Electrochemistry

NCERT Maps

74 Electrochemistry

Sharpen Your Understanding

 If an external opposite potential is applied to Daniell cell (in standard state) the reaction continues to take place till the opposite voltage reaches the value of

[NCERT Pg. 66]

- (1) 1.1 V (2) 1.8 V (3) 2.1 V (4) 2.3 V
- The cell potential is called emf of the cell when [NCERT Pg. 68]
 - (1) Electrodes are in standard state
 - (2) One ampere current is drawn through the cell
 - (3) No current is drawn through the cell
 - (4) Platinum electrodes are used in the cell
- 3. For the cell reaction :

 $Cu(s) + 2Ag^{+}(aq.) \longrightarrow Cu^{2+}(aq.) + 2Ag(s)$ [NCERT Pg. 68]

- (1) $E_{cell} = E_{Cu^{2+}/Cu} E_{Ag^{+}/Ag}$ (2) $E_{cell} = E_{Ag^{+}/Ag} - E_{Cu^{2+}/Cu}$
- (3) $E_{cell} = E_{Ag^+/Ag} + E_{Cu^{2+}/Cu}$

$$(4) E_{cell} = 2E_{Ag^+/Ag} + E_{Cu^{2+}/Cu}$$

- The conductivity (κ) of an electrolyte solution depends on [NCERT Pg. 77]
 - (1) The concentration of electrolyte
 - (2) Nature of solvent
 - (3) Temperature
 - (4) All of these

4.

- Select the incorrect statement among the following [NCERT Pg. 70, 88, 93]
 - Electrochemical principles are relevant to the hydrogen economy
 - (2) Corrosion of metals is an electrochemical phenomenon
 - (3) Batteries are very useful forms of electrolytic cells
 - (4) Electrochemical cells are used for determining solubility product
- Select the correct statements among the following
 - (a) A negative E° means that the redox couple is a stronger reducing agent than the H⁺/H₂ couple
 - (b) F₂ is strongest oxidising agent among halogens
 - (c) Among alkali metals lithium is the most powerful reducing agent in aqueous solution
 - (d) The potential of individual half-cell can not be measured

[NCERT Pg. 68, 70, 71]

NCERT Based MCQs

(1) a and c only (2) b and d only (3) b and c only (4) a, b, c and d For the electrode reaction 7. $M^{n+}(aq.) + ne^{-} \longrightarrow M(s),$ the Nernst equation is given by [NCERT Pg. 70] (1) $E(M^{n+}/M) = E^{\circ}(M^{n+}/M) - \frac{RT}{nF}\log\frac{[M]}{[M^{n+1}]}$ (2) $E(M^{n+}/M) = E^{\circ}(M^{n+}/M) - \frac{RT}{nF} ln \frac{[M]}{[M^{n+}]}$ (3) $E(M^{n+}/M) = E^{\circ}(M^{n+}/M) + \frac{RT}{nF} ln \frac{[M]}{[M^{n+}]}$ (4) $E(M^{n+}/M) = E^{\circ}(M^{n+}/M) + \frac{RT}{nE}\log\frac{[M]}{(M^{n+1})}$ 8. Incorrect relation among the following is [NCERT Pg. 74] (1) ∆rG = -2.303 RT log K (2) $E_{cell}^{\circ} = \frac{2.303 \text{ RT}}{nE} \log K_{c}$ (3) $\Delta_r G^\circ = -RT \ln K$ (4) $\Delta_r G = -nFE_{cell}$ The oxidation potential of hydrogen 9.

electrode which is in contact with a solution having pH = 10 is [NCERT Pg. 75] (1) 0.591 V (2) 0.295 V (3) 1.182 V (4) 0.886 V

NCERT Maps

10.	The emf of cell	14. In the equation : $\Lambda_m = \Lambda_m^\circ - A\sqrt{C}$, the value 18.	The mass of Ni deposited at ca passing 5 A current for 20 mi
	Ni(s) Ni ²⁺ (0.16 M) Ag ⁺ (0.002 M) Ag(s),	of A will be same for [NCERT Pg. 81]	Ni(NO ₃) ₂ solution using Pt-electro
	is (E ^o _{cell} = 1.05 V) [NCERT Pg. 75]	(1) NaCl and KCl	(Atomic mass of Ni = 58.7) [NCE
	(1) -0.91 V (2) +0.46 V	(2) NaCl and CaCl ₂	(1) 1.56 g
	(3) +0.91 V (4) -0.75 V	(3) CaCl ₂ and MgSO ₄	(2) 2.46 g
11.	The equilibrium constant of the given	(4) KCI and MgSO ₄	(3) 1.23 g
	reaction at 298 K will be	15. If the Λ_m° of 0.025 M formic acid is	(4) 1.82 g
	$2Fe^{3+}(aq.) + 2I^{-}(aq.) \longrightarrow 2Fe^{2+}(aq.) + I_2(s),$	46.1 S cm ² mol ⁻¹ then the K _a for formic acid will be nearly (given : $\lambda^{\circ}(H^+) = 349.6$ S cm ²	Select the correct statement for lease battery [NCER
	$E_{cell}^{\circ} = 0.237 V$ [NCERT Pg.75] (1) $10^{12.25}$ (2) $10^{8.02}$	mol ⁻¹ and λ°(HCOO ⁻) = 54.6 S cm ² mol ⁻¹) [NCERT Pg. 85] (1) 2.5 × 10 ⁻⁵	 It consists a grid of lead pa PbO₂ as anode
40	(3) 10 ^{5.8} (4) 10 ^{9.76}	(2) 2.8 × 10 ⁻⁴	(2) A 50% solution of sulphuric at as an electrolyte
12.	Which among the following options have highest conductivity? [NCERT Pg. 78]	(3) 3.6 × 10 ⁻⁴ (4) 5.9 × 10 ⁻⁵	(3) On charging the battery Pb anode is converted into Pb
	(1) Pure water (2) 0.1M HCl (3) 0.01M HAc (4) 0.01M NaCl	16. If the Λ_m° for KCI, HCI and CH ₃ COOK are x,	(4) On charging the battery concernation H ₂ SO ₄ decreases
13.	Among the following incorrect statement is [NCERT Pg. 81, 83]	y and z S cm ² mol ⁻¹ respectively then Λ_m° for CH ₃ COOH will be [NCERT Pg. 84]	A steady current of 1.5 amperes w through two electrolytic cells
	 For strong electrolytes, Λ_m increases slowly with dilution 	(1) $y + z - x$ (2) $y + x - z$	containing CuSO ₄ and AgNO ₃ re and connected in series. If 1.45
	(2) For strong electrolytes, conductivity decreases with decrease in	(3) $x + y + z$ (4) $z + x - y$	deposited at the cathode of cell mass of copper deposited in cell
	concentration	17. One faraday is equal to [NCERT Pg. 86]	[NCEI
	(3) For weak electrolytes, Λ_m increases	(1) 96778 C	(1) 0.43 g
	steeply with dilution especially near lower concentration	(2) 96487 C	(2) 0.36 g
	(4) For weak electrolytes, conductivity	(3) 96685 C	(3) 0.51 g
	increases with decrease in concentration	(4) 96587 C	(4) 0.59 g
_	Aakash Educational Services Lim	ited - Read Office · Aakash Tower & Pusa Road New D	elbi-110005 Pb 011-47623456

75 Electrochemistry

F

cathode by min through rodes will be ERT Pg. 94]

lead storage ERT Pg. 89]

- packed with
- acid is used
- PbSO₄(s) on
- centration of

was passed A and B respectively 5 g of Ag is B than the II A will be

ERT Pg. 94]

76 Electrochemistry

- The reversible work done by a galvanic cell is equal to decrease in its _____. [NCERT Pg. 74]
- E_{cell} is an _____ parameter.

[NCERT Pg. 74]

8.

- 3. The SI unit of resistivity is ______ [NCERT Pg. 75]
- Nowadays a number of ceramic materials and mixed oxides show super conductivity at temperatures as high as _____. [NCERT Pg. 76]
- The conductivity of electrolytic solution with the increase of temperature.

[NCERT Pg. 77]

 The cell constant is usually determined by measuring the resistance of the cell generally containing a solution of ______ whose conductivity is already known.

[NCERT Pg. 78]

 In a galvanic cell, anode has a ______ potential with respect to the solution. [NCERT Pg. 67]

- Thinking in Context
- The slope of plot Λ_m vs C^{1/2} for strong electrolytes is equal to _____.

[NCERT Pg. 81]

- Prevention of corrosion can be done by covering the metal surface by chemicals
 _____. [NCERT Pg. 91]
- Among OH⁻, Cl⁻, Na⁺ and K⁺ ions, the limiting molar. Conductivity in water at 298 K is maximum for _____.[NCERT Pg. 83]
- 11. Standard hydrogen electrode is assigned a _____ potential at all temperatures. [NCERT Pg. 68]
- 12. The cell potential of mercury cell is approximately _____. [NCERT Pg, 89]
- 13. The number of Faraday needed to reduce 1 mol of $\operatorname{Cr}_2\operatorname{O}_7^{2^-}$ into Cr^{3^+} is _____.

[NCERT Pg. 88]

- During the electrolysis of aqueous NaCl, on account of ______ of oxygen, oxidation of Clr is preferred. [NCERT Pg. 87]
- During the electrolysis of high concentrated H₂SO₄, formation of _____ is preferred at anode. [NCERT Pg. 88]

 The amounts of different substances liberated by the same quantity of electricity passing through the electrolytic solution are proportional to their chemical _____.

[NCERT Pg. 85]

 At any concentration C, the degree of dissociation of a weak electrolyte is approximated to the ratio of its molar conductivity (A_m) to the its _____.

[NCERT Pg. 84]

- Fuel cells using the reaction of hydrogen with oxygen to form water used for providing electrical power in the _____ space programme. [NCERT Pg. 90]
- The molar conductivity (in S cm² mol⁻¹) of 0.2 M solution of KCl at 298 K having conductivity 0.0248 S cm⁻¹ will be _____. [NCERT Pg. 93]
- On electrolysis of aqueous solution of AgNO₃ with silver electrodes, concentration of Ag⁺ _____ in the solution.

[NCERT Pg. 94]