Chapter

TRIANGLES

- 1. A triangle is a plane closed figure bounded by three line segments.
 - (*i*) Sum of the angles of a triangle is equal to 180°, *i.e.*,

$$\angle A + \angle B + \angle C = 180^{\circ}$$

(ii) Exterior angle of a triangle is equal to the sum of its interior opposite angles, i.e.,

 $\angle x = \angle 2 + \angle 3; \angle y = \angle 1 + \angle 2; \angle z = \angle 1 + \angle 3$

(iii) Sum of any two sides of a triangle is always, greater than the third side, i.e.,

$$PQ + QR > PR$$
$$PQ + PR > QR$$
$$PR + QR > PQ$$

(iv) Side opposite to the greatest angle will be greatest in length and vice versa.

2. Important Terms of a Triangle

- (i) **Median and centroid:** A line joining the mid-point of a side of a triangle to its opposite vertex is called the median. D, E, F are the mid-points of the sides QR, PR and PQ respectively of a ΔPQR . Then, PD, QE and RF are the medians of ΔPQR .
 - The point of concurrency of the three medians of a triangle is called **centroid**.
- The centroid of a triangle divides each median in the ratio 2:1, *i.e.*,

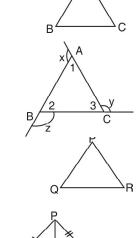
PG: GD = QG: GE = RG: GF = 2:1

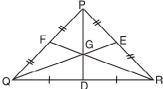
- A median divides a triangle into two parts of equal area.
- (ii) **Perpendicular bisector and circumcentre:** Perpendicular bisector to any side is the line that is perpendicular to that side and passes through its mid-point. Perpendicular bisectors need not pass through the opposite vertex.
 - The point of intersection of the three perpendicular bisectors of a triangle is called its circumcentre.
 - The circumcentre of a triangle is equidistant from its three vertices.

If we draw a circle with circumcentre as the centre and the distance of any vertex from the circumcentre as radius, the circle passes through all the three vertices and the circle is called **circumcircle**.

Note. The circumcentre can be inside or outside the circle.

• Circumcentre of a right angled triangle is the mid-point of the hypotenuse.





IIT Foundation Mathematics Class – VIII

(iii) Angle bisector and in-centre:

- The point of intersection of the three angle bisectors of a triangle is called its **in-centre.**
- The in-centre always lies inside the triangle.
- It is always equidistant from the sides of a triangle.
- The circle drawn with incentre as centre and touching all the three sides of a triangle is called **in-circle.**

(iv) Altitude and ortho-centre:

The perpendicular drawn from the vertex of a triangle to the opposite side is called an altitude.

• The point of intersection of the three altitudes of a triangle is called **ortho-centre**, which can lie inside or outside the triangle.

Note. • For an isosceles triangle, the median drawn from a vertex to the opposite side is also the perpendicular bisector of that side.

• In an equilateral triangle, the median, angle bisector, altitude and perpendicular bisector of sides are all represented by the same straight line.

С

• The circumcentre, centroid, orthocentre and incentre all coincide in an equilateral triangle.

3. Pythagoras' theorem:

(i) In a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

$$\therefore$$
 (Perpendicular)² + (Base)² = (Hypotenuse)²

$$\Rightarrow PQ^2 + QR^2 = PR^2$$

(ii) In a $\triangle ABC$, obtuse angled at *B*, if $AD \perp CB$, then $AC^2 = AB^2 + BC^2 + 2BC.BD$

(iii) $\angle B$ of $\triangle ABC$ is acute and $AD \perp BC$, then $AC^2 = AB^2 + BC^2 - 2BC.BD$

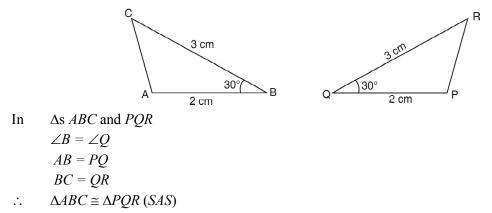
4. Congruent Figures

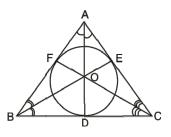
When two geometric figures have the same size and shape, they are said be congruent.

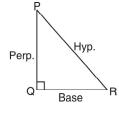
Conditions for congruency of triangles

(i) SAS axiom (side-angle-side)

If two triangles have two sides and the included angle of one respectively equal to two sides and the included angle of the other, the triangles are congruent.

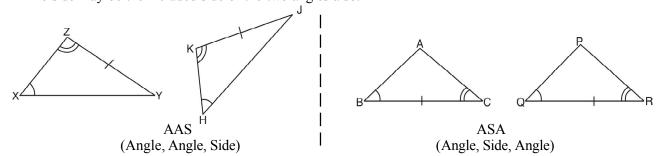






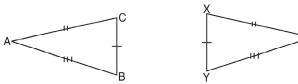
(ii) ASA or AAS axiom (two angles - one side)

If the triangles have two angles of one respectively equal to two angles of the other, and also a side of one triangle equal to the corresponding side of the other, the two triangles are congruent. The side may be the included side of the two angles also.



(iii) SSS axiom (three sides)

If two triangles have three sides of one respectively equal to three sides of the other, the triangles are congruent.



(iv) RHS axiom (right angle, hypotenuse, sides)

Two right triangles are congruent, if one side and hypotenuse of one are respectively equal to the corresponding side and hypotenuse of the other.

$$PQ = DE$$

Hyp. $PR =$ Hyp. DF
. $\Delta PQR \cong \Delta DEF$

5. Basic Proportionality Theorem

If a line is drawn parallel to one side of a triangle intersecting the other two sides, then the other two sides are divided proportionally in the same ratio.

Thus, in
$$\triangle ABC$$
, if $DE \mid\mid BC$, then $\frac{AD}{DB} = \frac{AE}{EC}$

Conversely, *if a straight line divides any two sides of a triangle in the same ratio, then the straight line is parallel to the third side of the triangle.*

Thus, if in $\triangle ABC$, a line *DE* is drawn such that $\frac{AD}{DB} = \frac{AE}{EC}$, then *DE* || *BC*.

6. Mid-point Theorem

A straight line drawn through the mid-point of one side, parallel to another side of a triangle bisects the third side. In ΔPQR , a line ST drawn through the mid-point S of side PQ, || to QR, bisects PR, *i.e.*, T is the mid-point of PR.

Conversely, the line joining the mid-points of any two sides of a triangle is always parallel to the third side and equal to half of it.

If S and T are the mid-points of side PQ and PR respectively of $\triangle PQR$, then ST || QR and

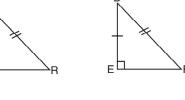
$$ST = \frac{1}{2}QR$$

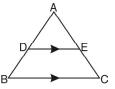
7. Similar Triangles

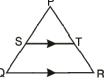
Two triangles (figures) are said to be **similar** if they have the same shape, but not necessarily the same size, i.e.,

• their corresponding angles are equal.

• their corresponding sides are proportional.





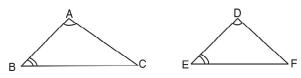


Ch 22-6 IIT Foundation Mathematics Class – VIII

(i) AAA-axiom of similarity

If two triangles are equiangular, their corresponding sides are proportional. If two triangles have two pairs of angles equal, their corresponding sides are proportional.

In $\Delta s \ ABC$ and DEF, if $\angle A = \angle D$ and $\angle B = \angle E$, then $\Delta ABC \sim \Delta DEF$ and $\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$



Note. It two pairs angles are given equal, the third pair becomes equal by angle sum property of a triangle.

(ii) SAS-axiom of similarity

If two triangles have a pair of corresponding angles equal and the sides including them proportional, then the triangles are similar.

Thus, in $\Delta s \ ABC$ and DEF, if $\angle B = \angle E$ and $\frac{AB}{DE} = \frac{BC}{EF}$, then $\Delta ABC \sim \Delta DEF$.

(iii) SSS -axiom of similarity

If two triangles have their three pairs of corresponding sides proportional, then the triangles are similar. In $\Delta s ABC$ and DEF,

if
$$\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$$
, then $\triangle ABC \sim \triangle DEF$.

8. Theorems on Similar Triangles

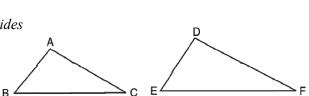
(i) The areas of two similar triangles are proportional to the squares of corresponding sides.

Thus, if $\Delta ABC \sim \Delta DEF$, then

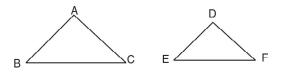
$$\frac{\operatorname{ar} (\Delta ABC)}{\operatorname{ar} (\Delta DEF)} = \frac{BC^2}{EF^2} = \frac{AB^2}{DE^2} = \frac{AC^2}{DF^2}$$

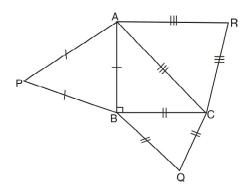
- (ii) The ratio of the areas of similar triangles is equal to the ratio of the squares of the corresponding altitudes.
- (iii) The ratio of the areas of similar triangles is equal to the ratio of the squares of the corresponding medians.
- (iv) If the areas of two similar triangles are equal, then the triangles are congruent.
- (v) The areas of similar or equilateral Δs described on two sides of a right angled triangle are together equal to the area of the similar or equilateral triangle on the hypotenuse.

ar
$$(\Delta PAB)$$
 + ar (ΔBQC) = ar (ΔARC)



D





Ch 2

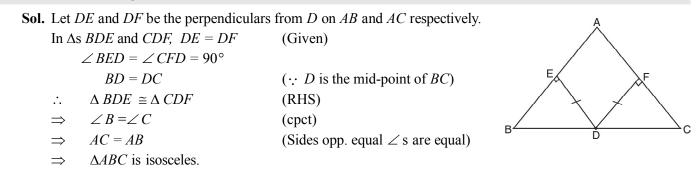
Solved Examples

Ex. 1. In the given figure, line l is the bisector of an angle A and B is any point on l. BP and BQ are perpendiculars from B to the arms of $\angle A$. Show that B is equidistant from the arms of $\angle A$.

Sol. In Δ	s APB and ABQ, we have	
	$\angle APB = \angle AQB$	$(Each = 90^{\circ})$
	$\angle PAB = \angle QAB$	(AB bisects $\angle PAQ$)
	AB = BA	(common)
	$\Delta APB \cong \Delta ABQ$	(AAS)
\Rightarrow	BP = BQ	(cpct)
		6 ()

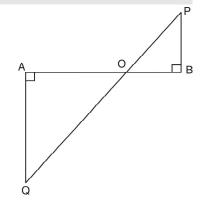
 \Rightarrow *B* is equidistant from the arms of $\angle A$.

Ex. 2. ABC is a triangle and D is the mid-point of BC. The perpendiculars from D to AB and AC are equal. Prove that the triangle is isosceles.

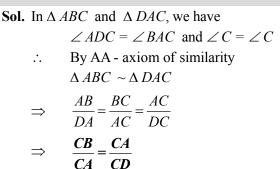


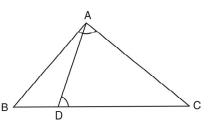
Ex. 3. In the given figure, QA and PB are perpendiculars to AB. If AO = 10 cm, BO = 6 cm and PB = 9 cm, find AQ.

Sol. In $\Delta s AOQ$ and <i>BOP</i> , we have	
$\angle OAQ = \angle OBP$	(Each equal to 90°)
$\angle AOQ = \angle POB$	(Vertically opp. ∠s)
∴ By AA–similarity,	
$\Delta AOQ \sim \Delta BOP$	
$\Rightarrow \qquad \frac{AO}{BO} = \frac{OQ}{OP} = \frac{AQ}{BP}$	
$\Rightarrow \qquad \frac{AO}{BO} = \frac{AQ}{BP} \Rightarrow \frac{10}{6} = \frac{AQ}{9} = A$	$\Rightarrow AQ = \frac{10 \times 9}{6} = 15 \text{ cm}.$



Ex. 4. *D* is a point on the side BC of $\triangle ABC$ such that $\angle ADC = \angle BAC$. Prove that $\frac{CA}{CD} = \frac{CB}{CA}$ or $CA^2 = CB \times CD$





Ch 22–8 IIT Foundation Mathematics Class – VIII

- Ex. 5. If $\triangle ABC$ is similar to $\triangle DEF$ such that BC = 3 cm, EF = 4 cm and area of $\triangle ABC = 54$ cm². Find the area of $\triangle DEF$.
 - **Sol.** Since the ratio of the areas of two similar triangles is equal to the ratio of the squares of any two corresponding sides,

$$\Rightarrow \qquad \frac{\operatorname{ar}(\Delta ABC)}{\operatorname{ar}(\Delta DEF)} = \frac{BC^2}{EF^2} \qquad \Rightarrow \frac{54}{\operatorname{ar}(\Delta DEF)} = \frac{3^2}{4^2} \Rightarrow \operatorname{ar}(\Delta DEF) = \frac{54 \times 16}{9} = 96 \text{ cm}^2.$$

- Ex. 6. Prove that the area of the equilateral triangle described on the side of a square is half the area of the equilateral triangle described on its diagonal.
 - Sol. Given: A square *ABCD*,

An equilateral $\triangle BCE$ described on side BC of the square.

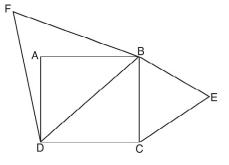
An equilateral $\triangle BDF$ described on the diagonal BD of the square.

 $\Delta BCE \sim \Delta BDF$ (\therefore both are equiangular, each angle = 60°)

$$\therefore \frac{ar(\Delta BCE)}{ar(\Delta BDF)} = \frac{BC^2}{BD^2} = \frac{BC^2}{(\sqrt{2}BC)^2}$$

(: diagonal of a square = $\sqrt{2}$ side)

$$=\frac{BC^2}{2BC^2}=\frac{1}{2}.$$



Ex. 7. In an isosceles triangle ABC with AB = AC, BD is perpendicular from B to side AC. Prove that $BD^2 - CD^2 = 2 CD.AD$

Sol. Since $\triangle ADB$ is right angled at *D*,

 $AB^{2} = AD^{2} + BD^{2}$ $\Rightarrow AC^{2} = AD^{2} + BD^{2} \quad (\because AB = AC)$ $\Rightarrow (AD+CD)^{2} = AD^{2} + BD^{2}$ $\Rightarrow AD^{2} + CD^{2} + 2AD.CD = AD^{2} + BD^{2}$ $\Rightarrow BD^{2} - CD^{2} = 2AD.CD$

Ex. 8. In the given figure, M is the mid-point of the side CD of the parallelogram ABCD. What is ON:OB?

(a) 3 : 2 (b) 2 : 1 (c) 3 : 1 (d) 5 : 2

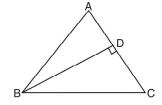
Sol. From similar $\Delta s ABN$ and DMN

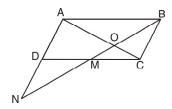
$$\frac{AB}{DM} = \frac{AN}{DN} = \frac{BN}{MN} \Rightarrow \frac{2}{1} = \frac{AN}{DN} \qquad ...(1)$$

From similar $\Delta s \ AOB$ and COM
$$\frac{AB}{MC} = \frac{AO}{OC} = \frac{OB}{OM} \Rightarrow \frac{2}{1} = \frac{AO}{OC} = \frac{OB}{OM} \qquad ...(2)$$

Again from similar $\Delta s \ AON$ and BOC

$$\frac{AO}{OC} = \frac{ON}{OB} \Rightarrow \frac{ON}{OB} = 2 \Rightarrow ON : OB = 2 : 1.$$

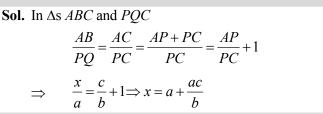




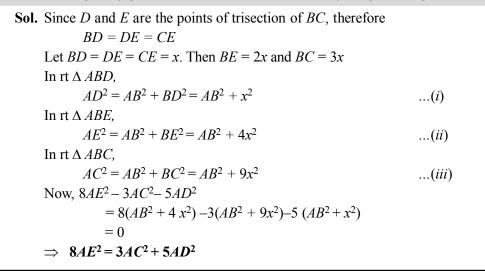
Triangles Ch

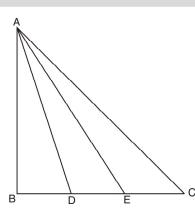
b

Ex. 9. In the given triangle, AB is parallel to PQ. AP = c, PC = b, PQ = a, AB = x. What is the value of x?



Ex. 10. In the given figure, D and E trisect the side BC of a right triangle ABC. Prove that $8AE^2 = 3AC^2 + 5AD^2$

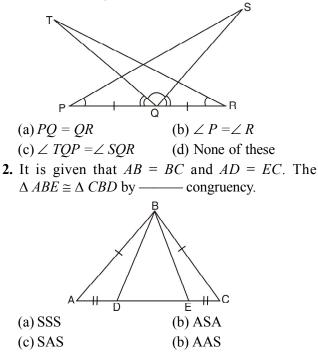




Question Bank-22

Problems on Congruency

1. In the given figure, $\Delta RTQ \cong \Delta PSQ$ by ASA congruency condition. Which of the following pairs does not satisfy the condition.



3. *ABCD* is a quadrilateral. *AM* and *CN* are perpendiculars to *BD*, *AM* = *CN* and diagonals *AC* and *BD* intersect at *O*, then which one of the following is correct?

(a)
$$AO = OC$$
 (b) $BO = OD$

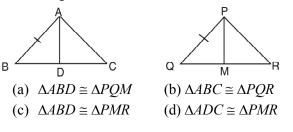
(c)
$$AO = BO$$
 (d) $CO = DO$

4. Squares *ABDE* and *ACFH* are drawn externally on the sides *AB* and *AC* respectively of a scalene $\triangle ABC$. Which one of the following is correct?

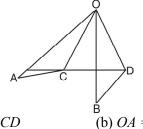
(a)
$$BH = CE$$
 (b) $AD = AF$

(c)
$$BF = CD$$
 (d) $DF = EH$

5. In the given figure, two sides AB and BC and the median AD drawn to side BC of ΔABC are equal to the two sides PQ and QR and the corresponding median PM of the other ΔPQR . Which of the following is not correct?

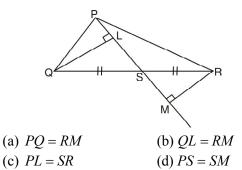


6. In the given figure, OA = OB, OC = OD, $\angle AOB = \angle COD$. Which of the following statements is true?

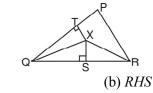


(a) AC = CD (b) OA = OD(c) AC = BD (d) $\angle OCA = \angle ODC$

7. *PS* is a median and *QL* and *RM* are perpendiculars drawn from *Q* and *R* respectively on *PS* and *PS* produced. Then which of the following statements is correct?



8. In the figure, QX and RX are the bisectors of angles Q and R respectively of ΔPQR . If $XS \perp QR$ and $XT \perp PQ$, then $\Delta XTQ \cong \Delta XSQ$ by — congruency.



(c) AAS (d) ASA

(a) SAS

9. In the given figure, AD = BC, AC = BD. Then $\triangle PAB$ is



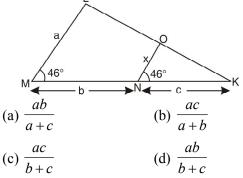
- (c) scalene (d) isosceles
- **10.** In a right angled triangle, one acute angle is double the other. The hypotenuse is —— the smallest side.

(a) $\sqrt{2}$ times	(b) three times
(c) double	(d) 4 times

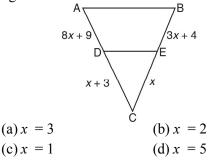
Problems on Similar Triangles

11. If $\triangle ABC \sim \triangle EDF$ and $\triangle ABC$ is not similar to $\triangle DEF$, then which of the following is not true?

- (a) BC.EF = AC.FD (b) AB.EF = AC.DE
- (c) BC.DE = AB.EF (d) BC.DE = AB.FD
- 12. In the given figure, x equals



13. What value of *x* will make *DE* || *AB* in the given figure?



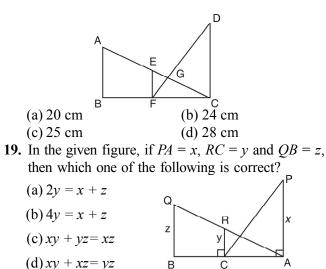
14. If the medians of two equilateral triangles are in the ratio 3 : 2, then what is ratio of the sides?

(c) 3:2 (d) $\sqrt{3}:\sqrt{2}$

- **15.** The areas of two similar triangles are 121 cm² and 64 cm² respectively. If the median of the first triangle is 12.1 cm, then the corresponding median of the other is :
 - (a) 6.4 cm (b) 10 cm
 - (c) 8.8 cm (d) 3.2 cm
- **16.** In the given figure, *DE* is parallel to *BC* and the ratio of the areas of $\triangle ADE$ and trapezium *BDEC* is 4: 5. What is *DE* : *BC*?
 - (a) 1 : 2 (b) 2 : 3
 - (c) 4 : 5 (d) None of these
- **17.** *ABCD* is a trapezium in which *AB* || *DC* and *AB* = 2 *DC*. *O* is the point of intersection of the diagonals. The ratio of the areas of ΔAOB and ΔCOD is:

(a) 1 : 2	(b) 2 : 1
(c) 4 : 1	(d) 1 : 4

18. *AB*, *EF* and *CD* are parallel lines. Given that EG = 5 cm, GC = 10 cm, AB = 15 cm and DC = 18 cm. What is the value of *AC*?



20. In \triangle *PQR*, *QR* = 10, *RP* =11 and *PQ* = 12. *D* is the midpoint of *PR*, *DE* is drawn parallel to *PQ* meeting *QR* in *E*. *EF* is drawn parallel to *RP* meeting *PQ* in *F*. What is the length of *DF*?

(a) $\frac{11}{2}$	(b) 6
(c) $\frac{33}{4}$	(d) 5

Problems on Pythagoras' Theorem

21. The hypotenuse of a right triangle is 6 m more than twice the shortest side. If the third side is 2 m less than the hypotenuse, find the hypotenuse of the triangle.

(a) 24 m	(b) 34 m
(c) 26 m	(d) 10 m

22. If the distance from the vertex to the centroid of an equilateral triangle is 6 cm, then what is the area of the triangle?

(a) 24 cm^2	(b) $27\sqrt{3}$ cm ²
-----------------------	----------------------------------

(c) 12 cm^2	(d) $12\sqrt{3}$ cm ²
-----------------------	----------------------------------

23. $\triangle ABC$ is an equilateral triangle such that $AD \perp BC$, then $AD^2 =$

(a) $\frac{3}{2}DC^2$	(b) 2 <i>DC</i> ²
(c) $3 CD^2$	(d) $4 DC^2$

24. *P* and *Q* are points on the sides *CA* and *CB* respectively of $\triangle ABC$ right angled at *C*. $AQ^2 + BP^2$ equals

(a) $BC^2 + PQ^2$	(b) $AB^2 + PC^2$
(c) $AB^2 + PQ^2$	(d) $BC^2 + AC^2$

25. *ABC* is a right-angled triangle, right angled at *A* and *AD* is the altitude on *BC*. If AB : AC = 3 : 4, what is the ratio *BD* : *DC*?

- **26.** *ABC* is a right angled triangle, right angled at *A*. A circle is inscribed in it. The lengths of two sides containing the right angle are 6 cm and 8 cm. Find the radius of the circle?
 - (a) 3 cm (b) 2 cm
 - (c) 5 cm (d) 4 cm

27.
$$\triangle ABC$$
 is right angled at A and $AD \perp BC$. Then $\frac{BD}{DC} =$

(a)
$$\left(\frac{AB}{AC}\right)^2$$
 (b) $\frac{AB}{AC}$
(c) $\left(\frac{AB}{AD}\right)^2$ (d) $\frac{AB}{AD}$

28. If $\triangle ABC$ is right angled at *B* and *M*, *N* are the midpoints of *AB* and *BC* respectively, then $4(AN^2 + CM^2) =$

(a)
$$4AC^2$$
 (b) $5AC$

- (c) $\frac{3}{4}AC^2$ (d) $6AC^2$
- **29.** In $\triangle PQR$, $PD \perp QR$ such that *D* lies on *QR*. If PQ = a, PR = b, QD = c and DR = d, then (a) (a - d) (a + d) = (b - c) (b + c)(b) (a - c) (b - d) = (a + c) (b + d)(c) (a - b) (a + b) = (c + d) (c - d)(d) (a - b) (c - d) = (a + b) (c + d)
- **30.** *ABC* is a triangle right- angled at *B* and *D* is a point on *BC* produced (BD > BC), such that BD = 2DC. Which one of the following is correct?
 - (a) $AC^2 = AD^2 3CD^2$
 - (b) $AC^2 = AD^2 2CD^2$
 - (c) $AC^2 = AD^2 4CD^2$
 - (d) $AC^2 = AD^2 5CD^2$

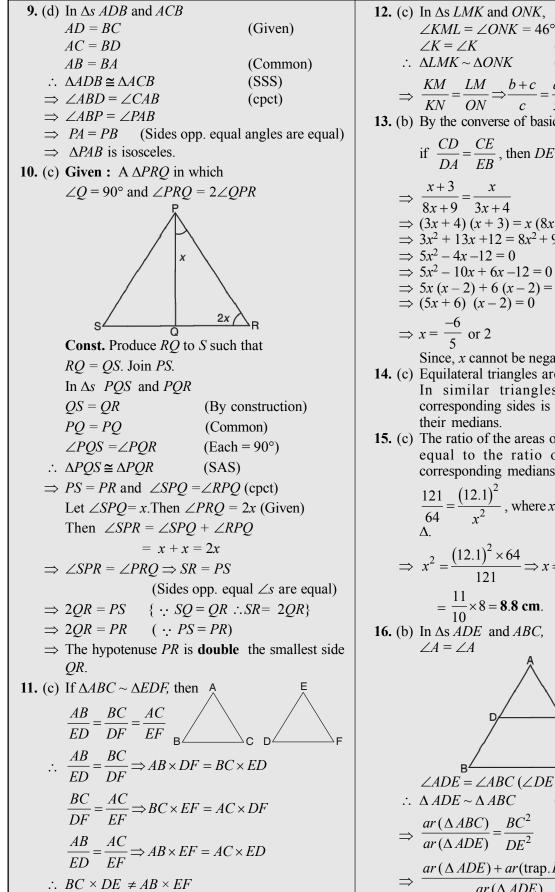
Answers									
1. (d)	2. (c)	3. (a)	4. (a)	5. (c)	6. (c)	7. (b)	8. (c)	9. (d)	10. (c)
11. (c)	12. (c)	13. (b)	14. (c)	15. (c)	16. (b)	17. (c)	18. (c)	19. (c)	20. (d)
21. (c)	22. (b)	23. (c)	24. (c)	25. (b)	26. (b)	27. (b)	28. (b)	29. (c)	30. (a)

Ch 22-12

EA = AB { sides of same square}

Hints and Solutions 1. (c) In $\Delta s RTQ$ and PSQ, AC = AH $\angle CAE = \angle BAH$ QR = PQ(Proved) (Given) (SAS) $\therefore \quad \Delta EAC \cong \Delta HAB$ $\angle P = \angle R$ (Given) $\Rightarrow EC = BH$ (cpct) $\angle TQR (\angle SQR + \angle SQT)$ **5.** (c) In $\Delta s ABD$ and PQM $= \angle PQS (\angle TQP + \angle SQT)$ AB = PQ $\therefore \Delta RTQ \cong \Delta PSQ$ (ASA) Given AD = PM**2.** (c) Given, AD = EC $\Rightarrow AD + DE = DE + EC$ $BD\left(\frac{1}{2}BC\right) = QM\left(\frac{1}{2}QR\right)$ $\Rightarrow AE = DC$ Also, AB = BC(SSS) $\therefore \ \Delta ABD \cong \Delta PQM$ $\Rightarrow \angle BCA = \angle BAC$ (isos. Δ property) $\angle B = \angle Q$ (cpct) $\Rightarrow \angle BCD = \angle BAE$ In Δs ABC and PQR \therefore In $\Delta s ABE$ and CBD, AB = PQ(Given) AB = CB(Given) $\angle B = \angle O$ (Proved above) AE = DC(Proved above) BC = QR(Given) $\angle BAE = \angle BCD$ (Proved above) $\therefore \ \Delta ABC \cong \Delta PQR$ (SAS) $\therefore \Delta ABE \cong \Delta CBD$ (SAS) AC = PR(cpct) **3.** (a) In \triangle *AMO* and \triangle *CNO* In $\Delta s ADC$ and *PMR* AD = PM(Given) $DC\left(\frac{1}{2}BC\right) = MR\left(\frac{1}{2}QR\right)$ (Given) AC = PR(Proved above) $\therefore \Delta ADC \cong \Delta PMR$ (SSS) AM = CN(Given) $\therefore \Delta ABD \ncong \Delta PMR$ $\angle AMO = \angle CNO = 90^{\circ}$ **6.** (c) In $\Delta s AOC$ and BOD $\angle AOM = \angle CON$ (vert. opp. $\angle s$) OA = OB(Given) $\therefore \Delta AMO \cong \Delta CNO$ (AAS) OC = OD(Given) $\Rightarrow AO = OC$ (cpct) $\angle AOB - \angle COB = \angle COD - \angle COB.$ **4.** (a) $\triangle ABC$ is a scalene \triangle . $\angle AOC = \angle BOD$ н i.e., $\therefore \Delta AOC \cong \Delta BOD$ (SAS) $\Rightarrow AC = BD$ (cpct) **7.** (b) In Δs *QLS* and *RMS*, $\angle QLS = \angle RMS = 90^{\circ}$ D $\angle QSL = \angle RSM$ (Vert. opp. $\angle s$) OS = SR(*PS* is the median) С ACFH and ABDE are squares drawn on sides AC $\therefore \Delta QLS \cong \Delta RMS$ (AAS) and AB respectively. $\Rightarrow OL = RM$ (cpct) $\angle BAE = \angle CAH = 90^{\circ}$ (Angle of a square) **8.** (c) In $\Delta s XTO$ and XSO. $\therefore \angle BAE + \angle BAC = \angle CAH + \angle BAC$ XQ = QX(Common) $\Rightarrow \angle CAE = \angle BAH$ $\angle XQT = \angle XQS$ $(QX \text{ bisects } \angle Q)$ $\angle XTO = \angle XSO = 90^{\circ}$ In $\Delta s EAC$ and HAB $\therefore \Delta XTQ \cong \Delta XSQ$ (AAS)

Triangles



$$\angle K = \angle K \qquad \text{(Common)}$$

$$\therefore \Delta LMK \sim \Delta ONK \qquad (AA \text{ similarity})$$

$$\Rightarrow \frac{KM}{KN} = \frac{LM}{ON} \Rightarrow \frac{b+c}{c} = \frac{a}{x} \Rightarrow x = \frac{ac}{b+c}$$

(b) By the converse of basic proportionality theorem,
if $\frac{CD}{DA} = \frac{CE}{EB}$, then $DE \parallel AB$

$$\Rightarrow \frac{x+3}{8x+9} = \frac{x}{3x+4}$$

$$\Rightarrow (3x+4) (x+3) = x (8x+9)$$

$$\Rightarrow 3x^2 + 13x + 12 = 8x^2 + 9x$$

$$\Rightarrow 5x^2 - 4x - 12 = 0$$

$$\Rightarrow 5x^2 - 10x + 6x - 12 = 0$$

$$\Rightarrow 5x (x-2) + 6 (x-2) = 0$$

$$\Rightarrow (5x+6) (x-2) = 0$$

$$\Rightarrow x = \frac{-6}{5} \text{ or } 2$$

Since, x cannot be negative, $x = 2$.
(c) Equilateral triangles are similar triangles.

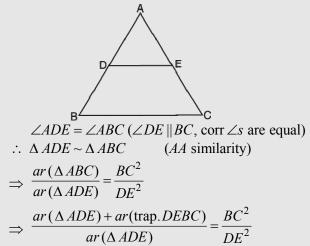
- In similar triangles, the ratio of their corresponding sides is the same as the ratio of their medians.
- 15. (c) The ratio of the areas of two similar triangles is equal to the ratio of the squares of the corresponding medians. Therefore,

 $\frac{121}{64} = \frac{(12.1)^2}{x^2}$, where x is the median of the other

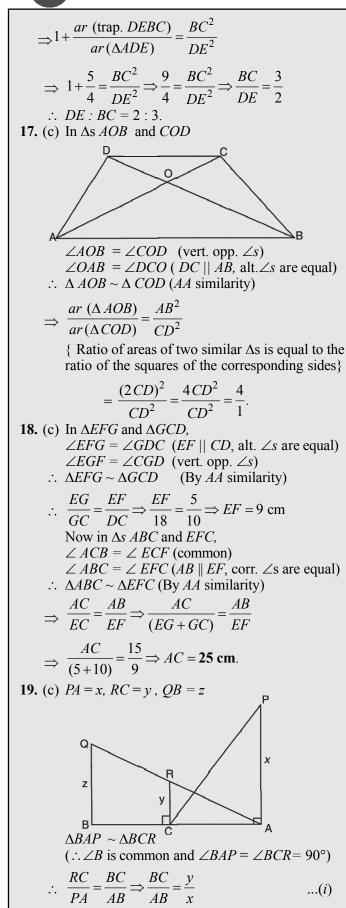
$$\Rightarrow x^{2} = \frac{(12.1)^{2} \times 64}{121} \Rightarrow x = \sqrt{\frac{121}{100} \times 64}$$
$$= \frac{11}{100} \times 8 = 8.8 \text{ cm}$$

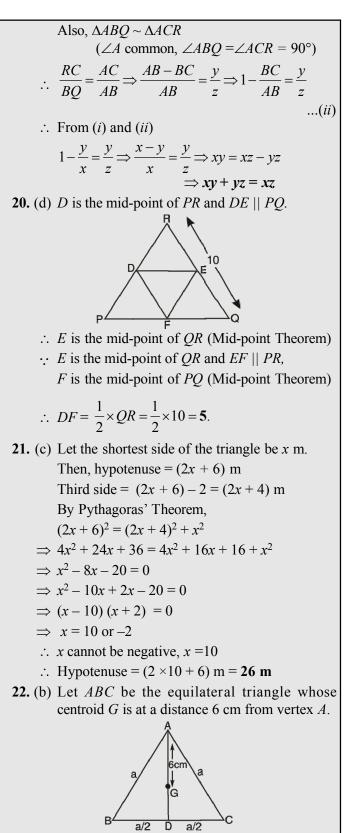
$$= \frac{1}{10} \times 8 = 8.8 \text{ cm}.$$

6. (b) In $\Delta s ADE$ and ABC ,



Ch 22-14 IIT Foundation Mathematics Class – VIII





Let each side of $\triangle ABC$ be *a* cm. The median *AD* is also the perpen

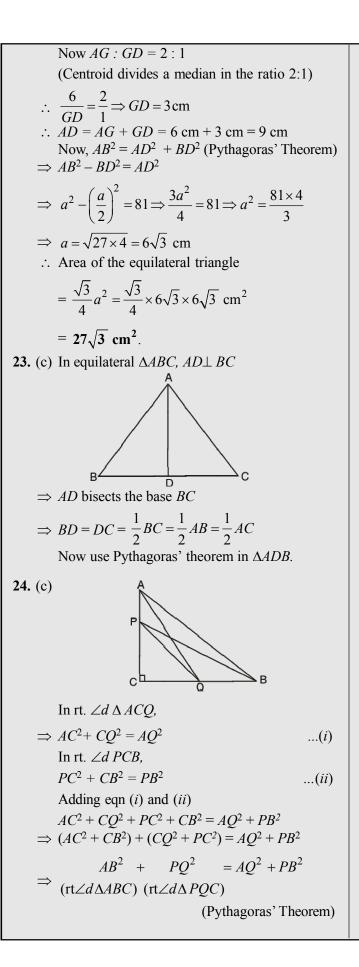
The median AD is also the perpendicular bisector in case of an equilateral Δ so, $\angle ADB = 90^{\circ}$ and BD = DC = a/2

Triangles

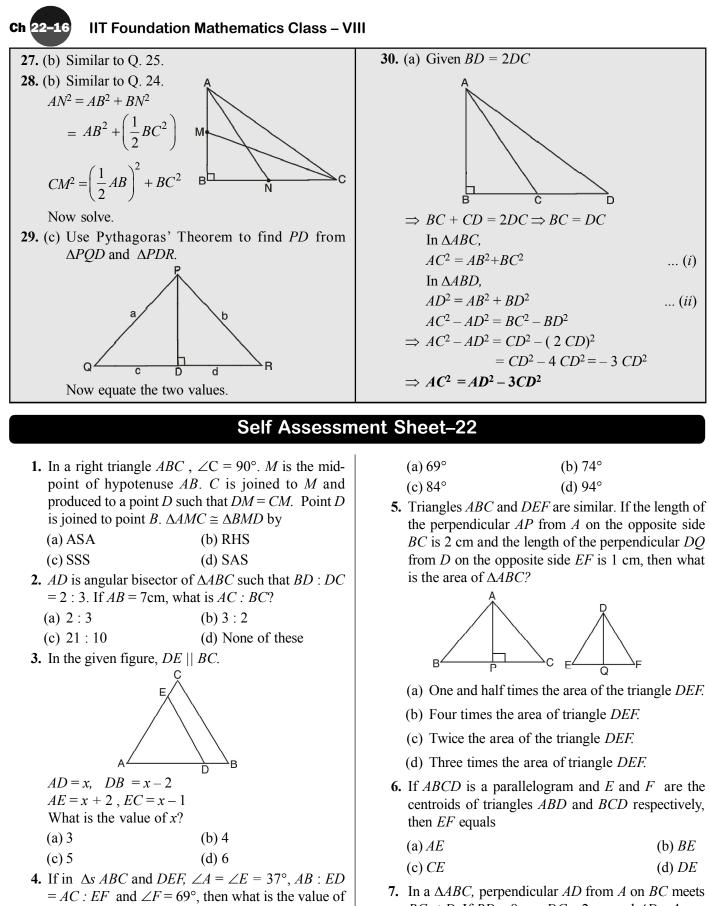
25.

26.

Ch 22



(b) In
$$\triangle ABC$$
 and $\triangle DBA$,
 $\angle B$ is common
 $\angle CAB = \angle BDA = 90^{\circ}$
 $\Rightarrow \triangle ABC \sim \triangle DBA$
 $\Rightarrow \frac{AB}{AC} = \frac{DB}{DA} \Rightarrow \frac{DB}{DA} = \frac{3}{4}$
 $\Rightarrow AD = \frac{4}{3}DB$
...(*i*)
In $\triangle ABD$ and $\triangle ADC$,
 $\angle DAB = \angle ACD$
(Third angles of similar $\triangle s \ ABC$ and DBA)
 $\angle ADB = \angle ADC = 90^{\circ}$
 $\therefore \frac{AB}{AC} = \frac{AD}{CD} = \frac{3}{4} \Rightarrow AD = \frac{3}{4}CD$...(*ii*)
From (*i*) and (*ii*)
 $\frac{4}{3}DB = \frac{3}{4}CD \Rightarrow \frac{BD}{CD} = \frac{3}{4} \times \frac{3}{4} = \frac{9}{16}$.
(b) Let $\triangle ABC$ be right angled at A.
Since the incentre is equidistant from the sides,
let the radius of the incircle be r.
 $B \ CD = OQ = OR = r \ CD$
 $B \ CD = 0Q = OR = r \ CD$
 $B \ CC = 6^2 + 8^2 = 36 + 64 = 100$
 $\Rightarrow BC^2 = 6^2 + 8^2 = 36 + 64 = 100$
 $\Rightarrow BC^2 = 10 \ CD$. Now,
Area of $\triangle ABC = Area \ ADBC + Area \ ADC \ ADBC \ ADBC + Area \ ADC \ ADBC \ ADCC \ ADBC \ ADCC \ ADBC \ ADC \ ADBC \ ADBC \ ADBC \ ADBC \ ADBC \ ADC \ ADBC \ ADBC \ ADBC \ ADC \ ADBC \ ADBC \ ADC \ ADBC \ ADBC \ ADC \ ADC \ ADBC \ ADC \ ADC \ ADBC \ ADC \ ADC$



 $\angle B?$

BC at D. If BD = 8 cm, DC = 2 cm and AD = 4 cm, then

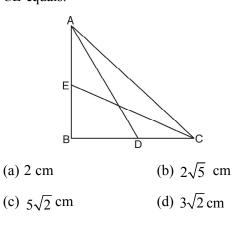
- (a) $\triangle ABC$ is isosceles
- (b) $\triangle ABC$ is equilateral
- (c) AC = 2AB
- (d) $\triangle ABC$ is right angled at A
- 8. If *E* is a point on the side *CA* of an equilateral triangle *ABC*, such that $BE \perp CA$, then $AB^2 + BC^2 + CA^2 =$
 - (a) $2 BE^2$ (b) $3BE^2$
 - (c) $4 BE^2$ (d) $6 BE^2$
- **9.** In a right triangle *ABC* right angled at *C*, *P* and *Q* are points on the sides *CA* and *CB* respectively, which divide these sides in the ratio 2:1. Then, which of the following statements is true?

(a)
$$9AQ^2 = 9 BC^2 + 4 AC$$

- (b) $9AQ^2 = 9AC^2 + 4BC^2$
- (c) $9AQ^2 = 9BC^2 + 4AC^2$
- (d) $9AQ^2 = 9AB^2 4BP^2$

10. In the given figure $\triangle ABC$ is a right-angle at *B*. *AD* and *CE* are the two medians drawn from *A* and *C*

respectively. If AC = 5 cm and $AD = \frac{3\sqrt{5}}{2}$ cm, then *CE* equals.



Answers

	2. (c)		4. (b)	5. (b)		
6. (a) [H	lint. Centroid	divides the m	edian in the	ratio 2:1. $OE = \frac{1}{3}OA$, $OF = \frac{1}{3}OC$]	7. (d)	8. (c)
9. (b) [H	lint. See Q. N	o. 24 of Ques	tion Bank]	10. (b)		