

Trigonometric Equation

Sing	gle Correct Option	n Type Questions				
Q.1	In the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, the equation $\log_{\sin\theta} \cos 2\theta = 2$ has					
	(A) No solution	(B) One solution	(C) Two solution	(D) Infinite solution		
Q.2	Number of solution of the equation $\sin \frac{5x}{2} - \sin \frac{x}{2} = 2$ in the interval [0, 2 π], is -					
	(A) 1	(B) 2	2 (C) 0	(D) Infinite		
Q.3	If θ_1 , θ_2 and θ_3 are the three values of $\theta \in [0, 2\pi]$ for which $\tan \theta = \lambda$ then the value of					
	$\tan \frac{\theta_1}{3} \tan \frac{\theta_2}{3} + \tan \frac{\theta_2}{3} \tan \frac{\theta_3}{3} + \tan \frac{\theta_3}{3} \tan \frac{\theta_1}{3}$ is equal to (λ is a constant)					
	(A) –3	(B) –2	(C) 2	(D) 3		
Q.4	-	$10 \le x \le 3\pi$ then sin x lies				
	$(A)\left[\frac{\sqrt{5}-1}{2},1\right]$	$(B)\left[0,\frac{\sqrt{5}-1}{2}\right]$	$(C)\left[\frac{1}{2},1\right]$	(D) none of these		
Q.5	The number of solutions of the equation $4 \sin^2 x + \tan^2 x + \cot^2 x + \csc^2 x = 6$ in [0, 2π]					
	(A) 1	(B) 2	(C) 3	(D) 4		
Q.6	6 The complete solution set of the equation $4 \sin^2 x + \tan^2 x + \csc^2 x + \cot^2 x = 6$ is					
	(A) $2n\pi \pm \pi/4$, $(n \in I)$ (C) $n\pi \pm \pi/4$, $(n \in I)$		(B) $n\pi \pm \pi/3$, $(n \in I)$ (D) $n\pi \pm \pi/6$, $(n \in I)$			
	(C) $III \pm 104$, (II $\in I$)		(D) If $x = 1/0$, (if $e = 1$)			
Q.7			$-2\sin^2\theta - 1 = 0$ which lie			
	(A) 0	(B) 2	(C) 4	(D) 8		
Q.8	The smallest positive	value of p for which the	equation $\cos(p \sin x) = \sin x$	$(p \cos x)$ has solution in $0 \le x \le 2\pi$ is		
	(A) $\frac{\pi}{\sqrt{2}}$	(B) $\frac{\pi}{2}$	(C) $\frac{\pi}{2\sqrt{2}}$	(D) $\frac{3\pi}{2\sqrt{2}}$		
Q.9	The total number of	rdered pairs (v. v) satisfu	$ing \mathbf{x} + \mathbf{y} = 2 and sin \left(\frac{\pi}{2}\right)$	$\left(x^2\right) = 1$ is:		
Q.9			. (5)		
	(A) 2	(B) 4	(C) 6	(D) 8		

Q.10 The complete set of values of x, $x \in \left(-\frac{\pi}{2}, \pi\right)$ satisfying the inequality $\cos 2x > |\sin x| + \frac{1}{2}$

$(A)\left(-\frac{\pi}{6},\frac{\pi}{6}\right)$	$(B)\left(-\frac{\pi}{2},-\frac{\pi}{6}\right)\cup\left(\frac{\pi}{6},\frac{5\pi}{6}\right)$
$(C)\left(-\frac{\pi}{2},-\frac{\pi}{6}\right)\cup\left(\frac{5\pi}{6},\pi\right)$	(D) $\left(-\frac{\pi}{6},\frac{\pi}{6}\right) \cup \left(\frac{5\pi}{6},\pi\right)$

- Q.11 The total number of solution of the equation $\sin^4 x + \cos^4 x = \sin x \cos x$ in $[0, 2\pi]$ is: (A) 2 (B) 4 (C) 6 (D) 8
- Q.12 The sides of a triangle are $\sin\alpha$, $\cos\alpha$, $\sqrt{1 + \sin\alpha\cos\alpha}$ for some $0 < \alpha < \frac{\pi}{2}$ then the greatest angle of the triangle is-(A) $\frac{\pi}{3}$ (B) $\frac{\pi}{2}$ (C) $\frac{2\pi}{3}$ (D) $\frac{5\pi}{6}$
- Q.13 The equation $e^{\sin x} e^{-\sin x} 4 = 0$ has

 (A) infinite number of real roots
 (B) no real root

 (C) exactly one real root
 (D) exactly four real roots
- Q.14 The possible value(s) of ' θ ' satisfying the equation $\sin^2\theta \tan\theta + \cos^2\theta \cot\theta \sin^2\theta = 1 + \tan\theta + \cot\theta$ where $\theta \in [0, \pi]$ is/are
 - (A) $\frac{\pi}{4}$ (B) π (C) $\frac{7\pi}{12}$ (D) None of these
- Q.15Consider a trigonometric equation ($x \in [0, 2\pi]$), $3 \operatorname{cot}^2 x + 8 \operatorname{cot} x + 3 = 0$ then the sum of all solutions is -
(A) π (B) 3π (C) 5π (D) None of these

Multiple Correct Option Type Questions

- Q.16 If sinθ + √3 cosθ = 6x x² 11, 0 ≤ θ ≤ 4π, x ∈ R holds for
 (A) No value of x and θ
 (B) One value of x and two values of θ
 (C) Two values of x and two values of θ
 (D) Two pairs of values of (x, θ)
- Q.17 Which of the following sets can be the subset of the general solution of the equation : $1 + \cos 3x = 2 \cos 2x$?

(A) $n\pi + \frac{\pi}{3}$ (B) $n\pi + \frac{\pi}{6}$ (C) $n\pi - \frac{\pi}{6}$ (D) $2n\pi$ (where $n \in I$)

Q.18	If $0 \le \theta \le \pi$ and $\sin \frac{\theta}{2} = \sqrt{1 + \sin \theta} - \sqrt{1 - \sin \theta}$, then possible values of $\tan \theta$, is -						
	(A) $\frac{4}{3}$	(B) 0	(C) $-\frac{3}{4}$	$(D) - \frac{4}{3}$			
Q.19	9 If $\cot^3 \alpha + \cot^2 \alpha + \cot \alpha = 1$ then which of the following is/are correct						
	(A) $\cos 2\alpha \tan \alpha =$	1	(B) $\cos 2\alpha \cdot \tan \alpha = -$	(B) $\cos 2\alpha$. $\tan \alpha = -1$			
	(C) $\cos 2\alpha - \tan 2\alpha$	x = -1	(D) $\cos 2\alpha - \tan \alpha = 1$				
Q.20	The equation $\cos^2 x - \sin x + \lambda = 0$, $x \in (0, \pi/2)$ has roots then value(s) of λ can be equal to						
	(A) 0	(B) –1	(C) $\frac{1}{2}$	(D) 1			
Pass	age Based Qu	estions	NUMPER DESIGNATION	Part and the second second			
Passag	ge # 1 (Q.21 to 23)						
	Let $f(x) = \sin^2 x - \frac{1}{2} \sin^2 x$	(a -1) sinx + 2(a -3)					
Q.21	Q.21 If $x \in [0, \pi]$ and $f(x) = 0$ has exactly one real root, then 'a' lies in						
	(A) (3, 5)	(B) (2, 4)	(C) (4, 5)	(D) None of these			
Q.22	22 If $f(x) = 0$ have two real roots in $(0, \pi)$, then $a \in$						
	(A) (1, 2)	(B) (3, 4)	(C) $(3, 4) \cup \{5\}$	(D) (3, 5)			
Q.23	Q.23 If $f(x) \ge 0 \forall x \in \mathbb{R}$ then range of 'a' is						
	(A) [2, ∞)	(B) [4, ∞)	(C) (4, ∞)	(D) None of these			
Passag	ge # 2 (Q.24 & 25)			34.0			
	Let $f(x, y, z) = \cos x + \cos y + \cos z$						

Q.24 If x, y, z are in A.P. then f(x, y, z) is

Q.25 The general solution of
$$f\left(x, \frac{2\pi}{3} - x, \frac{2\pi}{3} + x\right) = f(x, 2x, 3x)$$
 and $f(x, x, x) = \frac{3}{\sqrt{2}}$ is:
(A) $x = (2n\pi + 1)\frac{\pi}{4}, n \in \mathbb{Z}$ (B) $x = \frac{n\pi}{4}, n \in \mathbb{Z}$
(C) $x = 2n\pi \pm \frac{\pi}{4}, n \in \mathbb{Z}$ (D) $x = 2n\pi \pm \frac{3\pi}{4}, n \in \mathbb{Z}$

Column Matching Type Questions

Q.26 Match the following :

Column-I	Column-II
(A) If $2asinx - asin^3x \le 6 \forall x \in \mathbb{R}$ then the number of non zero integral value(s) of 'a' is	(P) 0
(B) Tangents are drawn to $x^2 + y^2 = 16$ from the point P(0, h). These tangents meet	(Q) 1
the x-axis at A and B. If the area of triangle PAB is minimum, then $\frac{h^2}{8}$ =	
(C) If 'k' denotes the number of ways in which 3 squares can be selected on chess	(R) 2
board which lie on same diagonal line and lie below the main diagonal and ' ℓ ' denotes the coefficient of x^3 in $(1 + x)^3 + (1 + x)^4 + (1 + x)^5 + (1 + x)^6 + (1 + x)^7$,	
then $k - \ell$ is equal to (where the main diagonal on chess board is a diagonal along which the north-west corner lie).	
(D) Sum of all real solutions of equation $\frac{1}{2}$ + $ \sin x = \cos x$ in $[0, 2\pi]$ is $k\pi$, then the	(S) 3
value of k is	(T) 4

- **Numeric Response Type Questions**
- **Q.27** If the sum of all values of θ , $0 \le \theta \le 2\pi$ satisfying the equation. (8 cos 40 - 3) (cot θ + tan θ - 2) (cot θ + tan θ + 2) = 12 is k π , then k is equal to
- **Q.28** Find the number of solutions of the equation $2 \sin^2 x + \sin^2 2x = 2$, $\sin 2x + \cos 2x = \tan x$ in [0, 4π] satisfying the condition $2 \cos^2 x + \sin x \le 2$.
- Q.29 If the sum of all the solutions of the equation $3 \cot^2 \theta + 10 \cot \theta + 3 = 0$ in [0, 2 π] is $k\pi$ where $k \in I$, then find the value of k
- Q.30 Let the inequality $\sin^2 x + a \cos x + a^2 \ge 1 + \cos x$ is satisfied $\forall x \in R$, for $a \in (-\infty, k_1] \cup [k_2, \infty)$, then $|k_1| + |k_2| = 1$
- Q.31 The sum of all integral values of 'a' for which the equation $2x^2 (1 + 2a)x + 1 + a = 0$ has a integral root.

- **Q.32** Let f(x) be a polynomial of degree 8 such that $F(r) = \frac{1}{r}$, r = 1, 2, 3, ..., 8, 9, then $\frac{1}{F(10)} = \frac{1}{r}$
- **Q.33** Sum of all solutions of the equation $\frac{1}{2} + |\sin x| = \cos x$, where $x \in [0, 4\pi]$ is $k\pi$, then the value of k is
- Q.34 The number of distinct solutions $x \in [0, \pi]$ which satisfy the equation 8 cos x cos 4x cos 5x = 1 is k then $\frac{k}{2}$ is equal to

ANSWER KEY

Single Corre	ect Option type Q	uestions .				
1. (B)	2. (C)	3. (A)	4. (B)	5. (D)	6. (C)	7. (A)
8. (C)	9. (B)	10. (D)	11. (A)	12. (C)	13. (B)	14. (C)
15. (C)						
Multiple Co	rrect Option type	Questions			1	
16. (B,D)	17. (B,C,D)	18. (B,D)	19. (B,D)	20. (A,C)		
Passage Bas	ed Questions		×			
21. (A)	22. (B)	23. (B)	24. (A)	25. (C)		
<u>Column Ma</u>	tching Type Ques	stions				
26. A \rightarrow T; E	$B \rightarrow R; C \rightarrow P; D$	$\rightarrow R$		10		
Numeric Re	sponse Type Que	stions				
27.8	28.4	29.5	30. 3	31.1	32.5	33.8
34.5						