Chapter 4. The Language of Chemistry

Exercise 4

Solution 1.

(a) ○, ○
(b) gram
(c) molecular formula
(d) basic, acidic
(e) 4, 3, 2, 1
(f) 2, 3
(g) Fe₂[CO₃]₃

Solution 2.

Acid Radicals \rightarrow Basic Radicals \downarrow	Chloride	Nitrate	Sulphate	Carbonate	Hydroxide	Phosphate
Magnesium	MgCl ₂	Mg(NO ₃) ₂	MgSO ₄	MgCO ₃	Mg(OH) ₂	Mg ₃ (PO ₄) ₂
Sodium	NaCl	NaNO 3	Na ₂ SO ₄	Na ₂ CO ₃	NaOH	Na ₃ PO ₄
Zinc	ZnCl ₂	Zn (NO ₃) ₂	ZnSO ₄	ZnCO ₃	Zn[OH] ₂	Zn ₃ [PO ₄) ₂
Silver	AgCI	AgNO ₃	Ag ₂ SO ₄	Ag ₂ CO ₃	AgOH	Ag ₃ PO ₄
Ammonium	NH ₄ CI	NH ₄ NO ₃	[NH ₄] ₂ SO ₄	[NH ₄] ₂ SO ₄	NH4OH	[NH ₄] ₃ PO ₄
Calcium	CaCl ₂	Ca(NO ₃) ₂	CaSO ₄	CaCO ₃	Ca[OH] ₂	Ca ₃ [PO ₄] ₂
Iron (II)	FeCl ₂	Fe(NO ₃) ₂	FeSO ₄	FeCO ₃	Fe[OH] ₂	Fe ₃ [PO ₄] ₂
Potassium	KCI	KNO3	K ₂ SO ₄	K ₂ CO ₃	кон	K ₃ PO ₄

Solution 3.

Sodium chloride + Silver nitrate Silver chloride + Sodium nitrate

(a) Equation NaCl + AgNO₃ \rightarrow AgCl + NaNO₃

(b) Yes, the equation is balanced.

(c) NaCl + AgNO₃ → AgCl + NaNO₃

(23+35.5) (108+14+48) (108+35.5) (23+14+48)

Wt. of reactants 228.5g Wt. of products 228.5g

(d) This equation satisfies the "Law of Conservation of Mass." Law of Conservation of mass: "Matter is neither created nor destroyed in course of a chemical reaction."

Solution 4.

(a)

 $Zn \,+\, H_2SO_4 \rightarrow ZnSO_4 \,+\, H_2$

This equation conveys following information:

- 1. The actual result of chemical change.
- 2. The substances take part in a chemical reaction and substances formed as a result of reaction.
- 3. Here one molecule of zinc, one molecule of Sulphuric acid react to give one molecule of zinc sulphate and one molecule of Hydrogen.
- 4. Composition of respective molecules i.e. one molecule of sulphuric acid contains two atoms of hydrogen, one atom of sulphur and four atoms of oxygen.
- 5. Relative moleculer masses of different substances i.e. molecular mass of Zn= 65, H₂SO₄ (2+32+64) = **98** ZnSO₄ (65+32+64) = **161**
 - H₂ = **2**
- 6. 22.4 litres of hydrogen are formed at S.T.P.

(b)

 $\text{Mg}\,+\,2\text{HCl}_2\rightarrow\text{MgCl}_2\,+\,\text{H}_2$

This equation conveys following information:

- 1. Magnesium reacts with of Hydrochloric acid to form Magnesium chloride and Hydrogen gas.
- 2. 24g of Magnesium react with 2(1 + 35.5) = 73g of Hydrochloric acid to produce (24 + 71) i.e. 95g of Magnesium chloride
- 3. That Hydrogen produced out at S.T.P. is 22.4 liters.

Solution 5.

(a) A poly-atomic ion is a charged ion composed of two or more atoms covalently bounded that can be carbonate (CO_3^{2-}) and sulphate (SO_4^{2-})

(b) The fundamental laws which are involved in every equation are:

- 1. A chemical equation consists of formulae of reactants connected by plus sign (+) and arrow (\rightarrow) followed by the formulae of products connected by plus sign (+).
- 2. The sign of an arrow (\rightarrow) is to read 'to form'. It also shows the direction in which reaction is predominant.

Solution 6.

(a) two

- (b) six
- (c) three
- (d) four
- (e) (i) three (ii) five (iii) four (iv) two

Solution 7.

According to law of conservation of mass, "matter can neither be created nor be destroyed in a chemical reaction". This is possible only, if total number of atoms on the reactants side is equals to total number of atoms on products side. Thus, a chemical reaction should be always balanced.

Let us consider an example,

 $Fe \,+\, H_2O \rightarrow Fe_3O_4 \,+\, H_2$

In this equation number of atoms on both sides is not the same, the equation is not balanced.

The balanced form of this equation is given by, 3Fe + 4H₂O \rightarrow Fe₃O₄ + 4H₂

Solution 8.

(a)
$$3Fe + 4H_2O \rightarrow Fe_3O_4 + 4H_2$$

(b) $3Ca + N_2 \rightarrow Ca_3N_2$
(c) $Zn + 2KOH \rightarrow K_2ZnO_2 + H_2$
(d) $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$
(e) $3PbO + 2NH_3 \rightarrow 3Pb + 3H_2O + N_2$
(f) $2Pb_3O_4 \rightarrow 6PbO + O_2$
(g) $2PbS + 3O_2 \rightarrow 2PbO + 2SO_2$
(h) $S + 2H_2SO_4 \rightarrow 3SO_2 + 2H_2O$
(i) $S + 6HNO_3 \rightarrow H_2SO_4 + 6NO_2 + 2H_2O$
(j) $MnO_2 + 4HCI \rightarrow MnCI_2 + 2H_2O + CI_2$
(k) $C + 2H_2SO_4 \rightarrow CO_2 + 2H_2O + 2SO_2$
(l) $6KOH + 3CI_2 \rightarrow 5KCI + KCIO + 3H_2O$
(m) $2NO_2 + H_2O \rightarrow HNO_2 + HNO_3$
(n) $Pb_3O_4 + 8HCI \rightarrow 3PbCI_2 + 4H_2O + CI_2$
(o) $2H_2O + 2CI_2 + Sunlight \rightarrow 4HCI + O_2$
(p) $2NaHCO_3 \rightarrow Na_2CO_3 + H_2O + CO_2$
(q) $2HNO_3 + H_2S \rightarrow 2NO_2 + 2H_2O + S$
(r) $P + 5HNO_3 \rightarrow 5NO_2 + H_2O + H_3PO_4$

Solution 9.

(a)
$$2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$$

(b) $2KHCO_3 + H_2SO_4 \rightarrow K_2SO_4 + 2CO_2 + 2H_2O$
(c) $Fe + H_2SO_4 \rightarrow Fe(SO_4) + H_2$
(d) $CI_2 + SO_2 + 2H_2O \rightarrow H_2SO_4 + 2HCI$
(e) $2AgNO_3 \rightarrow 2Ag + 2NO_2 + O_2$
(f) $3Cu + 8HNO_3 \rightarrow 3Cu(NO_3)_2 + 2NO + 4H_2O$
(g) $4NH_3 + 5O_2 \xrightarrow{Pt, 800^{\circ}C} 6H_2O + 4NO? + Heat$
(h) $BaCI_2 + H_2SO_4 \rightarrow BaSO_4 + 2HCI$
(i) $2ZnS + 3O_2 \rightarrow 2ZnO + 2SO_2$
(j) $AI_4C_3 + 12H_2O \rightarrow 4AI(OH)_3 + 3CH_4$
(k) $4FeS_2 + 11O_2 \rightarrow 2Fe_2O_3 + 8SO_2$
(l) $2KMnO_4 + HCI \rightarrow 2KCI + 2MnCI_2 + 5CI_2 + 8H_2O$
(m) $AI_2(SO_4)_3 + 8NaOH \rightarrow 3Na_2SO_4 + 2NaAIO_2 + 4H_2O$
(n) $2AI + 2NaOH + 2H_2O \rightarrow 2NaAIO_2 + 3H_2$
(o) $2K_2Cr_2O_7 + 8H_2SO_4 \rightarrow 2K_2SO_4 + 2Cr_2(SO_4)_3 + 8H_2O + 3O_2$
(p) $K_2Cr_2O_7 + 14HCI \rightarrow 2KCI + 2CrCI_3 + 7H_2O + 3CI_2$
(q) $S + 6HNO_3 \rightarrow H_2SO_4 + 6NO_2 + 2H_2O$
(r) $2KI + 2MnO_2 + 4H_2SO_4 \rightarrow I_2 + 2KHSO_4 + 2MnSO_4 + 4H_2O$

Solution 10.

(a) The atomic mass unit (amu) is defined as $1/12^{th}$ of the mass of an atom of carbon.

1 a.m.u. = 1.67×10^{-24} gm = 1.67×10^{-27} kg 1 gm mass = 6.02×10^{23} a.m.u. and 1 kg mass = 6.02×10^{26} a.m.u. (b) (i) The relative molecular mass of = $CuSO_45H_2O$ = $63.5 + 32 + (16 \times 4) + 5 (2 + 16)$ = 159.5 + 90 = 249.5(ii) The relative molecular mass of = $(NH_4)_2CO_3 = N_2H_8CO_3$ = $14 \times 2 + 1 \times 8 + 12 + 3 \times 16$ = 28 + 8 + 12 + 48 = 96(iii) The relative molecular mass of = $(NH_2)_2CO = N_2H_4CO$ = $2 \times 14 + 1 \times 4 + 12 + 16$ = 28 + 4 + 12 + 16 = 60(iv) The relative molecular mass of = $Mg_3N_2 = 3 \times 24 + 2 \times 14 = 72 + 28 = 100$

Solution 11.

(a) (iii) Berzelius
(b) (i) One
(c) (iii) Fe₂(SO₄)₃
(d) (i) 1: 8
(e) (ii) Ca(HCO₃)₂

Solution 12.

(a) A molecular formula represent The Molecule of an element or of a Compound.

(b) The molecular formula of water (H_2O) represents 18 parts by mass of water.

(c) A balanced equation obeys the law of conservation of mass wherever unbalanced equation does not obey this law.

(d) CO and Co represent carbon-monoxide and cobalt respectively.