Assignment (Basic & Advance Level Questions)

				Magnet and it's properties
		Basic	c Level	
	A bar magnet is equiv	valent to		
	(a) Straight conducto	or carrying current	(b) Toroid carrying	current
	(c) Circular coil carr		(d)	None of these
	e	of force inside a bar magnet		[AIEEE 2003]
	magnet	pole to north - pole of the magne		h – pole to south – pole of the
	(c) Do not exist magnet			he area of cross-section of the bar
	A small bar magnet h $(\mu_0 = 4\pi \times 10^{-7} T.m / A)$	•	i^2 . The magnetic field at	a distance 0.1 m on its axis will be [MP PMT 2003]
	(a) $1.2 \times 10^{-4} T$	(b) $2.4 \times 10^{-4} T$	(c) $2.4 \times 10^4 T$	(d) $1.2 \times 10^2 T$
	A bar magnet of mag	gnetic moment <i>M</i> is placed in a m	nagnetic field of induction	n B. The torque exerted on it is
			[EAMCET	[(Engg.) 1995; CBSE 1999; BHU 2003]
	(a) <i>M</i> . <i>B</i>	(b) - <i>M</i> . <i>B</i>	(c) $M \times B$	(d) $-M \times B$
				ed at right angle to each other with ystem is [MNR 1981; MP PMT 2002]
	(a) <i>ml</i>	(b) 2 <i>ml</i>	(c) $\sqrt{2ml}$	(d) $\frac{1}{2}ml$
	rotates about the axi		nd normal to plane of the	ormly distributed on it. If the ring e ring with constant angular speed
	(a) $Q\omega R^2$	(b) $\frac{1}{2}Q\omega R^2$	(c) $Q\omega^2 R$	(d) $\frac{1}{2}Q\omega^2 R$
	-	•		gnetic field of strength <i>B</i> , the work C 1997; MNR 1998; MP PET 1984, 89, 20
	(a) $MB(1-\sin\theta)$	(b) $MB\sin\theta$	(c) $MB\cos\theta$	(d) $MB(1-\cos\theta)$
	A magnet of magneti each part will be	ic moment <i>M</i> and pole strength	<i>m</i> is divided in two equations of the second secon	al parts, then magnetic moment of
	[NCERT 1974; MP	' Board 1985; MP PMT 1988; CPMT	1988; KCET 1994; AFMC 19	996; DPMT 1984; MP PET 1984, 2000]
	(a) <i>M</i>	(b) <i>M</i> /2	(c) <i>M</i> /4	(d) 2 <i>M</i>
	Intensity of magnetiz	zation is given as		[UPSEAT 1999, 2000]
	(a) Magnetic momen volume	ıt per unit mass	(b)	Magnetic moment per unit
	(c) Magnetic momer	nt per unit atomic weight	(d) None of the above	ve
	(c) magnetic momen			
).	•	ting when two bar magnets are	placed coaxial separated	l by distance because [EAMCET (Engg

(c) The forces are perpendicular to each other (d) The forces act along the same line A bar magnet when placed at an angle of 30° to the direction of magnetic field induction of 5×10^{-2} T, 11. experiences a moment couple 2.5×10^{-6} N-m. If the length of the magnet is 5 cm, its pole strength is [EAMCET (Med.) 20 (b) $5 \times 10^2 A - m$ (a) $2 \times 10^2 A - m$ (c) 2A - m(d) 5A - mA magnet of magnetic moment $50\hat{i}A - m^2$ is placed along the x-axis in a magnetic field $\vec{B} = (0.\hat{i} + 3.0\hat{i})T$. The 12. torque acting on the magnet is [MP PMT 2000] (b) $150 \hat{k} Nm$ (c) $75\hat{i} Nm$ (d) $25\sqrt{37} \hat{k} Nm$ (a) $175 \hat{k} Nm$ Which of the following statements in not correct about the magnetic field [AIIMS 2000] 13. (a) Magnetic lines of force do not cut each other (b) Insides the magnet the lines go from north to south pole of the magnet (c) The magnetic lines form a closed loop (d) Tangents to the magnetic lines give the direction of the magnetic field. A bar magnet of magnetic moment 3.0 A-m² is placed in a uniform magnetic induction field of $2 \times 10^{-5}T$. If each 14. pole of the magnetic experiences a force of 6×10^{-4} *N*, the length of the magnet is [EAMCET 2000] (a) 0.5 m (b) 0.3 m (c) 0.2 m(d) 0.1 m A bar magnet is held perpendicular to a uniform magnetic field, If the couple acting on the magnet is to be 15. halved by rotating it, then the angle by which it is to be rotated is (a) 30° (b) 45° (c) 60° (d) 90° 16. If a magnet of length 10*cm* and pole strength 40 *A*-*m* is placed at an angle of 45° in an uniform induction field of intensity $2 \times 10^{-4} T$, the couple acting on it is (a) $0.5656 \times 10^{-4} N - m$ (b) $0.5656 \times 10^{-3} N - m$ (c) $0.656 \times 10^{-4} N - m$ (d) $0.656 \times 10^{-5} N - m$ The magnetic field strength at a point at a distance 'd' from the centre on the axial line of a very short bar 17. magnet of magnetic moment M, is B. The magnetic induction at a distance '2d' from centre, on the equatorial line of a magnet of magnetic moment 8 M, will be [EAMCET (Engg.) 1999] (c) *B*/4 (a) 4 B (b) *B*/2 (d) 2B If two bar magnets of different magnetic lengths have equal moments than the pole strength is [EAMCET (Med.) 1999] 18. (a) Equal for both the magnets (b) Lesser for shorter magnet (c)More for longer magnet A bar magnet of pole strength 2 *amp-m* kept in magnetic field of induction 4×10^{-5} Wb/m² such that the 19. axis of the magnet makes and angle of 30° with the direction of the field. The couple acting on the magnet is found to be 80×10^{-7} N-m. Then the distance between the poles of the magnet is [EAMCET 1997] (a) 20 m (b) 2 m (c) 3 cm (d) 20 cm The dipole moment of a short bar magnet is $1.25 \text{ ampere} - metre^2$. The magnetic field on its axis at a distance of 20. 0.5m form the centre of the magnet is [MP PAT 1996] 4×10^{-2} newton /amp-meter (a) 1.0×10^{-4} newton /amp-meter (b) (c) 2×10^{-6} newton /amp-meter (d) 6.64×10^{-8} newton /amp-meter The field due to a magnet at a distance R from the centre of the magnet is proportional to 21. [MP PET 1996] (a) R^2 (b) R^{3} (c) $1/R^2$ (d) $1/R^3$ A bar magnet of magnetic moment $10^4 J/T$ is free to rotate in a horizontal plane. The work done in rotating 22. the magnet slowly from a direction parallel to a horizontal magnetic field of $4 \times 10^{-5} T$ to direction 60° from the field will be [MP PET 1993, 95]

(a) 0.2J (b) 2.0J (c) 4.18J (d) $2 \times 10^2 J$

If a piece of metal was thought to be magnet, which one of the following observations would offer conclusive 23. evidence [KCET 1994] It repels a known magnet (a) It attracts a known magnet (b) (d) It attracts a steel screw dirver (c) Neither (a) nor (b) A bar magnet of length 10cm and having pole strength equal to 10^{-3} A-m is kept in a magnetic field (B) of 24. $4\pi \times 10^{-3}$ tesla. It makes an angle of 30° with the direction of *B*. The torque acting on the magnet is (a) $2\pi \times 10^{-7} Nm$ (b) $2\pi \times 10^{-5} Nm$ (c) 0.5 Nm (d) $0.5 \times 10^2 Nm$ The magnetic field due to a short magnet at a point on its axis at distance x cm from the middle point of the 25. magnet is 200 gauss. The magnetic field at a point on the neutral axis at a distance. x cm from the middle of the magnet is [MP PMT 1985; CPMT 1971, 88] (a) 100 Gauss (b) 400 Gauss (d) 200 Gauss (c) 50 Gauss 26. Points A and B are situated along the extended axis of 2 cm long bar magnet at a distance x and 2x cm respectively. From the pole nearer to the points, the ratio of magnetic field at A and B will be [EAMCET 1984; CPMT 198 (c) 8:1 exactly (a) 4:1 exactly (b) 4 : 1 approx (d) 8:1 approx Two equal bar magnets are kept as shown in the figure. The direction of resultant magnetic field, indicated by 27. arrow head at the point *P* is (approxim y) (d) ↑ (b) / (c) \ (a) \rightarrow Consider a magnetic dipole kept in the north -south direction. Let P_1, P_2, Q_1, Q_2 be four points at the same 28. distance from the dipole towards north, south, east and west of the dipole respectively. The directions of the magnetic field due to the dipole are the same at (a) P_1 and P_2 (b) P_1 and Q_2 (c) P_1 and Q_1 (d) P_2 and Q_2 A thin magnet of length L is bent into an arc of a semi- circle. The new length of the magnet is 29. (c) $\frac{2L}{\pi}$ (b) $\frac{L}{2\pi}$ (d) $\frac{2L}{3\pi}$ (a) $\frac{L}{\pi}$ The magnetic potential due to a magnetic dipole at a point on its axis distant 40 cm from its centre is found to 30. be $2.4 \times 10^{-5} J/A - m$. The magnetic moment of the dipole will be (a) $28.6A - m^2$ (b) $32.2 A - m^2$ (c) $38.4A - m^2$ (d) None of these The cross - sectional areas of three magnets of equal length are A, 2A and 6A. The ratio of their magnetic 31. moments will be (b) 1:2:6 (a) 6:2:1(c) 1:4:6 (d) 36:4:1 If a hole is made at the centre of a bar magnet, then its magnetic moment will 32. (a) Increase (b) Decrease (c) Not change (d) None of these Advance Level

33. If the angular momentum of an electron of mass m is J then the magnitude of the magnetic moment will be [MP PMT 26

(a) $\frac{eJ}{m}$ (b) $\frac{eJ}{2m}$ (c) 2eJm (d) $\frac{2m}{eJ}$

34. Two small bar magnets are placed in a line with like poles facing each other at a certain distance *d* apart. If the length of each magnet is negligible as compared to *d* the force between them will be inversely proportional to[**CPMT** 19

(a) d (b)
$$d^2$$
 (c) $\frac{1}{d^2}$ (d) d^4

- 35. Three indentical bar magnets each of magnetic moment M, are placed in the form of an equilateral triangle with north pole of one touching the south pole of the other (figure). The net magnetic moment of the system is
 - (a) Zero
 - (b) 3*M*
 - (c) $\frac{3M}{2}$
 - (d) $M\sqrt{3}$
- **36.** A bar magnet with its poles 25 cm apart and of pole strength 24.0 A-m rests with its centre on a frictionless pivot. A force F is applied on the magnet at a distance of 12 cm from the pivot so that it is held in equilibrium at an angle of 30° with respect to a magnetic field of induction 0.25 T. The value of force F is

(a) 5.62N (b) 2.56N (c) 6.52N (d) 6.25N

37. Two short bar magnets with pole strengths of 900 $ab - amp \times cm$ and 100 $ab - amp \times cm$ are placed with their axes in the same vertical lines with similar poles facing each other. Each magnet has a length of 1 cm. When the separation between the nearer poles is 1 cm. The weight of the upper magnet is supported by the repulsive force between the magnets. If g is 1000 cm/sec^2 , then the mass of the upper magnet is

(a) 100 g	(b) 55 g	(c) 77.5 g	(d) 45 <i>g</i>

- **38.** A strong magnet of magnico alloy can hold a chain consisting of several cylinders made of soft iron (figure). If a similar magnet is brought up from below to this chain, what happens if the magnets are arranged with their line poles facing
 - (a) Attached cylinders loosen grip
 - (b) The attached cylinder tighten the grip
 - (c) The cylinders fall one by one on to lower magnet.
 - (d) The cylinders loose contact for the upper magnet and remains suspended in between two magnets.
- **39.** Two magnets A and B are identical and these are arranged as shown in the figure. Their length is negligible in comparison to the separation between them. A magnetic needle is placed between the magnets at point *P* which gets deflected through an angle θ under the influence of magnets. The ratio of distance *d* and *d* will be
 - (a) $(2 \tan \theta)^{1/3}$
 - **(b)** $(2 \tan \theta)^{-1/3}$
 - (c) $(2 \cot \theta)^{1/3}$
 - (d) $(2 \cot \theta)^{-1/3}$
- **40.** Two short magnets of equal dipole moments M are fastened perpendicularly at their centre (figure). The magnitude of the magnetic field at a distance d from the centre on the bisector of the right angle is
 - (a) $\frac{\mu_0}{4\pi} \frac{M}{d^3}$ (b) $\frac{\mu_0}{4\pi} \frac{M\sqrt{2}}{d^3}$

- (c) $\frac{\mu_0}{4\pi} \frac{2\sqrt{2}M}{d^3}$
- (d) $\frac{\mu_0}{4\pi} \frac{2M}{d^3}$
- Two short magnets of magnetic moment 1000 Am^2 are placed as shown at the corners of a square of side 10 41. *cm*. The net magnetic induction at *P* is
 - (a) 0.1 T
 - (b) 0.2 T
 - (c) 0.3 T
 - (d) 0.4 T
 - A long magnet is placed vertically with its S- pole resting on the table. A neutral point is obtained 10 cm form 42. the pole due geographical north of it. If $B_H = 3.2 \times 10^{-5}$ Tesla, then the strength of the magnet is

(c) 64 $ab - amp \times cm$ (a) $16 ab - amp \times cm$ (b) 32 $ab - amp \times cm$ (d) 8 $ab - amp \times cm$

- A bar magnet hangs by a thread attached to the ceiling of a room. When a horizontal magnetic field directed to 43. the right is established, //////
 - (a) Both the string and the magnet will deviate form the vertical
 - (b) The string will deviate from the vertical and the magnet will rema
 - (c) The string will remain vertical and the magnet will deviate from t
 - (d) Both will remain vertical plane of the outer ring

- A paramagnetic gas consists of atoms each with a dipole moment of 1.5×10^{-23} J/T. Temperature of the gas is 44. $27^{\circ}C$ and its number density is $2 \times 10^{26} m^{-3}$. What is the maximum magnetisation of the sample possible when placed in an external field
 - (b) $2 \times 10^3 A / m$ (c) $3 \times 10^3 A / m$ (a) $1 \times 10^3 A / m$ (d) $4 \times 10^3 A / m$

A small coil C with N = 200 turns is mounted on one end of a balance beam and introduced between the poles of 45. an electromagnet as shown in figure. The cross sectional area of coil is $A = 1.0 \text{ cm}^2$, length of arm OA of the balance beam is l = 30 cm. When there is no current in the coil the balance is in equilibrium. On passing a current I = 22 mA through the coil the equilibrium is restored by putting the additional counter weight of mass $\Delta m = 60 \ mg$ on the balance pan. Find the magnetic induction at the spot where coil is located.

	C			
46.	At a place the angle o intensity will be given	f dip is 30°. If the horizontal con n by	nponent of earth's magneti	c field is <i>H</i> , then the total field
	(a) $\frac{H}{2}$	(b) $\frac{2H}{\sqrt{3}}$	(c) $H\sqrt{2}$	(d) $H\sqrt{3}$
47.	<i>I</i> is the total intensity these are related as	of earth's magnetic field, <i>H</i> its	horizontal component and	<i>V</i> the vertical component then
			[CPM]	Г 2000; KCET (Engg./Med.) 2001]
	(a) $I = V^2 + H^2$	(b) $I = V + H$	(c) $I^2 = V + H$	(d) $I^2 = V^2 + H^2$
48.	At the north pole of ea	arth		[CPMT 2001]
	(a) V>>H		(c) <i>V</i> << <i>H</i>	(d) $V \neq 0, H = 0$
49.		e horizontal component B_0 and t The total intensity at the place with		f the earth's magnetic field are
	(a) <i>B</i> ₀	(b) B_0^2	(c) $2B_0$	(d) $\sqrt{2}B_0$
50.	At a certain place, the angle of dip at this pla	e horizontal component of earth ace is		es the vertical component. The [AFMC 1999, 2000; Pb. CET 2000]
	(a) 75°	(b) 60°	(c) 45°	(d) 30°
51.	The horizontal compo of the earth's magnet	nent of the earth's magnetic fiel ic field is	ld is $3.6 \times 10^{-5} T$ where the d	lip angle is 60°. The magnitude
	(a) $3.6 \times 10^{-5} T$	(b) $7.2 \times 10^{-5} T$	(c) $2.1 \times 10^{-4} T$	(d) $2.8 \times 10^{-4} T$
52.	The angle between the	e magnetic meridian and geogra	phical meridian is called	[MNR 1990; MP PMT 2000
	(a) Angle of dip field	(b) Angle of declination	(c) Magnetic moment	(d) Power of magnetic
53.	The null points are on	the axial line of a bar magnet, v	when it is placed such that i	its south pole points
	(a) South	(b) East	(c) North	(d) West
54.	At magnetic poles of e	earth, angle of dip is	[NCERT 19	81; CPMT 1977, 91; MP PET 1997]
	(a) Zero	(b) 45°	(c) 90°	(d) 180°
55.	The angle of dip at the	e magnetic equator is		
	[MP	PET 1984; MP PMT 1987; CBSE 198	39, 90; MP Board 1980; CPMT	' 1977, 87, 90; Manipal MEE 1995]
	(a) 0°	(b) 45°	(c) 30°	(d) 90°
56.	At a place, if the eart will be	h's horizontal and vertical comp	onents of magnetic fields a	are equal, then the angle of dip
				[MP Board 1974, 76, SCRA 1994]
	(a) 30°	(b) 90°	(c) 45°	(d) 0°
57.		places of the same horizontal int	-	[MNR 1984]
58.	(a) Isogonic lines A mariner's compass	(b) A clinic line is used	(c) Isoclinic line	(d) Isodynamic line
	(a) To compare magn	etic moments	(b)	For determination of <i>H</i>
	(c) For determinatior a place	n of direction	(d)	For determination of dip at
	A compass needle whi	ich is allowed to move in a horiz	ontal plane is taken to a ge	omagnetic pole. It
59.				
59.	(a) Will stay in north direction only	-south direction	only	(b) Will stay in east-west

		Basic	Level	
			Tangent law a	and magnetic instruments ()
	(d) 45°			
	(c) 30°		\$2/ 90	
	(b) 60°			
	(a) 75°		Nı	
	_	at angle should N_1S_1 make v		1 N ₂
				e to rotate in horizontal plane.
00.		-	-	
66.				(d) $\cot \varphi = \cot \varphi_1 / \cot \varphi_2$. Magnet $N_1 S_1$ has a magnetic
	then	(b) $\cot \phi = \cot^2 \phi_1 + \cot^2 \phi_2$		
65.	(a) θ If ϕ and ϕ be the angles	(b) α of dip in two vertical planes	(c) More than θ at right angles to each other	(d) Less than θ er and ϕ is the true angle of dip
-	the needle moves is rotate	ed through an angle α to the	magnetic meridian, then th	e needle will dip by an angle
64.	2	move freely in the magnetic		θ . If the vertical plane in which
	(a) $\tan^{-1}\frac{1}{2}$	(b) $\tan^{-1}(2)$	(c) $\tan^{-1}\left(\frac{2}{3}\right)$	(d) None of these
	magnetic meridian is			[AIEEE 2002]
63.	The true value of angle	of dip at place is 60°, the a	apparent dip in a plane in	clined at an angle of 30° with
		Advance	e Level	
_	(a) $5ab - amp \times cm$	(b) 10 <i>ab</i> – <i>amp</i> × <i>cm</i>	(c) $2.5ab - amp \times cm$	(d) $20ab - amp \times cm$
	-	the pole strength of the mag		_
62.	0 0		•	pointing towards geographical quatorial axis of the magnet. If
	(a) 6 cm	(b) 9 cm	(c) 4 cm	(d) 7 cm
61.	Two similar poles of stream the smaller pole will be a		e separated by a distance of	24 <i>cm</i> . The neutral point from
_	(a) 30°	(b) 45°	(c) 60°	(d) 90°
00.	geographical north. If th angle of declination will l	e horizontal intensity of ea pe	rth's magnetic field at tha	t place is $40 \mu Wb/m^2$, then the
60.	A magnetic needle of r	nagnetic moment 60 amp-	m^2 experiences a torque	of 1.2×10^{-3} N-m directed in

67. The length of a magnet is large compared to its width and breadth. The time period of its oscillation in a vibration magnetometer is 2 *sec*. The magnet is cut along its length into three equal parts and these parts are then placed on each other with their like poles together. The time period of this combination will be

(a) $2\sqrt{3}$ sec	(b) $\frac{2}{3}$ sec	(c) 2 sec	(d) $\frac{2}{\sqrt{3}}$ sec
---------------------	-----------------------	-----------	------------------------------

(a)

- In a tangent galvanometer a current of 0.1 A produces a deflection of 30°. The current required to produce a 68. deflection of 60° is
 - (c) 0.4 A (a) 0.2 A (b) 0.3 A (d) 0.5 A
- 69. A bar magnet is oscillating in earth's magnetic field with a period T. What happens to its period and motion if its mass is quadrupled

(a) Motion remains S.H.M. with the new period = 4T

- (b) Motion remains S.H.M. with the new period = $\frac{T}{2}$
- (c) Motion does not remain S.H.M. and period is approximately constant
- (d) Motion remains S.H.M. with new period 2T
- A thin rectangular magnet suspended freely has a period of oscillation equal to T. Now it is broken into two 70. equal halves (each having half of the original length) and one piece is made to oscillate freely in the same field. If its period of oscillation if *T*, the ratio $\frac{T'}{T}$ is

[AIEEE 2003]

[MP PET 2003]

- (a) $\frac{1}{4}$ (b) $\frac{1}{2\sqrt{2}}$ (c) $\frac{1}{2}$ (d) 2
- 71. Two bar magnets having same geometry with magnetic moments M and 2 M, are first placed in such a way that their similar poles are on same side then its time period of oscillation is T_1 . Now the polarity of one of the magnet is reversed then time period of oscillation is T_2 . Now

(a)
$$T_1 < T_2$$
 (b) $T_1 = T_2$ (c) $T_1 > T_2$ (d) $T_2 = \infty$

72. Two similar magnets of magnetic moment M_1 and M_2 are taken and vibrated in a vibration magnetometer with their (i) like poles together (ii) unlike poles together. If the ratio of the time periods is 1/2, then the ratio of M_1 and M_2 is [CPMT 2002] (b) 2 (a) 0.5(c) 5/3 (d) 1/3

- The period of oscillations of a magnet is 2 sec. When it is remagnetised so that the pole strength is 4 times its 73. period will be
 - (a) 4 sec (b) 2 sec (c) 1sec (d) 1/2 sec
- When two magnetic moments are compared using equal distance method the deflections produced are 45° and 30°. If 74. (c) $\sqrt{3}:1$ (d) $2\sqrt{3}:1$

(b) 3:2(a) 3:1

75. The time period of oscillation of a bar magnet suspended horizontally along the magnetic meridian is T_0 . If this magnet is replaced by another magnet of the same size and pole strength but with double the mass, the new time period will be

)
$$\frac{T_0}{2}$$
 (b) $\frac{T_0}{\sqrt{2}}$ (c) $\sqrt{2} T_0$ (d) 2 T_0

A bar magnet has a magnetic moment equal to $5 \times 10^{-5} W - m$. It is suspended in a magnetic field, which has a 76. magnetic induction *B* equal to $8\pi \times 10^{-4}$ Tesla. Magnet vibrates with a period of vibration equal to 15 sec. The moment of inertia of the magnet is

[CBSE PMT 2001]

[Kerala PMT 2002]

[SCRA 1994; JIPMER 2002]

- (b) $11.25 \times 10^{-7} kg m^2$ (c) $5.62 \times 10^{-7} kg m^2$ (d) $7.16 \times 10^{-7} kg m^2$ (a) $22.5 \times 10^7 kg - m^2$
- Which of the following statement is not the true 77.

(a) While taking reading of tangent galvanometer, the plane of the coil must be set at right angles to that earth's magnetic meridian

[KCET 2001]

	(b) A short magnet move	is used in a tangent galvanc	ometer since a long magnet	would be heavy and may	v not easily
	(c) Measurements v	vith the tangent galvanomete	er will be more accurate whe	en the deflection is aroun	d 45°
	(d) A tangent galva	nometer can not be used in t	the polar region		
78.	Before using the tan	gent galvanometer, its coil i	s set in	[MI	P PMT 2001]
	(a) Magnetic meridi	ien	(b) Perpendicular t	o magnetic meridien	
	(c) At angle of 45° t	o magnetic meridien	(d) It does not req	uire any setting	
79.	The error in measur	ing the current with a tange	nt galvanometer is minimun	n when deflection is abou	ıt
	(a) 0°	(b) 30°	(c) 45°	(d) 60°	
80.	-	a thin bar magnet in eart r to its length, the time per	•	-	two equal
	(a) $\frac{T}{2}$	(b) <i>T</i>	(c) $\sqrt{2} T$	(d) 2 <i>T</i>	
81.		nometers having coils of th lections of 60° and 45° resp			
	(a) $\frac{4}{3}$	(b) $\frac{(\sqrt{3}+1)}{1}$	(c) $\frac{(\sqrt{3}+1)}{(\sqrt{3}-1)}$	(d) $\frac{\sqrt{3}}{1}$	
82.	When the radius of	the tangent galvanometer	coil is decreased its sensit	tivity []	KCET 1999]
	(a) Increases	(b) May increase or	decrease (c)	Decreases	(d)
83.	A short magnetic n	leedle is provided in a unit	form magnetic field of stre	ength 1 <i>T</i> . When anothe	r magneti
-	•	$\sqrt{3}T$ is applied to the needl	•	•	-
	(a) 45°	(b) 90°	(c) 60°	(d) 30°	
84.		meter of reduction factor . When a current of I A is p	-		llel to the
	(a) 45°	(b) Zero	(c) 30°	(d) 60°	
85.	e	re geometrically similar bu ods of the oscillation wh	e		
	respectively, then	$\frac{T_1}{T_2}$ will be	[SCRA 1998]		
	(a) $\frac{1}{3}$	(b) $\frac{1}{2}$	(c) $\frac{1}{\sqrt{3}}$	(d) $\sqrt{3}$	
86.	Two magnets of sam ratio of their magne	ne size and mass make resp tic moments is	ectively 10 and 15 oscillatio	ns per minute at certain	place. The
	(a) 4:9	(b) 9:4	(c) 2:3	(d) 3:2	
87.	_	freely suspended magnet is the same way, then its time		length into two equal pa	rts and one
	(a) 4 seconds	(b) 2 seconds	(c) 0.5 second	(d) 0.25 second	
38.	e	magnetic moment M_A is f M_B when placed in a vibrat			agnet <i>B</i> or
	(a) $M_A = 2M_B$	(b) $M_A = 8M_B$	(c) $M_A = 4M_B$	(d) $M_B = 8M_A$	
89.		ic moment <i>M</i> oscillating free etic moment is quadrupled a			

per minute would be [MP PET1991]

	(a) $\frac{n}{2\sqrt{2}}$	(b) $\frac{n}{\sqrt{2}}$	(c) $2\sqrt{2} n$	(d) $\sqrt{2} n$
0.	The period of oscila	V 2		he period of oscillation of a magn
	(a) 1 sec	(b) 4 sec	(c) 8 sec	(d) 0.5 sec
1.		ns and radius of cross-sec	tion of the coil of a tange	nt galvanometer are doubled. Th [NCERT 198
	(a) <i>K</i>	(b) 2 <i>K</i>	(c) 4 <i>K</i>	(d) $\frac{K}{4}$
2.	distance of 20 cm	from the compass needle.		agnetometer in tan <i>B</i> position at e compass needle should anoth the needle remains zero
	(a) 5 <i>cm</i>	(b) 10 cm	(c) 15 cm	(d) 20 <i>cm</i>
		Ad	vance Level	
3.	The materials suitab	ole for making electromagne	ts should have	
	(a) High retentivity	and low coercivity	(b) Low retentivity	and low coercivity
	(c) High retentivity	and high coercivity	(d) Low retentivity	v and high coercivity
4.	A vibration magnete	ometer consists of two iden	tical bar magnets placed on	e over the other such that they a
4.	perpendicular and	bisect each other. The ti the magnets is removed an	ime period of oscillation	in a horizontal magnetic field
4.	perpendicular and $2^{5/4}$ seconds. One of	bisect each other. The ti the magnets is removed an	ime period of oscillation d if the other magnet oscilla	The over the other such that they a in a horizontal magnetic field ates in the same field, then the time (d) $2^{-1/4}$
	perpendicular and $2^{5/4}$ seconds. One of period in seconds is (a) $2^{1/4}$ The period of oscill	bisect each other. The tile the magnets is removed and (b) 2 ^{1/2} lations of a freely suspende	ime period of oscillation d if the other magnet oscilla [EAMCET 2003] (c) 2 ed bar magnet in the earth	in a horizontal magnetic field ates in the same field, then the tir (d) $2^{-1/4}$ Horizontal field (<i>H</i>) is 4 <i>sec</i> . Wh
4. 5.	perpendicular and $2^{5/4}$ seconds. One of period in seconds is (a) $2^{1/4}$ The period of oscill	bisect each other. The tile the magnets is removed and (b) 2 ^{1/2} lations of a freely suspende	ime period of oscillation d if the other magnet oscilla [EAMCET 2003] (c) 2 ed bar magnet in the earth	in a horizontal magnetic field ates in the same field, then the tir
5.	perpendicular and $2^{5/4}$ seconds. One of period in seconds is (a) $2^{1/4}$ The period of oscill another magnet is b (a) $\sqrt{3}H$ In a deflection mag	bisect each other. The till the magnets is removed an (b) $2^{1/2}$ lations of a freely suspender rought near it, the period of (b) $2H$ gnetometer experiment in ass needle produces a defl	ime period of oscillation d if the other magnet oscilla [EAMCET 2003] (c) 2 ed bar magnet in the earth oscillating is reduced to 2se (c) 3H tan A position, short-bar	in a horizontal magnetic field ates in the same field, then the tin (d) $2^{-1/4}$ Horizontal field (<i>H</i>) is 4 <i>sec</i> . Wh ec.The field of the second magnet i (d) 4 <i>H</i> magnet placed at 18 <i>cm</i> from t agnet of same length but 16 tim
	perpendicular and $2^{5/4}$ seconds. One of period in seconds is (a) $2^{1/4}$ The period of oscill another magnet is b (a) $\sqrt{3}H$ In a deflection mag	bisect each other. The till the magnets is removed an (b) $2^{1/2}$ lations of a freely suspender rought near it, the period of (b) $2H$ gnetometer experiment in ass needle produces a defl	ime period of oscillation d if the other magnet oscilla [EAMCET 2003] (c) 2 ed bar magnet in the earth oscillating is reduced to 2se (c) 3H tan A position, short-bar ection of 30°. If another m	in a horizontal magnetic field ates in the same field, then the tir (d) $2^{-1/4}$ Horizontal field (<i>H</i>) is 4 <i>sec</i> . Wh ec.The field of the second magnet i (d) 4 <i>H</i> magnet placed at 18 <i>cm</i> from t agnet of same length but 16 tim
5.	perpendicular and $2^{5/4}$ seconds. One of period in seconds is (a) $2^{1/4}$ The period of oscill another magnet is b (a) $\sqrt{3}H$ In a deflection magnet is the company pole strength as the company of the company pole strength as the company of	bisect each other. The till the magnets is removed an (b) $2^{1/2}$ lations of a freely suspender rought near it, the period of (b) $2H$ gnetometer experiment in ass needle produces a defl at of first magnet is placed (b) 30°	ime period of oscillation d if the other magnet oscilla [EAMCET 2003] (c) 2 ed bar magnet in the earth foscillating is reduced to 2se (c) 3H tan A position, short-bar ection of 30°. If another m d in tan B position at 36 cn (c) 45° short magnet in tan A posit	in a horizontal magnetic field ates in the same field, then the time (d) $2^{-1/4}$ Horizontal field (<i>H</i>) is 4 <i>sec</i> . Where C.The field of the second magnet field (d) 4 <i>H</i> magnet placed at 18 <i>cm</i> from t agnet of same length but 16 time the deflection will be
5.	perpendicular and $2^{5/4}$ seconds. One of period in seconds is (a) $2^{1/4}$ The period of oscill another magnet is b (a) $\sqrt{3}H$ In a deflection magnet is the company pole strength as the company of the company pole strength as the company of	bisect each other. The till the magnets is removed an (b) $2^{1/2}$ lations of a freely suspender rought near it, the period of (b) $2H$ gnetometer experiment in ass needle produces a defl at of first magnet is placed (b) 30° laced at a distance r from a	ime period of oscillation d if the other magnet oscilla [EAMCET 2003] (c) 2 ed bar magnet in the earth foscillating is reduced to 2se (c) 3H tan A position, short-bar ection of 30°. If another m d in tan B position at 36 cn (c) 45° short magnet in tan A posit	in a horizontal magnetic field ates in the same field, then the tin (d) $2^{-1/4}$ Horizontal field (<i>H</i>) is 4 <i>sec</i> . Wh c. The field of the second magnet is (d) 4 <i>H</i> magnet placed at 18 <i>cm</i> from t agnet of same length but 16 tim the deflection will be (d) 60°
5.	perpendicular and $2^{5/4}$ seconds. One of period in seconds is (a) $2^{1/4}$ The period of oscill another magnet is b (a) $\sqrt{3}H$ In a deflection magnet is the comparison of the comparison	bisect each other. The till the magnets is removed an (b) $2^{1/2}$ lations of a freely suspender rought near it, the period of (b) $2H$ gnetometer experiment in ass needle produces a defl at of first magnet is placed (b) 30° laced at a distance r from a d to $r(3)^{1/3}$, then the deflection (b) $60^{\circ} \times (3)^{1/3}$ ended by a horse hair lies in and of the hair through 150° angle through which the u	tan A position, short-bar ection of 30° . If another m (c) 45° (c) 45° (c) 45° (c) 45° (c) $60^{\circ} \times (3)^{2/3}$	in a horizontal magnetic field ates in the same field, then the time (d) $2^{-1/4}$ Horizontal field (<i>H</i>) is 4sec. Where C.The field of the second magnet field (d) 4 <i>H</i> magnet placed at 18 cm from the agnet of same length but 16 time to the deflection will be (d) 60° ion shows a deflection of 60°. If the

7

makes 14 oscillations per minute. If the bar magnet is turned so that its pole interchange their position, Then the new frequency of oscillation of the needle is

(a) 10 vibrations per minute

(d) 2 vibrations per minute

(b)

14 vibrations per minute (c) 4 vibrations per

100. Two magnets are suspended by a given wire one by one. In order to deflect the first magnet through 45°, the wire has to be twisted through 540° whereas with the second magnet the wire requires a twist of 360° for the same deflection. Then the ratio of magnetic moments of the two is

(a) $\frac{3}{2}$ (b) $\frac{4}{3}$ (c) $\frac{7}{6}$ (d) $\frac{11}{7}$

				Ma	agnetic mater	rials
		Ba	sic Level			
01.	The material of perma	nent magnet has			[KCET 1994,	, 2003]
	(a) High retentivity, low coercivity	v coercivity	(b)	Low	retentivity,	high
	(c) Low retentivity, low coercivity	v coercivity	(d)	High	retentivity,	high
02.	When a diamagnetic su	ubstance is placed near a	a magnet then it is			
		[S	imilar to EAMCET 1995, 96; C	BSE PMT 199	99; AFMC 1999,	2003]
	(a) Attracted	(b) Repelled	(c) No effect	(d) No	one of these	
93.	According to Curie's l proportional to	aw, the magnetic susce	eptibility of a substance at	an absolu	te temperatur	e T is
					[CBSE PMT	2003]
	(a) <i>T</i>	(b) $\frac{1}{T^2}$	(c) <i>T</i> ²	(d) $\frac{1}{T}$		
94.	Which of the magnetic r	naterials have negative su	isceptibly			
	(a) Diamagnetic materi	als (b) Paramagnetic mat	erials (c) Ferromagnetic ma	aterials (d)Ferromagneti	c mate
95.	-	in a magnetic field produ the body of the frog beha	nced by a current in a vertica ave as	l solenoid p	laced below th	e frog.
	(a) Paramagnetic	(b) Diamagnetic	(c) Ferromagnetic	(d) Ar	ti-ferromagne	tic
6 .	A superconductor exhibit	its perfect				
	(a) Ferromagnetism	(b) Ferromagnetism	(c) Diamagnetism	(d) Pa	ramagnetism	
07.			een the poles of a strong elec oservation establishes that bis	-	It is found to a	rrange
	(a) Diamagnetic	(b) Paramagnetic	(c) Ferromagnetic	(d) Ar	ti-ferromagne	tic
08 .	A liquid is there in a <i>U</i> up, the magnetic charac	•	field is produced perpendicul	ar to one of	its arms, liqui	d rises
	(a) Diamagnetic	(b) Paramagnetic	(c) Both	(d) No	one of these	
9.	Susceptibility of a mate	rial varies as $\chi = \frac{C}{T}$, whe	ere C is a constant and T is te	mperature a	t absolute stat	e, then
	material must be	-				
				[BHU	2000; UPSEAT	2002]
	(a) Diama amatia		(h) Deverse errette			

(a) Diamagnetic (b) Paramagnetic

	(c) Ferromagnetic temperature		(d) Any of the above	e depending upon range of	
110.	Which of the following s	statements is incorrect about 1	hysterisis		
	(a) This effect is commo	on to all ferromagnetic substa	nces		
	(b) The hysterisis loop	area is proportional to the the	rmal energy developed per	unit volume of the material	
	(c) The hysterisis loop	area is independent of the the	rmal energy developed per	unit volume of the material	
	(d) The shape of the hys	sterisis loop is characteristic o	of the material		
111.	Of dia, para and ferror	nagnetism, the universal pro	operty of all substances is	[CPMT 1995, 2002]	
	(a) Diamagnetism	(b) Paramagnetism	(c) Ferromagnetism	(d) All of the above	
112.	•	· · ·		ferromagnetic material varies ole to be suitable for making a	
	(a) OQ should be large,	OR should be small	Q P		
	(b) OQ and OR should both be large		$ \xrightarrow{R/} 0 0 \xrightarrow{R/} 0 0 \xrightarrow{R/} 0 0 \xrightarrow{R/}$	Bo	
	(c) OQ should be small and OR should be large		S		
	(d) <i>OQ</i> and <i>OR</i> should both be small				
113.	Which of the following	is true			
	(a) Diamagnetism is ter	nperature dependent	(b) Paramagnetism is to	emperature dependent	
	(c) Paramagnetism is te	emperature independent	(d) None of these		
114.	The relative permeabili paramagnetic substance		he susceptibility by χ for a	magnetic substance. Then for a	
				[KCET 2001]	
	(a) $\mu r > 1, \chi > 0$	(b) $\mu r > 1, \chi < 0$	(c) $\mu r < 1, \chi > 0$	(d) $\mu r < 1, \chi < 0$	
115.	Identify the paramagn	etic substance		[Kerala (Engg.) 2001]	
	(a) Iron	(b) Aluminium	(c) Nickel	(d) Hydrogen	
116.	Magnetic susceptibility	of which material does not de	pend on the temperature	[CBSE PM/PD 2001]	
	(a) Dia-magnetism	(b) Paramagnetism	(c) Ferro-magnetism	(d) Ferrite	
117.	The magnetic material,	which moves from stronger to	weaker parts of a magneti	c field is known as	
	(a) Diamagnetic	(b) Paramagnetic	(c) Ferromagnetic	(d) Anti-ferromagnetic	
118.	The use of study of hys	steresis curve for a given ma	aterial is to estimate the	[CBSE PMT 2000]	
	(a) Voltage loss	(b) Hysteresis loss	(c) Current loss	(d) All of these	
119.	When a diamagnetic sub	ostances is inserted in a curre	nt carrying coil, the magnet	tic field is	
	(a) Decreased				
	(b) Unchanged				
	(c) Increased				

(d) Increased or decreased depending upon the relative volume of the substance

120. An example for diamagnetic substance is

128 Magnetism

[KCET 2000]

	(a) Iron	(b) Copper	(c) Aluminum	(d) Nickel	
21.	If a diamagnetic substa	nce is brought near north or	south pole of a bar magnet	, it is [EAMCET (I	Engg.) 1995; CBSE
	(a) Attracted by the pol	les	(b) Repelled by the po	oles	
	(c) Repelled by the nor pole and repelled by the	th pole and attracted by the e south pole	south pole	(d) Attracte	ed by the north
22.	Substances in which the	e magnetic moment of a sing	le atom is not zero, are kno	wn as	
	(a) Diamagnetic	(b) Ferromagnetic	(c) Paramagnetic	(d) Ferrom	agnetic
23.	Which one of the follo	wing materials is ferromag	gnetic		
	(a) Gold	(b) Nickel	(c) Wood	(d) Mangai	nese
24.	The major contributio	n of magnetism in substand	ces is due to		
	(a) Orbital motion of el electrons	ectrons		(b) Spin	motion of
	(c) Equally due to orbit	al and spin motions of electr	rons (d) Hidden magnets		
25.	The softness of a mag	netic substance is measure	d by		
	(a) Magnetic induction	(b) Coercivity	(c) Intensity of magne	etisation (d)	Density
:6.	Select the wrong staten	nent			
	(a) In a diamagnetic su	bstance the direction \vec{I} is of	pposite to that of \overrightarrow{H}		
	(b) In a paramagnetic s	substance the direction \vec{I} is	along \overrightarrow{H}		
	(c) In a ferromagnetic	substance, the direction \vec{I} is	s along \vec{H}		
	(d) In a diamagnetic su	bstance, the direction \vec{I} is a	long \overrightarrow{H}		
27.	A thin bar of diamagne orientation of bar (repr	tic substances is placed betv esented by thick black)	veen two pole pieces. Whic	h of the followin	g represents the

(a) N S (b) N S (c) N	S (d) N S
-----------------------	-----------

Advance	Level

- **128.** The variation of the intensity of magnetisation (*I*) with respect to the magnetising field *H* in a diamagnetic substance is described by the graph
 - (a) *OA*
 - (b) *OB*
 - (c) *OC*
 - (d) *OD*

129. Magnetic moment of *Ne* is

```
(a) 0
```

(b) $1.27 \times 10^{-24} amp - m^2$

```
(c) 3.4 \times 10^{-24} \text{ amp-}m^2
```

```
(d) 5.6 \times 10^{-24} amp - m^2
```

Magnetism 120

130. If a diamagnetic solution is poured into a U-tube and one arm of this U-tube placed between the poles of a strong magnet with the meniscus in a line with the field, then the level of the solution will

(a) Rise (b) Fall (c) Oscillate slowly (d) Remain as such

131. The number of atoms per unit volume in a sample of iron is 9×10^{28} atom/ m^3 . The magnetic moment of every iron atom is 1.5×10^{28} *A*- m^2 . If all the dipoles are aligned in a domain due to ferromagnetic interaction, then the magnetization of an iron rod of length 10 *cm* and area of cross-section 1 *cm*² will be

(a) $1.8 \times 10^6 A/m$ (b) $1.31 \times 10^5 A/m$ (c) $1.35 \times 10^5 A/m$ (d) $1.4 \times 10^3 A/m$

Assignment (Basic & Advance Level)																			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
с	a	b	с	с	b	d	b	b	d	с	b	b	d	a	b	b	d	d	с
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
d	a	b	a	a	d	b	a	d	с	b	с	b	d	a	d	b	b	с	с
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
с	b	С	с	a	b	d	d	d	d	b	b	с	с	a	с	d	с	d	a
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
a	a	b	с	a	с	с	b	d	с	a	с	с	d	с	d	a	a	с	a
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
d	a	с	а	с	а	b	с	с	a	a	b	a	с	d	b	a	с	d	d
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
d	b	d	a	b	с	a	b	b	с	a	b	b	a	b	a	a	b	a	b
121	122	123	124	125	126	127	128	129	130	131									
b	С	b	b	b	d	b	с	a	b	с									