7 (d) 5g/14
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85. A uniform solid cylindrical roller of mass m is being 
pulled on a horizontal surface with force F parallel to 
the surface and applied at its centre. If the accelera-
tion of the cylinder is a and it is rolling without slip-
ping, then the value of F is:
(a) ma (b) 5/3 ma
(c) 3/2 ma (d) 2 ma

86. A body rolls down an inclined plane. If its kinetic 
energy of rotation is 40% of its kinetic energy of 
translation motion, then the body is:
(a) hollow cylinder (b) ring
(c) solid disc (d) solid sphere

87. A solid cylinder of mass 2 kg and radius 0.1 m rolls 
down an inclined plane of height 3 m without slip-
ping. Its rotational kinetic energy when it reaches the 
foot of the plane would be:
(a) 22.7 J (b) 19.6 J
(c) 10.2 J (d) 9.8 J

88. The acceleration of a disc (mass m and radius R) roll-
ing down an incline of angle θ without slipping is:
(a) 2/3 g sin θ (b) 5/7 g sin θ
(c) 1/2 g sin θ (d) 7/5 g sin θ

89. A ball rolls without slipping. The radius of gyration of 
the ball about an axis passing through its centre of mass 
is K. If radius of the ball be R, then the fraction of total 
energy associated with its rotational energy will be:

(a) 
K

R

2

2
 (b) 

K

K R

2

2 2+

(c) 
R

K R

2

2 2+
 (d) 

K R

R

2 2

2

+

90. A sphere rolls down on an inclined plane of inclina-
tion 6. What is the acceleration as the sphere reaches 
the bottom?

(a) 
5
7

gsinθ  (b) 
3
5

gsinθ

(c) 
2
7

gsinθ  (d) 
2
5

gsinθ

91. A hollow smooth uniform sphere A of mass m rolls 
without sliding on a smooth horizontal surface. It 
collides head on elastically with another stationary 
smooth solid sphere B of the same mass m and same 
radius. The ratio of kinetic energy of B to that of A 
just after the collision is:

A B

v0

(a) 1:1 (b) 2:3
(c) 3:2 (d) None of these

92. A solid sphere, disc, and solid cylinder all of the same 
mass and made of the same material are allowed to 
roll down (from rest) on an inclined plane, then

(a) solid sphere reaches the bottom first.
(b) solid sphere reaches the bottom last.
(c) disc will reach the bottom first.
(d) all reach the bottom at the same time.

93. A solid cylinder of mass m and radius R rolls down 
inclined plane without slipping. The speed of its CM 
when it reaches the bottom is:

h

(a) 2gh  (b) 4 3g /h

(c) 3 4/ gh  (d) 4gh

94.  Match the following:

Column I Column II

A

Ring

ωO

(i) Rotational work done by 
the friction is negative till 
pure rolling begins

B

Cylinder

ωO

(ii) Translational work done 
is positive till pure rolling 
starts

C

Solid sphere

ωO

(iii) When pure rolling begins 
velocity of centre of mass is 
minimum

D

Hollow sphere

ωO

(iv) Takes maximum time for 
pure rolling to begin

A B C D

(a) (i), (ii) (i) (i), (ii) (i), 
(iii)

(b) (ii) (iii) (iv) (i)

(c) (i), (ii), (iv) (i), (ii) (i), (ii), 
(iii)

(i), 
(ii)

(d) (i), (ii) (i), 
(iii)

(i), (ii), 
(iii)

(iv)

95. The ratio of the acceleration for a solid sphere (mass 
m and radius R) rolling down an incline of angle θ 
without slipping and slipping down the incline with-
out rolling is:
(a) 5 : 7 (b) 2 : 3
(c) 2 : 5 (d) 7 : 5

96. A small object of uniform density rolls up a curved 
surface with an initial velocity v. It reaches up to a 
maximum height of 3 v2/4 g with respect to the initial 
position. The object is:



209

System of Particles and Rotational Motion | 7 |Chapter

(a) ring (b) solid sphere
(c) hollow sphere (d) disc

97. Two identical uniform solid spherical ball A and B of 
mass m each are placed on the fixed wedge as shown in 
figure. Ball B is kept at rest and it is released just before 
two ball collides. Ball A rolls down without slipping on 
inclined plane and collide elastically with ball B. The 
kinetic energy of ball A just after the collision with B is:

A

B

h/2
h

θ

(a) 
m hg

7
 (b) 

m hg
2

(c) 
2

5
m hg  

 (d) 
7

5
m hg

98. A cylinder of mass Mc and sphere of mass Ms are 
placed at points A and B of two inclines, respectively 
(see figure). If they roll on the incline without sipping 
such that their accelerations are the same, then the 
ratio

 

sin

sin

θ
θ

c

s

 is:

MCA

B

C D

M
S

θS

θC

(a) 
8
7

 (b) 
15
14

(c) 
8
7

 (d) 
15
14

HIGH-ORDER THINKING SKILL

Centre of Mass and its Motion

1. Three identical metal balls, each of radius r are placed, 
touching each other on a horizontal surface. When the 
centres of the three balls are joined, an equilateral triangle 
is formed. The centre of mass of the system is located at:
(a) the centre of one of the balls
(b) the line joining the centre of any two balls
(c) the point of intersection of the medians
(d) the horizontal surface

2. The centre of mass of a right circular cone of height h, 
radius R and constant density ρ is at:

(a) 0 0
4

, ,
h






  (b) 0 0

3
, ,

h







(c) 0 0
2

, ,
h






  (d) 0 0

3
8

, ,
h








Angular Velocity and its Relationship 
with Linear Velocity

3. The linear velocity of a rotating body is given by    
v r= ×ω ω,  where is the angular velocity and 


r  is 

the radius vector. The angular velocity of a body is    ω = − +i j k2 2  and the radius vector 
   
r j k v= −4 3 , | | then is:
(a) √29 units (b) √31 units
(c) √37 units (d) √41 units

4. Initial angular velocity of a circular disc of mass M is 
ω1. The two small spheres of mass m are attached gen-
tly to two diametrically opposite points on the edge of 
the disc. What is the final angular velocity of the disc?

(a) 
M m

M

+





ω1  (b) 

M m

m

+





ω1

(c) 
M

M m+






4 1ω  (d) 

M

M m+






2 1ω

Torque and Angular Momentum

5. A rod of weight W is supported by two parallel knife 
edges A and B and is in equilibrium in a horizon-
tal position. The knives are at a distance d from each 
other. The centre of mass of the rod is at distance x 
from A. The normal reaction on A is:

(a) 
Wx

d
 (b) 

Wd

x

(c) 
W d x

x

( )−
 (d) 

W d x

d

( )−

6. A circular platform is free to rotate in horizontal 
plane about a vertical axis passing through its cen-
tre. A tortoise is sitting at the edge of the platform. 
Now, the platform is given an angular velocity ω0. 
When the tortoise moves along a chord of the plat-
form with a constant velocity (with respect to the 
platform), the angular velocity of the platform ωt 
will vary with time t as:

(a) ω (t)

t

ω0
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(b) ω (t)

t

ω0

(c) ω (t)

t

ω0

(d) ω (t)

t

ω0

Equilibrium of a Rigid body

7. Choose the correct option:

Column I Column II

A The equilibrium 
of a body is said 
to stable if

(i) on being slightly 
disturbed, it shows 
no tendency to 
come back to its 
original position 
and moves away 
from it

B The body is said 
to be in unstable 
equilibrium if

(ii) on being slightly 
displaced, it re-
mains in the new 
position

C A body is said 
to be in neutral 
equilibrium if

(iii) on being slightly 
disturbed, it tends 
to come back to its 
original position

(a) A-(ii), B-(iii), C-(i) (b) A-(iii), B-(i), C-(ii)
(c) A-(i), B-(ii), C-(iii) (d) None of these

Moment of Inertia

8. Let I1 and I2 be the moments of inertia of two bod-
ies of identical geometrical shape. If the first body is 
made of aluminium and the second of iron, then:

(a) I I1 2<  (b) I I1 2=

(c) I I1 2>  (d) I
I

1
2

2
=

9. From a solid sphere of mass M and radius R, a cube of 
maximum possible volume is cut. Moment of inertia 
of cube about an axis passing through its centre and 
perpendicular to one of its faces is:

(a) 
MR2

32 2π
 (b) 

MR2

16 2π

(c) 
4

9 3

2MR

π
 (d) 

4

3 3

2MR

π

10. A circular disc X of radius R is made from an iron 
plate of thickness t, and another disc Y of radius 4R 
is made from an iron plate of thickness t/4. Then the 
relation between the moment of inertia Ix and Iy is:

(a) I IY X=   32  (b) I IY X=   16

(c) I IY X=   (d) I IY X=   64

Kinetic Energy, Work and Power of 
Rotational Motion

11. A particle performing uniform circular motion has 
angular momentum L. If its angular frequency is 
doubled and its kinetic energy is halved, then the 
new angular momentum is:
(a) L/4 (b) 2L
(c) 4L (d) L/2

Rolling Motion

12. Suppose a body of mass M and radius R is allowed to 
roll on an inclined plane without slipping from its top 
most point A. The velocity acquired by the body, as it 
reaches the bottom of the inclined plane, is given by:

 
Given: 1

1
2

+ =







MR
β

B

T

R
A

hs

θ

(a) 2gh  (b) β ×2gh

(c) 
2gh

β
 (d) 

2gh

β
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NCERT EXEMPLAR PROBLEMS

Centre of Mass and its Motion

1. For which of the following does the centre of mass lie 
outside the body?
(a) A pencil (b) A shotput
(c) A dice (d) A bangle
[Hint: Centre of mass of a system (body) is a point 
that moves as though all the mass were concentrated 
there and all external forces were applied there.]

2. Which of the following points is the likely position of 
the centre of mass of the system shown in figure?

Hollow 
sphere

Sand

Air

R/2

R/2

·A

·C
B

(a) A (b) B

(c) C (d) D

Angular Velocity and its Relationship 

with Linear Velocity

3. When a disc rotates with uniform angular velocity, 
which of the following is not true?
(a) The sense of rotation remains same.
(b) The orientation of the axis of rotation remains 

same.
(c) The speed of rotation is non-zero and remains 

same.
(d) The angular acceleration is non-zero and 

remains same.
[Hint: The rate of change of angular velocity is 
defined as angular acceleration. If particle has angu-
lar velocity ω1 at time t1, and angular velocity ω2 at 
time t2, then angular acceleration α = ω2 – ω1/t2 – t1.]

4. A Merry-go-round, made of a ring-like platform 
of radius R and mass M, is revolving with angular 
speed ω. A person of mass M is standing on it. At 

one instant, the person jumps off the round, radially 
away from the centre of the round (as seen from the 
round). The speed of the round afterwards is:
(a) 2ω (b) ω (c) ω/2 (d) 0

Torque and Angular Momentum

5. A particle of mass m is moving in yz-plane with a 
uniform velocity v with its trajectory running paral-
lel to positive y-axis and intersecting z-axis at z = a.  
The change in its angular momentum about the ori-
gin as it bounces elastically from a wall at:

Z

Y

α v

(a) mva ex   (b) 2mva ex 

(c) ymv ex   (d) ymv ex 

[Hint: Angular momentum is an axial vector, i.e., 
always directed perpendicular to the plane of rotation 
and along the axis of rotation.]

Moment of Inertia

6. A uniform square plate has a small piece Q of an 
irregular shape removed and glued to the centre of 
the plate leaving a hole behind. The moment of iner-
tia about the z-axis is then

hole
xx

yy

Q °

(a) increased.
(b) decreased.
(c) the same.
(d) changed in unpredicted manner.
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ASSERTION AND REASONS

 Directions: In the following questions, a statement of assertion is followed by a statement of reason. Mark 
the correct choice as:
(a) If both assertion and reason are true and reason is the correct explanation of assertion.
(b) If both assertion and reason are true but reason is not the correct explanation of assertion.
(c) If assertion is true but reason is false.
(d) If both assertion and reason are false.

Centre of Mass and its Motion

1. Assertion: Toppling is the application of the centre of 
mass.
Reason: Toppling stability determines the maximum 
angle that an object can be tilted before it will topple over.

2. Assertion: The reference frame does not decide the 
position of centre of mass.
Reason: Centre of mass depends only upon the rest 
mass of the body.

3. Assertion: The centre of mass of a body may lie where 
there is no mass.
Reason: The centre of mass does not depend upon the 
mass of the body.

Angular Velocity and its Relationship 
with Linear Velocity

4. Assertion: If the head of a right-handed screw rotates 
with the body, the screw advances in the direction of 
the angular velocity.
Reason: For rotation about a fixed axis, the angular 
velocity vector lies along the axis of rotation.

Torque and Angular Momentum

5. Assertion: A man sitting on a rolling table, when he 
stretches his arms horizontally, his speed is reduced.
Reason: Principle of conservation of angular 
momentum is applicable in this situation.

6. Assertion: A ladder is more apt to slip, when you are 
high up on it than when you just begin to climb.
Reason: At the high up on a ladder, the torque is large 
and on climbing up the torque is small.

7. Assertion: If a particle moves with a constant velocity, 
then angular momentum of this particle about any 
point remains constant.
Reason: Angular momentum has the units of Planck’s 
constant.

8. Assertion: A uniform disc of radius R is performing 
impure rolling motion on a rough horizontal plane as 
shown in figure. After some time, the disc comes to 

rest. It is possible only when v
R

0
0

2
=

ω
.

V0ω0

Reason: For a body performing pure rolling motion, 
the angular momentum is conserved about any point 
in space.

9. Assertion: For system of particles under central force 
field, the total angular momentum is conserved.
Reason: The torque acting on such a system is zero.

10. Assertion: A person standing on a rotating platform 
suddenly stretched his arms, the platform slows down.
Reason: A person by stretching his arms increases the 
moment of inertia and decreases angular velocity.

Equilibrium of a Rigid Body

11. Assertion: For a body to be in equilibrium it must 
satisfy both the conditions stated simultaneously.
Reason: (a) the vector sum of all the external forces 
acting on the body should vanish.

 (b)  the vector sum of all the external torque acting 
on the body should vanish.

Moment of Inertia.

12. Assertion: There are very small sporadic changes in 
the speed of rotation of the Earth.
Reason: Shifting of large air masses in the Earth’s 
atmosphere produce a change in the moment of 
inertia of the Earth causing its speed of rotation 
to change.

13. Assertion: Value of radius of gyration of a uniform 
rigid body depends on axis of rotation.
Reason: Radius of gyration is root mean square 
distance of particles of the body from the axis of 
rotation.

14. Assertion: The speed of whirlwind in a tornado is 
alarmingly high.

Reason: If no external torque acts on a body, its 
angular velocity remains conserved.
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Kinetic Energy, Work and Power of 
Rotational Motion

15. Assertion: When a body rolls down an inclined plane 
it has both kinetic and potential energy.
Reason: The rolling body follow the conservation law 
of mechanical energy.

16. Assertion: Power associated with torque is product of 
torque and angular speed of the body about the axis of 
rotation.
Reason: Torque in rotational motion is analogue to 
force in translatory motion.

Rolling Motion

17. Assertion: A sphere cannot roll on a smooth inclined 
surface.
Reason: The motion of a rigid body which is pivoted 
or fixed in some way is rotation.

18. Assertion: A motion that is a combination of 
rotational and translational motion is called rolling 
motion.
Reason: Example of rolling motion is a wheel rolling 
down the road.

19. Assertion: The velocity of a body at the bottom of an 
inclined plane of given height is more when it slides 
down the plane compared to when it rolling down the 
same plane.
Reason: In rolling down a body acquires both kinetic 
energy of translation and rotation.

20. Assertion: When an object experiences pure 
translational motion, all of its points move with the 
same velocity as the centre of mass; that is in the same 
direction and with the same speed v r v( ) = centre of mass.
Reason: When an object experiences pure rotational 
motion about its centre of mass, all of its points move 
at right angles to the radius in a plane perpendicular 
to the axis of rotation with a speed proportional to the 
distance from the axis of rotation, v r r( ) = ω .

ANSWER KEYS
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21 (d) 22 (b) 23 (b) 24 (c) 25 (a) 26 (b) 27 (c) 28 (b) 29 (b) 30 (a)

31 (a) 32 (b) 33 (c) 34 (c) 35 (d) 36 (d) 37 (b) 38 (a) 39 (c) 40 (c)
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11 (a) 12 (c)

NCERT Exemplar Problems
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1 (a) 2 (c) 3 (c) 4 (a) 5 (a) 6 (a) 7 (b) 8 (c) 9 (a) 10 (a)

11 (a) 12 (a) 13 (a) 14 (c) 15 (a) 16 (b) 17 (b) 18 (a) 19 (a) 20 (b)
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HINTS AND EXPLANATIONS

Practice Time

1 (b) Centre of mass depends on the distribution of 
mass in the body.

2 (b) Insert the given values,

 

x

y

CM

CM

PQ PR

PQ PR
 

and,

=
× + × + ×

+ +

=
+

=

1 0 1 1
1 1 1

3
0

3 (b) As we know that,

 


 

 

 

r
m r m r

m m

m x y

m
x y

=
+
+

=
+

=
+

1 1 2 2

1 2

2

2

( )

4 (d) As we know that,

 

X
m x m x m x

m m m

Y
m y m y

CM

CM

=
+ +
+ +

=
× + × + ×

+ +
=

=
+

1 1 2 2 3 3

1 2 3

1 1 2 2

1 0 1 3 1 0
1 1 1

1

++
+ +

=
× + × + ×

+ +

=

m y

m m m
3 3

1 2 3

1 0 1 0 1 4
1 1 1

4
3

 Therefore, the coordinates of centre of mass is 

1
4
3

, .








5 (c) The CM of the system lies at the point of contact.
6 (b) The motion of a rigid body which is not pivoted 

or fixed in some way is either a pure translation 
or a combination of translation and rotation. The 
motion of a rigid body which is pivoted or fixed in 
some way is rotation.

7 (c) In rotation of a rigid body about a fixed axis, every 
particle of the body moves in a circle, which lies in 
a plane perpendicular to the axis and has its centre 
on the axis.

8 (c) Centre of mass does not necessarily lie only where 
there is mass. It can lie outside the body as well. 
For example, centre of mass of circular ring lies in 
the centre of the ring where there is no mass.

9 (a) When no external force acts on the binary star, 
its CM will move like a free particle [see figure 
below]. From the CM frame, the two stars will 
seem to move in a circle about the CM with dia-
metrically opposite positions.

(i) Trajectories of two stars S1 (dotted line) and 
S2 (solid line) forming a binary system with 
their centre of mass C in uniform motion.

(ii) The same binary system, with the centre of 
mass, C at rest. So, to understand the motion 
of a complicated system, we can separate the 
motion of the system into two parts. So, the 
combination of the motion of the CM and 
motion about the CM could be described the 
motion of the system.

10 (a) As we know that,

 

X
m x m x m x

m m m

X

CM

CM

=
+ +
+ +

=
× + + ×

+

1 1 2 2 3 3

1 2 3

300 0 500 40 400 70
300 50

( ) ( )
00 400

500 40 400 70
1200

40

+

=
× + ×

=

XCM

cm

11 (a) Does not shift as no external force acts. The centre 
of mass of the system continues its original path. 
It is only the internal forces which come into play 
while breaking.

12 (b) The coordinate of CM of three particles are,

x
m x m x m x

m m m
=

+ +
+ +

1 1 2 2 3 3

1 2 3

 

and,

If,

Then,

y
y m y m y

m m m

m m m m

x
x x x

m
=

+ +
+ +

= = =

=
+ +( )

1 1 2 2 3 3

1 2 3

1 2 3

1 2 3 mm

m m m

y y y m

+ +
=

=
+ +( )

+ +
=

2

and
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=
+ +
+ +

= = =

y
y y y m

m m m
=

+ +( )
+ +

= 2

1 2 3

 So, coordinate of C of three particles are (2,2).
13 (d) By the definition, position vector of centre of mass of 

two particle system is such that the product of total 
mass of the system and position vector of centre of 
mass is equal to the sum of products of masses of two 
particles and their respective position vectors, i.e.,

 

m m R m r m r R
N r m r

m m
i

1 2 1 1 2 2
2 2

1 2

+( ) = + =
+
+

⋅
     

, ρ

14 (d) The position of centre of mass of a system depends 
upon mass, position and symmetry of the body.

 

R
m r

m

i i

i

CM = ∑
∑

15 (a) As we know that,

 

X
dm x

dm

d x

d

L

L

L

x x

x x

L

CM =

=

=

∫
∫
∫
∫

( )

( )

( )

( )

0

0

0

2

0

2
3

λ

λ

16 (a) The motion of the centre of mass depends on total 
external forces exerted on the body.

17 (c) When the system is released, the heavier mass 
moves downwards and the lighter one upwards. 
Thus, centre of mass will move towards the heav-
ier mass with acceleration.

a a
T

T

mg

3mg

3m

m

 

a
m m

m m
=

−
+









=

3
3

2

g

g

18 (b) In rotatory motion, linear velocities of all the par-
ticles of the body are different.

19 (c) Given that,
I =

=
=

=
=

=

=

−

−

2 5

40
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.  kg m
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α
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=
= +

=
−

−

ω ω α
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=
−

=

 

I

I

=

=
=

=
=
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=

−

−
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2
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ω
t

ω
t α

α
t

..
 rad
5

4 2

0

0

=
= +

=
−

− s

Using,

Substituting the values, 

ω ω α
ω ω

α

t

t

wwe get

 s

t =
−

=

60 40
4

5
20 (a) From the figure,

P

mg

L/2

 Torque on the rod = Moment of weight of the rod 
about P

 

t

t

= …

∴

= …

M
L

P
ML

g i

 Moment of inertia of rod about 

ii

As,

2

3

2

( )

( )

==

=

=

l

L ML

.

 Mg 

α

α

α

 From equations (i) and (ii), we get 

g
2 3

3

2

22L

21 (d) From the figure,
T

r

 

Tr l

T
l

r

mr

r
mr

=

=

= ×

=

=
× × ×

=

α
α

α
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22 (b) As we know that,

 

θ ω α

θ
π

= +

= + × ×

=

=

=

0
2

2

1
2

0
1
2

2 10

100

2

t t
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1100
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23 (b) Given that,

 

ω

ω ω

α
ω

ω ω αθ

= −

= = =

=

= −

= −

= +

a bt

t a

d

dt
d

dt
a bt

b

 At time,  

 If

0

2

0

2
0
2

,

( )

   is zero, 

 or 

ω

ω αθ

θ
ω
α

∴ = +

= −

=

0 2

2

2

0
2

0
2

2a

b

24 (c) The angular momentum of a disc of moment of 
inertia I1 and rotating about its axis with angular 
velocity ω is L I1 1= ω  when a round disc of 
moment of inertia I2 is placed on first disc, then 
angular momentum of the combination is,

 
L II2 1 2= +( ) ′ω

 In the absence of any external torque, angular 
momentum remains conserved, i.e., L1 = L2

 

I I I

I

II

1 1 2

1

1 2

ω ω

ω
ω

= +( ) ′

⇒ ′ =
+

25 (a) As we know that,

 

ω ω α

ω α

α
ω
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= +

= +

=

=
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0

2

0

15
0 270
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0 27
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or 
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 rad 
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.
. 00

45 2= −ms

26 (b) As we know that,

 


 

v
m v m v

m m
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+
+

=
× + ×

+
=

1 1 2 2

1 2

2 2 4 10
2 4
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27 (c) From the figure,
A

B (0, 0)

x

y C

Centre of mass, CMx
x

x
x

y
y

x y

y
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





 + 





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

+

⇒ +

2
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ρ ρ

ρ
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x
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y

x

=
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=
+

=

2

2

1 3
2

1 37.

28 (b) Let the mass per unit area be α. Then the mass of 
the complete disc,

2 R

RO

 

=  
=

= ( )
=

σ π

πσ

σ π

πσ

( )2

4

2

2

2

R

R

The mass of the removed disc R

R22

 Let us consider the above situation to be a com-
plete disc of radius 2R on which a disc of radius 
R of negative mass is superimposed. Let O be 
the origin. Then the above figure can be redrawn 
keeping in mind the concept of centre of mass as

 

4πσ
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R

O R

2 R

2

← →
• •
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29 (b) The incorrect statement is 
  
a v r= × .

30 (a) As we know that,

 

For just complete rotation  at top point

The rotational

v Rg=
  speed of the drum

g

The maximum rotational s

,

.

ω =

=

=

v

R

R

10
1 25

ppeed of the drum in 

revolutions per minute,

rpmω
π

( ) =
60
2

10
1..25

27=

31 (a) Angular velocity of each particle of a rotating rigid 
body about axis of rotation is same.

32 (b) As we know that,

 

θ ω α
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⇒ =

∴ =

= × × ×

0
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1
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t t
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33 (c) From the figure,
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−
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ccceleration of the flywheel,
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34 (c) Conservation of angular momentum gives,

 

1
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1
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2
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35 (d) Given that,
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m
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112
0 48
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.
 rad = −s

36 (d) Since, the disc rotates with uniform angular veloc-

ity. So the angular acceleration ∝
dw

dt
must be 

zero. So the option (d) is the only correct option.

37 (b) Given that,
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38 (a)  Initial angular momentum of ring, L I Mr= =ω ω2

 Final angular momentum of ring and four parti-
cles system, L Mr mr= +( ) ′2 24 ω

 As there is no torque on the system, therefore 
angular momentum remains constant,

 

Mr Mr mr

M

M m

2 2 24

4

ω ω

ω
ω

= +( ) ′

⇒ ′ =
+

39 (c) Area swept out per second = Area swept in one 
rotation × Number of rotations per unit time

 = πr v2

40 (c) According to conservation of angular momen-
tum,
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41 (a) The moment of inertia of the uniform rod about 
an axis through one end and perpendicular to 

length is 
ml2

3
. Where m is mass of rod and l is its 

length.

 Torque,t α= I  
acting on the centre of gravity of 

rod is given by

 

Put the values,
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42 (c) Given that,
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 As we know that,
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43 (b) Given that,
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As we know that, for a uniform rod
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 And, we also know that,
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44 (a) The centre of mass is at L/2 distance from the axis, 

Hence centripetal force, F M
L

C = 





2

2ω
.

45 (a) Mass (m) = 2 kg
Initial radius of the path (r1) = 0.8 m
Initial angular velocity (ω1) = 44 rad/s
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Final radius of the path ( ) 1 m

Initial moment of inertia
2r =

,,

kgm

and final moment of inertia, 
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From the law of conservation of angular  

momentum, 
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46 (d) As we know that,
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47 (c) Given that,
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As we know that,
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48 (b) The given equation of the line is y = x + 2.
At x = −2, y = 0 and at x = 0, y = 2
The line is drawn as shown in the figure.
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49 (d) If p be the linear momentum of a particle and r is 
its position vector from the point of rotation, then 
angular momentum

 
L r p

rp n

  


= ×

= sinθ

 Where n   is a unit vector in the direction of rota-
tion. Hence, angular momentum vector is perpen-
dicular to orbital plane.

50 (b) According to the conservation of angular momen-
tum,
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51 (c) Torque acting on disc is,

 

t = +
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From angular impulse momentum theorem,

 

t
t

t

t i

f

f

i

f

dt L L

L

L

∫ = −

× = −

=

5 5 0

25 Nms

52 (c) Suppose the particle of mass m is moving with 
speed v parallel to x-axis as shown in figure, then 
at any time t coordinates of P will be
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53 (b) Taking the same mass of sphere, if radius is 
increased, then moment of inertia, rotational 
kinetic energy and angular velocity will change 
but according to law of conservation of momen-
tum, angular momentum will not change.

54 (b) Given that,
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55 (a) As we know that,
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56 (d) As we know that,
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57 (d) As we know that,
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58 (c) From Kepler’s law of planetary motion,

 

L mvr

m
GM

r
r

L r

=

=

∝

59 (d) As we know that,
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60 (b) From the definition of angular momentum,
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L r p mv k

L mvr

= × = −

=

sin ( )

sin

, ,

f

f
Therefore  the magnitude of L is

== mvd

 where, d r= sinf  is the distance of closest 
approach of the particle to the origin. As d is same 
for both the particles.
Hence, LA=LB

61 (a) Torque and rate of change of angular momentum,

  or constant  

or 

t

t

=

=

d

dt
L( )

0
62 (b) Since, upward forces on the rod are equal to 

downward forces hence, the resultant force on the 
rod is zero and there is no linear motion. Moment 
of forces about one end of rod,

 

= − × + × − × + ×
= ×

F F F F

F

20 40 60 80

40

As it is not zero, hence the torqque acts on the rod.

63 (a) From the figure,

2 mgmg

0.5 m

0.75 m
T1

A B

T2

 

T T m

A

m m T

1 2 3

0 5 0 75 2 1

+ =

+ × = ×

g

Taking torques about  we get 

g g

,

. . 22

1

1

2

1
2

Similarly, taking torque about  

we get  g

B

T m

T

T

,

=

∴ =

64 (b) Let m be the mass of the metre stick concentrated 
at C, the 50 cm mark as shown in the figure.

A B
C

mg
10g

45 cm
50 cm12 cm

C ′

 In equilibrium, taking moments of forces about C, 
we get

 10 45 12 50 45

10 33 5

g g

g g

( ) ( )− = −
× = ×

=
×

=

m

m

10 33
5

66 g

− = −
× = ×

=
×

=

m

65 (a) By sign convention anticlockwise moment (or 
torque) is taken as positive while clockwise 
moment (or torque) is taken as negative.
In case I, net torque about its centre is

 
t = × + ×

=
F L F L

FL2

F

L L
F

 In case II, net torque about its centre is

 t = × + × + × =F L F
L

F L FL
2

5
2

F F
L/2L/2 L

F

 In case III, net torque about its centre is

 

t = − × + × − × + ×

=

F L F
L

F
L

F L
2 2

0

FF
L/2 L/2 L/2L/2

FF

66 (c) Planar, perpendicular and perpendicular. The 
moment of inertia of a planar body about an axis 
perpendicular to its plane is equal to the sum of its 
moments of inertia about two perpendicular axes 
concurrent with perpendicular axis and lying in 
the plane of the body.

67 (d) Hence, net moment of inertia through its middle 
point O is. 

 

  I
M L M L

ML ML
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

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
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

 + 





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
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
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1
3 2 2

1
3 2 2

1
3 8 8

2 2

2 2 




=
ML2
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68 (c) From the figure,
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l
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Moment of inertia about  is,BC

I m m m AD

AD AB

BC = + +

=

( ) ( ) ( )0 02 2 2

2 −− 
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



= −

=
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
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=
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l
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I m l
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4
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3
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2
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Similarly, we find the moment of 

inertia about  is AB

I mAB = (( ) ( ) ( )

,

sin

0 0

60

2 2 2+ +

=

=

°

m m CE

BEC

CE

BC
CE

l

In right-angled 

 

or  

∆

CCE l

CE l

I m l

ml

AB

=

=

∴ =










=

°sin60

3
2

3
2

3
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2

2

or 

 

 Moment of inertia along  is 

In ri

AC

I m m m BFAC = + +( ) ( ) ( )0 02 2 2
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BF

BC
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l
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=

 

 or 

or

BF l

BF l

I m l
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=
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


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=
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2
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69 (c) MI of uniform circular disc of radius R and mass 
M about an axis passing through CM and normal 
to the disc is

 I MRCM =
1
2

2

 From parallel axis theorem,

 

I I MR

MR MR

MR

T COM= +

= +

=

2

2 2

2

1
2
3
2

70 (d) Moment of inertia of a hollow cylinder of mass M 
and radius r about its own axis is MR2.

71 (a) Given that,

 

t

α π
t α

t
α

π

=

=
=

∴ =

=

=
×

=

3 14

4

3 14
4
3 14

4 3 14
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.
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.
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rad/s
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I
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72 (a) As we know that,
 Moment of inertia of a ring about its axis and per-

pendicular to = MR2

 Moment of inertia of disc about its axis and per-

pendicular to its plane =
1
2

2MR

 = 0.5 MR2

 Moment of inertia of a solid sphere about one of 

its diameter =
2
5

2MR

 = 0.4 MR2

 Moment of inertia of a spherical shell about one of 

its diameter =
2
3

2MR

 = 0.66 MR2

73 (d) The moment of inertia of a thin uniform rod of 
mass A and length l about an axis perpendicular 
to the rod through its centre is,

I
Ml

=
2

12
...( )i

 The moment of inertia of the rod through its end 
point is

  

I
Ml

Ml

I

′ =

=










=

2

2

3

4
12

4

[ ( )]From i

74 (d) The correct relation between moment of inertia I, 
radius of gyration K and mass M of the body is



223

System of Particles and Rotational Motion | 7 |Chapter

 K
I

M
=

75 (a) As we know that,

 

I MK

ML
K

L

=

= ∴ =










2

2

12 12
76 (d) As we know that,

 

π

π

r l

r
l

=

∴ =

=

 Moment of inertia of a ring about its

 diameter 
11
2

1
2

2

2

mR

m
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∴
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



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





Moment of inertia of semicircle 

π



=
ml2

22π
77 (d) According to the condition,

 

M R

M R

I

I

I

I
M M

I
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A

B
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B

A B
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B

2

22
1
4

4

( )
=

= = 

=

  

or,  

78 (b) Because the entire mass of a ring is at its periphery 
at maximum distance from the centre and I = MR2.

79 (d) As we know that,

 

Kinetic energy of 

rotation =

= ×







= × ×

1
2
1
2

1
2

1
4
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2 2
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ω

ω

(00 25 100 100

3125

2. ) × ×

= J
80 (b) According to the principle of conservation of 

angular momentum, Iω = Constant
 As I is doubled, ω  becomes half.

 Now, KE of rotation, K I=
1
2

2ω

 Since I is doubled and ω is halved, KE will become 
half K/2.

81 (b) Rotational kinetic energy,

K I

K
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R
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4
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ω
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 Translational kinetiic energy, 

 Total kinetic energy, 

K mv

K K

mv
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=

= +

= +

1
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1
4

2

2 mmv
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23
4

=

 Rotational kinetic energy 
 Total kinetic energy  
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4
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2

2
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82 (b) Angular momentum remains constant because of 
the torque of tension is zero.
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83 (b) Let f be the force of friction between the shell and 
horizontal surface.

 For translational motion,
F f ma

FR fR I

I
a

R
a R

+ = …

− =

= =

(i)
 For rotational motion, 

for pur

α

α[ ee rolling

ii)

On adding equations (i) and (ii)

]

...(F f I
a

R
− =

2

,, we get

shell
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5
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2

2

F m
I

R
a

m m a I mR

ma

F

= +
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
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ma
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F
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84 (a) Because its MI (or value of K2/R2) is minimum for 
sphere.

85 (d) As we know that,
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R
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=
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86 (c) From the figure,

Mass  =  m

f
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O

ma F f
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And, torque t α
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Put this value in equation i

 

or,  

( )

ma F
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F
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= −
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2
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87 (d) As we know that,
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2R  

Therefore, it is a solid sphere. 

88 (b) As we know that,
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89 (a) For disc rolling without slipping on inclined plane, 

acceleration
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90 (b) As we know that,
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91 (a) As we know that,

 

a
K

R

=
+

=
+

=

g

g

g

sin

sin

sin

θ

θ

θ

1

1
2
5

5
7

2

2

92 (c) After collision velocity of CM of A becomes zero 
and that of B becomes equal to initial velocity 
of CM of A. But angular velocity of A remains 
unchanged as the two spheres are smooth.

93 (a) As we know that,
 

 For solid sphere, 
K
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2

2
5

=

=
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 For disc and solid cylinder, 

R

K 2
5

=

RR2

1
2

=

 Since acceleration of a body, which is rolling on an 
inclined plane at angle θ  with horizontal is

 

a
K R

=
+
g

/
i

 It is clear from equation i) that  a

sin
...( )

(

θ
1 2 2

  solid sphere 

 

Hence
solid sphere disc solid cylinder a a a> =

  solid sphere takes least time in reaching 
the bottom of tthe inclined plane.

94 (b) By energy conservation,
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 Where I (moment of inertia) = 1/2mR2 (for solid 
cylinder)
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95 (c) Option c is correct-A-(i), (ii), (iv), B-(i), (ii), C-(i), 
(ii), (iii), D-(i), (ii)

96 (a) As we know that,
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97 (d) The object is disc.
98 (a) Just before collision between two balls,
 Potential energy lost by A = kinetic energy gained 

by ball A
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After collision, only translattional kinetic energy 

=
 

= +

= × ×








 + +

ω

7 5

⇒ =

⇒ =
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100 (d) As we know that,
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High-Order Thinking Skill

1 (c) From the figure,
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 Co-ordinates of centre of mass = (r, 0.6r) These are 
also co-ordinates of point of interaction of medians.

2 (a) As we know that,
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3 (a) As we know that,
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4 (c) Angular momentum of the system is conserved,
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5 (d) From the figure,
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6 (b) Let the tortoise be initially sitting at the point P. 
Its distance from the centre = OP. Let x be the dis-
tance at any instant t, when the tortoise is moving 
along the chord PR.

R

O P
Q

ω0

 By conservation of angular momentum,

 

I I

m mx

x

x

1 1 2 2

2
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2
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ω ω
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ω

ω=

∴ =

∴ =

∴ ∝

( )

( )

OP

OP

 Variation of ω with x is non-linear. Now, x 
decreases, takes a minimum value and again 
increases to maximum value. Thus, ω first increases 
take a maximum value at Q and again falls to origi-
nal value at R option (b) is correct.

7 (b) Stable equilibrium: The equilibrium of a body 
is said to stable if, on being slightly disturbed, it 
tends to come back to its original position.

 Unstable equilibrium: The body is said to be 
in unstable equilibrium if on being slightly dis-
turbed, it shows no tendency to come back to its 
original position and moves away from it.

 Neutral equilibrium: A body is said to be in neu-
tral equilibrium if on being slightly displaced, it 
remains in the new position.

8 (a) From the figure,
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l
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m

 I is always proportional to mass and radius of the 
body. Here, two bodies having same shape and 
same radius are given. I is directly proportional to 
mass of the body.
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9 (c) From the figure,
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10 (d) As we know that,
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11 (a) Angular momentum,
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12 (c) As the body rolls down the inclined plane, it loses 
potential energy. However, in rolling, it acquires 
both linear and angular speeds and hence, gain in 
kinetic energy of translation and that of rotation. 
So, by conservation of mechanical energy,
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NCERT Exemplar Problems

1 (d) Out of the four given bodies, the centre of mass 
of a bangle lies outside it, other three bodies it lies 
within the body. A bangle is in the form of a ring. 
Position of centre of mass depends upon the shape 
of the body and distribution of mass. So, out of four 
given bodies, the centre of mass lies at the centre, 
which is outside the body (boundary) whereas in 
all other three bodies it lies within the body because 
they are completely solid.

2 (c) The position of centre of mass of the system in this 
problem is closer to heavier mass or masses or it 
depends upon distribution of mass. So it is likely 
to be at C. In the above diagram, lower part of the 
sphere containing sand is heavier than upper part 
containing air. Hence CM of the system lies below 
the horizontal diameter.

3 (d) When the disc is rotated with constant angular 
velocity, angular acceleration of the disc is zero. 
Because we know that angular acceleration

 α = ∆ω/∆t
 Here ω is constant, so ∆ω = 0.
4 (b) As no torque is exerted by the person jumping, radi-

ally away from the centre of the round (as seen from 
the round), let the total moment of inertia of the sys-
tem is 2I (round + Person (because the total mass is 
2M) and the round is revolving with angular speed 
ω. Since the angular momentum of the person when 
it jumps off the round is Iω the actual momentum 
of round seen from ground is 2 Iω – Iω = Iω. So, we 
conclude that the angular speed remains same, i.e. ω.

Observer ω

5 (b) As we know that,

The initial velocity is,
After reflection from the 
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6 (b) According to the theorem of perpendicular axes,

 I I Iz x y    = +

 With the hole, Ix and Iy both decreases. Gluing the 
removed piece at the centre of square plate does 
not affect I. So that, Iz decreases overall.

Assertion and Reasons

1 (a) One useful application of the centre of mass is 
determining the maximum angle that an object 
can be tilted before it will topple over.

2 (c) As we know that the centre of mass of the object 
depends upon the consistent masses and its rela-
tive distribution. So that the reference frame will 
give the same position for the centre of mass.

3 (c) Centre of mass depends upon the distribution of 
mass of the body.

4 (a) If the direction of rotation of the body changes 
(clockwise or anticlockwise), so the direction of 
angular velocity also changes.

5 (a) There is no external torque about the axis of rotation 
of the chair, if friction in the rotational mechanism is 
neglected, and as we know that Iω  is constant, where 
I is moment of inertia and ω is angular velocity.

 As he stretch, his arms the moment of inertia 
I increases about the rotation, which results in 
decreasing the angular speed to conserve the 
angular momentum.

6 (a) A ladder is more apt to slip, as a body high up on 
it than when body just begin to climb and at the 
high up on a ladder, the torque is large and on 
climbing up the torque is small.
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7 (b) As we know that,

 

L mvr mvd

d

= sinθ  or , 

where  is the perpendicular distance. 
 In case of constant velocity m, v, and d all are con-

stants. From Bohr’s theory
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, therefore and have same units.

8 (c) Angular momentum about bottommost point,
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Then disc will come to restt after sometime. 
9 (a) When a body rotates about an axis under the 

action of an external torque t , then the rate of 
change of angular momentum of the body is equal 

to the torque, that is 
dL

dt
=t.

 

If external torque is zero  then

constant

( ),t =

=

=
=

0

0

0

dL

dt
dL

L

TThe central force field  torque,
t = × =F r 0

 So, L remains conserved in this case.
10 (a) When a person stretches his arms, his moment of 

inertia (= mR2) increases.
 Since, no external torque acts on the system,
 t

ω
=

∴ =
0

I  constant 
 Therefore, as I increases, ω will decrease and the 

platform slows down.
11 (a) For the body to be in translatory equilibrium vector 

sum of all external forces acting on body is zero. For 
body to be in rotatory equilibrium, vector sum of all 
external torques acting on body is zero.

12 (a) Moon effects tides, hence sporadic changes of speed 
of rotation of Earth happens. From law of conser-
vation of angular momentum, when no external 
torque is acting upon body rotating about axis, then 
angular momentum remains constant.

 L I= =ω constant 

 When large air passes in the Earth’s atmosphere 
they cause a change in moment of inertia, and since 
angular momentum is to be maintained constant, 
the angular velocity or speed of rotation changes.

13 (a) Radius of gyration of a body about a given axis is
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 It thus depends upon shape and size of body, posi-
tion and configuration of axis of rotation and dis-
tribution of mass of body wrt axis of rotation.

14 (c) In whirlwind in tornado, nearby air gets concen-
trated in small space decreasing its moment of 
inertia. Since, Iω = constant, so due to decrease in 
moment of inertia of air, its angular speed 
increases to high value.

 

 If no external torque acts, then 
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 As in the rotational motion, the moment of inertia 

of the body can change due to the change in posi-
tion of the axis of rotation, the angular speed may 
not remain conserved.

15 (a) It has both till it reaches the lowest level, where it has 
zero potential energy. The total mechanical energy 
remains constant during the motion downwards.

16 (b) In rotatory motion, torque is analogous to force in 
translatory motion.

 In rotatory motion,
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In translatory motion, 

tθ
t ω

17 (b) A sphere cannot roll on a smooth inclined plane, 
because force of friction is zero for smooth surface 
and in case of sphere friction provides the torque 
for rolling.

18 (a) A motion that is a combination of rotational and 
translational motion is called rolling motion. For 
example, a wheel rolling downs the road.

v cmv cm

+

v cm

v cm

2v cm

–v cm

v cm =

19 (a) The velocity of a body at the bottom of an inclined 
plane of given height is more when it slides down 
the plane compared to when it rolling down the 
same plane and in rolling down a body acquires 
both kinetic energy of translation and rotation.

20 (b) When an object experiences pure translational 
motion, all  points move with same velocity as the 
centre of mass; in the same direction and with the 
same speed v r v( ) = centre of mass and object will also 
move in straight line in absence of net external force.

 When an object experiences pure rotational 
motion about its centre of mass, all points move 
at right angle to the radius in a plane which is per-
pendicular to the axis of rotation with speed pro-
portional to the distance from the axis of rotation.


