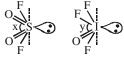

Chemistry


- **Q.1** Which of the following statement is correct about fructose?
 - (1) It is dextrorotatory compound.
 - (2) It exists in the two cyclic forms which is obtained by the addition of OH at C-5 to the group.
 - (3) It exists as six membered ring.
 - (4) It is named as furanose as it contain one oxygen and six carbon atom.
- **Q.2** The number of atoms in 4.25 g of NH_3 is approximately:-
 - (1) 1×10^{23}
- (2) 1.5×10^{23}
- (3) 2×10^{23}
- (4) 6×10^{23}
- **Q.3** Which one of the following about an electron occupying the 1s orbital in a hydrogen atom is incorrect? (The Bohr radius is represented by a_0)
 - (1) The electron can be found at a distance $2a_0$ from the nucleus.
 - (2) The probability density of finding the electron is maximum at the nucleus.
 - (3) The magnitude of potential energy is double that of its kinetic energy on an average.
 - (4) The total energy of the electron is maximum when it is at a distance a_0 from the nucleus.
- **Q.4** Which of the following diagram show correct change in the ionic character of given compounds according to Fajans rule?

- **Q.5** The size of the iso-electronic species Cl⁻, Ar and Ca²⁺ is affected by -
 - (1) Principal quantum number of valence shell.
 - (2) Nuclear charge.
 - (3) Azimuthal quantum number of valence shell.
 - (4) Electron-electron interaction in the outer orbitals
- **Q.6** During change of O_2 to O_2^- ion, the electron adds on which one of the following orbitals?
 - (1) σ^* orbital
- (2) σ orbital
- (3) π^* orbital
- (4) π orbital

- **Q.7** The ion that has sp³d² hybridization for the central atom, is:
 - (1) [ICl₂]⁻
- $(2) [IF_6]^-$
- (3) $[ICl_4]^-$
- (4) $[BrF_2]^-$
- **Q.8** Among the following molecules / ions,
 - C_2^{2-} , N_2^{2-} , O_2^{2-} , O_2 , which one is diamagnetic and has the shortest bond length?
 - (1) C_2^{2-}
- (2) N_2^{2-}
- (3) O_2
- (4) O_2^{2-}
- **Q.9** The correct order of Cl–O bond order is :
 - (1) $ClO_3^- < ClO_4^- < ClO_2^- < ClO^-$
 - (2) $ClO^- < ClO_4^- < ClO_3^- < ClO_2^-$
 - (3) $ClO^- < ClO_2^- < ClO_3^- < ClO_4^-$
 - (4) $ClO_4^- < ClO_3^- < ClO_2^- < ClO^-$
- **Q.10** The correct statement about ICl₅ and ICl₄⁻ is
 - (1) ICl₅ is trigonal bipyramidal and ICl₄⁻ is tetrahedral.
 - (2) ICl₅ is square pyramidal and ICl₄⁻ is tetrahedral.
 - (3) ICl₅ is square pyramidal and ICl₄⁻ is square planar.
 - (4) Both are isostructural.
- Q.11 If p is the momentum of the fastest electron ejected from a metal surface after the irradiation of light having wavelength λ , then for 1.5 p momentum of the photoelectron, the wavelength of the light should be: (Assume kinetic energy of ejected photoelectron to be very high in comparison to work function)
 - (1) $(1/2) \lambda$
- (2) $(3/4) \lambda$
- (3) $(2/3) \lambda$
- (4) $(4/9) \lambda$
- Q.12 What would be the molality of 20% (mass/mass) aqueous solution of KI?
 - (Molar mass of KI = 166 g mol^{-1})
 - (1) 1.08
- (2) 1.48
- (3) 1.51
- (4) 1.35
- **Q.13** At 300 K and 1 atmospheric pressure, 10 mL of a hydrocarbon required 55 mL of O₂ for complete combustion and 40 mL of CO₂ is formed. The formula of the hydrocarbon is:
 - (1) C_4H_8
- (2) C_4H_7Cl
- (3) C_4H_{10}
- (4) C_4H_6

- The isoelectronic set of ions is:
 - (1) N^{3-} , Li⁺, Mg²⁺ and O²⁻
 - (2) Li $^+$, Na $^+$, O $^{2-}$ and F $^-$
 - (3) F^- , Li^+ , Na^+ and Mg^{2+}
 - (4) N^{3-} , O^{2-} , F^{-} and Na^{+}
- Q.15 Which of the following contain maximum number of carbon atoms?
 - (1) 15 gm ethane, C_2H_6
 - (2) $40.2 \text{ gm sodium oxalate}, Na_2C_2O_4$
 - (3) 72 gm glucose, $C_6H_{12}O_6$
 - (4) 35 gm pentene, C_5H_{10}
- **Q.16** 5 moles of AB₂ weigh 125×10^{-3} kg and 10 moles of A_2B_2 weigh 300×10^{-3} kg. The molar mass of A (M_A) and molar mass of B (M_B) in kg mol⁻¹ are
 - (1) $M_A = 50 \times 10^{-3}$ and $M_B = 25 \times 10^{-3}$
 - (2) $M_{\Delta} = 25 \times 10^{-3}$ and $M_{B} = 50 \times 10^{-3}$
 - (3) $M_A = 5 \times 10^{-3}$ and $M_B = 10 \times 10^{-3}$
 - (4) $M_A = 10 \times 10^{-3}$ and $M_B = 5 \times 10^{-3}$
- **Q.17** How many electrons in an atom can have n = 3, $\ell = 1$, m = -1 and s = $+\frac{1}{2}$
 - (1) 1
- (3) 4
- (4) 6
- **Q.18** NH_2^- , NH_3 and NH_4^+ do not show similarity in the following:-
 - (1) Hybridisation state of nitrogen
 - (2) No. of lone pair of electrons
 - (3) Atomic no. of N
 - (4) Type of overlapping in N–H bond.
- If ionisation potential of hydrogen atom is 13.6 eV, then ionisation potential of He⁺ will be
 - (1) 54.4 eV
- (2) 6.8 eV
- (3) 13.6 eV
- (4) 24.5 eV
- Q.20The correct order of bond angle
 - (1) $PF_3 < PCl_3 < PBr_3 > PI_3$
 - (2) $PF_3 < PCl_3 < PBr_3 < PI_3$
 - (3) $PF_3 > PCl_3 > PBr_3 > PI_3$
 - (4) $PF_3 > PCl_3 < PBr_3 > PI_3$

Compare x and y bond angles for the above given molecules :-

- $(1) \quad y > x$
- (2) x > y
- (3) x = y
- (4) None of these

- During compression of a spring the work done is 10 kJ and 2 kJ escaped to the surroundings as heat. The change in internal energy, ΔU (in kJ) is:
 - (1) 8
- (2) 12
- (3) -12
- (4) -8
- Q.23 If solubility product of $Zr_3(PO_4)_4$ is denoted by K_{sn} and its molar solubility is denoted by S, then which of the following relation between S and K_{sp} is correct
 - (1) $S = \left(\frac{K_{sp}}{929}\right)^{1/9}$ (2) $S = \left(\frac{K_{sp}}{216}\right)^{1/7}$

 - (3) $S = \left(\frac{K_{sp}}{144}\right)^{1/6}$ (4) $S = \left(\frac{K_{sp}}{6912}\right)^{1/7}$
- Q.24 Which one of the following equations does not represent the first correctly thermodynamics for the given processes involving an ideal gas ? (Assume nonexpansion work is zero)
 - (1) Cyclic process: q = -w
 - (2) Isothermal process: q = -w
 - (3) Adiabatic process : $\Delta U = -w$
 - (4) Isochoric process : $\Delta U = q$
- Q.25 Calculate the heat produced in kJ when 280 g CaO is completely converted to CaCO₃ by reaction with CO2 at 27°C and at constant volume :-

(Given) $\Delta H_f^{\circ}(CaCO_3,s) = -1207 \text{ kJ/mol}$

 $\Delta H_f^{\circ}(CaO,s) = -635 \text{ kJ/mol}$

 ΔH_f° (CO₂.g) = -394 kJ/mol

- (1) 800 J/mol
 - (2) 877.55 kJ/mol
- (3) 500 kJ/mol
- (4) 730 kJ/mol
- **Q.26** Equilibrium constant (K_c) of
 - 2HI (g) \rightleftharpoons H₂ (g) + I₂ (g) is 5 × 10³. What is the equilibrium concentration of HI, if equilibrium concentrations of $H_2(g)$ and $I_2(g)$ respectively are 2.2×10^{-2} M and 2.2×10^{-4} M?

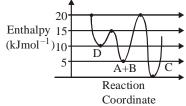
 - (1) $1.11 \times 10^{-5} \text{ M}$ (2) $2.22 \times 10^{-5} \text{ M}$
 - (3) $3.11 \times 10^{-5} \text{ M}$
- (4) $6.66 \times 10^{-5} \text{ M}$
- **O.27** For the following reactions, equilibrium constants are given:

$$S(s) + O_2(g) \rightleftharpoons SO_2(g); K_1 = 10^{52}$$

$$2S(s) + 3O_2(g) \rightleftharpoons 2SO_3(g); K_2 = 10^{129}$$

The equilibrium constant for the reaction,

- $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ is :
 - $(2) 10^{154}$
- $(3) 10^{25}$


 $(1) 10^{181}$

 $(4) 10^{77}$

- **Q.28** One mole of an ideal gas at 25°C expands its volume from 1L to 4L at constant temperature. What work (in J) is done if gas expands against vacuum $(P_{ext} = 0)$?
 - $(1) -4 \times 10^2$
- (2) -3×10^2
- $(3) -1 \times 10^2$
- (4) Zero
- **Q.29** Which of the following cannot act as a reducing agent:
 - (1) SO₂
- (2) Cl_2O_3
- (3) NO₂
- (4) CO₂
- **Q.30** Among the following, the set of parameters that represents path function, is:
 - (a) q + w
- (b) a
- (c) w
- (d) H TS
- (1) (a) and (d)
- (2) (b), (c) and (d)
- (3) (b) and (c)
- (4) (a), (b) and (c)
- **Q.31** Consider the given plot of enthalpy of the following reaction between A and B.

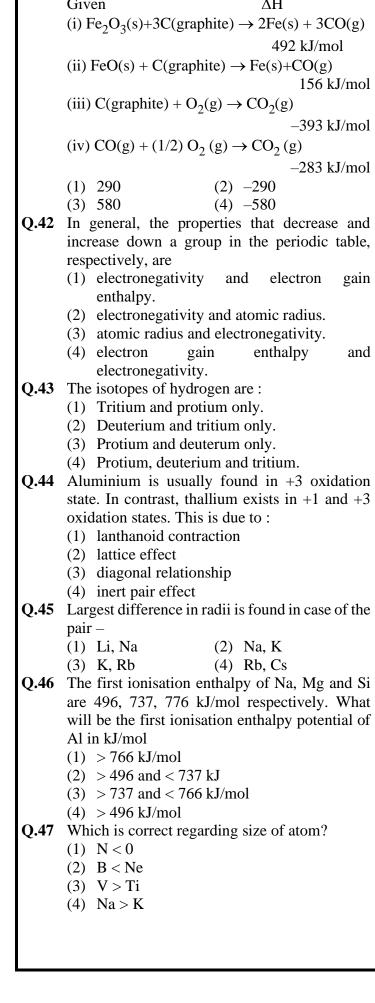
$$A + B \rightarrow C + D$$

Identify the **INCORRECT** statement.

- (1) C is the thermodynamically stable product.
- (2) Formation of A and B from C has highest enthalpy of activation.
- (3) D is kinetically stable product.
- (4) Activation enthalpy to form C is 5kJ mol⁻¹ less than that to form D.
- **Q.32** Which of the following change will shift the reaction towards the product:-

$$I_2(g) \rightleftharpoons 2I(g)$$
; $\Delta H_r^{\circ}(298 \text{ K}) = +150 \text{ kJ}$

- (1) increase in concentration of I
- (2) decrease in concentration of I_2
- (3) increase in temperature
- (4) increase in total pressure
- Q.33 A process will be spontaneous at all temperatures if :
 - (1) $\Delta H > 0$ and $\Delta S < 0$
 - (2) $\Delta H < 0$ and $\Delta S > 0$
 - (3) $\Delta H > 0$ and $\Delta S > 0$
 - (4) $\Delta H < 0$ and $\Delta S < 0$
- **Q.34** The difference between ΔH and ΔU (ΔH – ΔU), when the combustion of one mole of heptane (1) is carried out at a temperature T, is equal to:
 - (1) 3RT
- (2) -3RT
- (3) 4RT
- (4) 4RT


- Q.35 For the reaction; $2A(g)+B(g) \rightleftharpoons 3C(g)+D(g)$ two moles each of A and B were taken into one litre flask. The following must always be true when the system attains equilibrium:-
 - (1) [A] = [B]
- (2) [A] < [B]
- (3) [B] = [C]
- (4) [A] > [B]
- **Q.36** For the reaction,

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g),$$

$$\Delta H = -57.2 kJ~mol^{-1}$$
 and $K_c = 1.7 \times 10^{16}.$

Which of the following statement is INCORRECT?

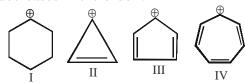
- (1) The equilibrium constant is large suggestive of reaction going to completion and so no catalyst is required.
- (2) The equilibrium will shift in forward direction as the pressure increase.
- (3) The equilibrium constant decreases as the temperature increases.
- (4) The addition of inert gas at constant volume will not affect the equilibrium constant.
- **Q.37** The value of ΔS for freezing of 10g of H₂O (ℓ) (enthalpy of fusion is 80 cal/g) at 0°C and 1 atm pressure is :-
 - (1) 12.25 J/K
- (2) -0.244 J/K
- (3) -2.93 J/K
- (4) -12.25 J/K
- Q.38 Which of the following is not correctly matched:
 - (1) CrO_5 ; oxidation number of Cr = +10
 - (2) Fe_3O_4 ; oxidation state of Fe = -8/3
 - (3) Na-Hg; oxidation number of Na is = +1
 - (4) All of the above
- Q.39 What is the final temperature of 0.10 mole monoatomic ideal gas that performs 75 cal of work adiabatically if the initial temp is 227°C? (Use R = 2 cal/K-mol):-
 - (1) 250 K
 - (2) 300 K
 - (3) 350 K
 - (4) 750 K
- **Q.40** The solubility product of lead bromide is 8×10^{-5} . If the salt is 80% dissociated in saturated solution, find the solubility of the salt:-
 - (1) $1.7 \times 10^{-4} \text{ M}$
 - (2) $2.3 \times 10^{-6} \text{ M}$
 - (3) $1.8 \times 10^{-4} \text{ M}$
 - (4) $3.4 \times 10^{-2} \text{ M}$

Q.41 Calculate ΔH (kJ/mole) for the reaction :-

 $2\text{FeO}(\text{s}) + \frac{1}{2} \, \text{O}_2\left(\text{g}\right) \rightarrow \text{Fe}_2 \text{O}_3\left(\text{s}\right)$

- Q.48 An element (X) belongs to fourth period and fifteenth group of the periodic table. Which one of the following is true regarding the outer electronic configuration of (X)? It has
 - (1) partially filled d orbitals and completely filled s orbital.
 - (2) completely filled s orbital and completely filled p orbitals.
 - (3) completely filled s orbital and half-filled p orbitals.
 - (4) half-filled d orbitals and completely filled s orbital.
- **Q.49** Which of the following is not sp^2 hybridised?
 - (1) Graphite
- (2) Graphene
- (3) Fullerene
- (4) Dry ice
- **Q.50** There are many elements in the periodic table which exhibit variable valency. This is a particular characteristic of
 - (1) representative elements
 - (2) transition elements
 - (3) noble gases
 - (4) non-metals.
- **Q.51** Which of the following is not an actinoid?
 - (1) Curium (Z = 96)
 - (2) Californium (Z = 98)
 - (3) Uranium (Z = 92)
 - (4) Terbium (Z = 65)
- **Q.52** Which of the following is arranged in order of increasing metallic character?
 - $(1) \quad P < Si < Na < Be < Mg$
 - (2) Be < Mg < P < Na < Si
 - (3) Si < Be > Mg < Na < P
 - (4) P < Si < Be < Mg < Na
- Q.53 The bond dissociation energies of H–H, C–C and C–H bonds respectively are 104.2, 83.1 and 98.8 kcal mol⁻¹. The electronegativity of carbon is
 - (1) 2.53
- (2) 2.51
- (3) 2.50
- (4) 2.52
- **Q.54** Electronegativity is inversely related to the _____ of elements.
 - (1) non-metallic properties
 - (2) metalloid properties
 - (3) ionic properties
 - (4) metallic properties
- **Q.55** If the atomic number of an element is 58, it will be placed in the periodic table in the :-
 - (1) III B group and 6th period
 - (2) IV B group and 6th period
 - (3) V B group and 7th period
 - (4) none of these

- **Q.56** Which of the following electronic configuration represent representative elements
 - (1) $ns^{1,2} np^{1-5}$
- (2) $ns^{1,2} np^{0-5}$
- (3) $ns^{1,2} np^{0-6}$ (4) $ns^{1,2} np^{1-6}$
- O.57 What is the atomic number of the element with the maximum number of unpaired 4p electrons
 - (1) 33
- (2) 26
- (3) 23
- (4) 15
- **Q.58** From the ground state electronic configuration of the elements given below, pick up the one with highest value of second ionisation energy.
 - (1) $1s^2 2s^2 2p^6 3s^2$ (2) $1s^2 2s^2 2p^6 3s^1$
 - (3) $1s^2 2s^2 2p^6$
- (4) $1s^2 2s^2 2p^5$
- Q.59 Which of the following is decreasing order of
 - $(1) \ Cr > Mn > V > Ti(2) \ Mn > Cr > V > Ti$
 - (3) Ti > V < Cr > Mn (4) V > Ti > G > Mn
- Group 13 elements show +1 and +3 oxidation states. Relative stability of +3 oxidation state may be given as
 - (1) $Tl^{3+} > In^{3+} > Ga^{3+} > Al^{3+} > B^{3+}$
 - (2) $B^{3+} > Al^{3+} > Ga^{3+} > In^{3+} > Tl^{3+}$
 - (3) $Al^{3+} > Ga^{3+} > Tl^{3+} > In^{3+} > B^{3+}$
 - (4) $Al^{3+} > B^{3+} > Ga^{3+} > Tl^{3+} > In^{3+}$
- Q.61 The IUPAC name of the following compound

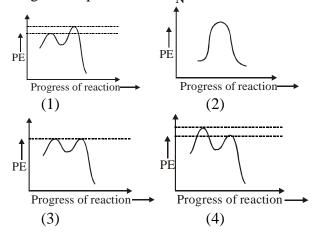

$$CH_3$$
 OH $|$ $|$ $|$ $H_3C-CH-CH-CH_2-COOH$

- (1) 2-Methyl-3Hydroxypentan-5-oic acid
- (2) 4,4-Dimethyl-3-hydroxy butanoic acid
- (3) 3-Hydroxy-4 -methylpentanoic acid
- (4) 4-Methyl-3-hydroxypentanoic acid
- Order of base strength of the compounds:-

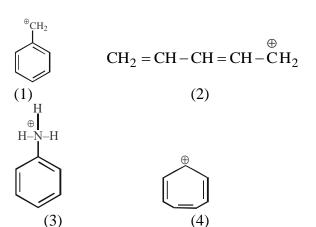
- $(1) \quad IV > II > I > III$
- (III)(IV)
- (2) III > II > IV > I
- (3) II > III > IV > I (4) II > III > I > IV
- The number of meso form of the given Q.63 compound is

- (1) 2
- (2) 3
- (3) 4
- (4) 8
- **Q.64** The effect that makes 2,3—dimethyl-2-butene more stable than 2-butene is :-
 - (1) Resonance
- (2) Hyperconjugation
- (3) Steric effect
- (4) Inductive effect

- **Q.65** Glycerol is purified by:-
 - (1) Steam distillation (2) Vacum distillation
 - (3) Sublimation
- (4) Simple distillation
- The stability of the following carbocation Q.66 decreases in the order:


- $(1) \quad IV > III > II > I$
- $(2) \quad IV > II > III > I$
- (3) IV > II > I > III
- $(4) \quad IV > I > II > III$
- Q.67 Increasing order of reactivity of the following compounds for S_N1 substitution is:

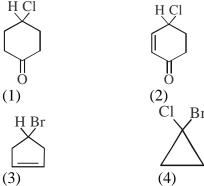
$$CH_2-Cl$$
 H_3C Cl Cl Cl Cl Cl Cl Cl


- (1) b < c < d < a
- (2) a < b < d < c
- (3) b < a < d < c
- (4) b < c < a < d
- Mention the correct relationship between I and **Q.68**

$$Br$$
 Br
 SO_3H
 Br
 SO_3H
 Br
 SO_3H
 Br
 SO_3H

- (1) Chain isomer
- (2) Position isomer
- (3) Identical
- (4) Stereoisomer
- Which of the following potential energy (PE) Q.69 diagrams represents the S_N1 reaction?

- **Q.70** Which of the following would exhibit cis-trans isomerism?
 - (1) $CH_3CH_2CH=CH_2(2)$ CICH=CHCI
 - (3) ClCH=CCl₂
- (4) $CH_2 = CH-COOH$
- **Q.71** Which of the following compounds +ve charge is not show resonance?

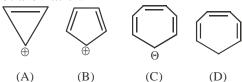

- Q.72The decreasing order of nucleophilicity among the nucleophiles is:
 - $CH_3 C O^-$ (I)
- (II) CH₃O⁻
- (III) $C_6H_5O^-$
- (1) I, II, III, IV
- (2) IV, III, II, I
- (3) II, III, I, IV
- (4) III, II, I, IV
- **Q.73** Incorrect order is:

(1)
$$\bigcirc$$
 $\stackrel{\text{COOH}}{\stackrel{\text{NO}_2}{\stackrel{\text{NH}_2}{\stackrel{\text{CH}_3}{\stackrel{\text{CH}_3}{\stackrel{\text{CH}_3}{\stackrel{\text{CH}_3}{\stackrel{\text{COOH}}}{\stackrel{\text{COOH}}{\stackrel{\text{COOH}}{\stackrel{\text{COOH}}{\stackrel{\text{COOH}}}{\stackrel{\text{COOH}}{\stackrel{\text{COOH}}{\stackrel{\text{COOH}}}{\stackrel{\text{COOH}}{\stackrel{\text{COOH}}}{\stackrel{\text{COOH}}{\stackrel{\text{COOH}}}{\stackrel{\text{COOH}}{\stackrel{\text{COOH}}}{\stackrel{\text{COOH}}}{\stackrel{\text{COOH}}{\stackrel{\text{COOH}}}{\stackrel{\text{COOH}}{\stackrel{\text{COOH}}}}{\stackrel{\text{COOH}}}{\stackrel{\text{COOH}}}{\stackrel{\text{COOH}}}}{\stackrel{\text{COOH}}}{\stackrel{\text{COOH}}}{\stackrel{\text{COOH}}}{\stackrel{\text{COOH}}}}{\stackrel{\text{COOH}}}{\stackrel{\text{COOH}}}}{\stackrel{\text{COOH}}}{\stackrel{\text{COOH}}}}{\stackrel{\text{COOH}}}{\stackrel{\text{COOH}}}{\stackrel{\text{COOH}}}}{\stackrel{\text{COOH}}}{\stackrel{\text{COOH}}}}{\stackrel{\text{COOH}}}{\stackrel{\text{COOH}}}}{\stackrel{\text{COOH}}}{\stackrel{\text{COOH}}}}{\stackrel{\text{COOH}}}{\stackrel{\text{COOH}}}}{\stackrel{\text{COOH}}}{\stackrel{\text{COOH}}}{\stackrel{\text{COOH}}}}{\stackrel{\text{COOH}}}}{\stackrel{\text{COOH}}}{\stackrel{\text{COOH}}}}{\stackrel{\text{COOH}}}}{\stackrel{\text{COOH}}}{\stackrel{\text{COOH}}$

(3)
$$CH_3 - C - O^{\Theta} > CH_3 - CH_2$$
 (Stability)
 CH_3

- > (Heat of Hydrogenation)
- Keto-enol tautomerism is not observed in:
 - (1) $C_6H_5COC_6H_5$
 - (2) $C_6H_5COCH_3$
 - (3) $C_6H_5COCH_2COCH_3$
 - (4) CH₃COCH₂COCH₃

Q.75 Which of the following compounds is chiral?

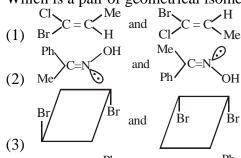

Q.76 The correct match between items-I and II is:

Item-I Item-II (Mixture) (Separation method) (a) H_2O : Sugar (P) Sublimation (b) H₂O : Aniline (Q) Recrystallization (c) H₂O: Toluene

> (S)Differential extraction

(R) Steam distillation

- (1) a-Q, b-R, c-S (2) a-R, b-P, c-S (3) a-S, b-R, c-P (4) a-Q, b-R, c-P
- **O.77** An organic compound is estimated through Duma method and was found to evolve 6 moles of CO₂. 4 moles of H₂O and 1 mole of nitrogen gas. The formula of the compound is:
 - (1) $C_{12}H_8N$
 - (2) $C_{12}H_8N_2$
 - (3) C_6H_8N
- (4) $C_6H_8N_2$
- Which compound(s) out of the following is/are Q.78 not aromatic?


- (1) C and D
- (2) B, C and D
- (3) A and C
- (4) B
- 0.79 How many in following compounds give good yield of S_N2 reaction.

$$\bigcirc_{\text{Cl}}$$
, \bigcirc_{Br} , \bigcirc_{Cl} , \bigcirc_{Br}

$$(1)$$
 (2) (2) (2) (3) (4) (5) (5) (6) (7) (7) (7) (7) (7) (8) (8) (1) (1) (1) (2) (3) (2) (3) (4) (4) (5) (5) (6) (7) (7) (7) (8) (1) (1) (1) (1) (2) (2) (3) (3) (4) (4) (4) (5) (5) (6) (7) (7) (7) (8) (1) (1) (1) (1) (1) (2) (3) (4) (4) (4) (5) (5) (6) (6) (7) (7) (7) (8) (1)

- (3) 3
- **Q.80** Number of isomers of C_5H_6
 - (1) 2
 - (2) 3
 - (3) 4
 - (4) 5

- **Q.81** pK_a increases in benzoic acid when substituent "x" is bonded at para-position, then "x" is
 - (1) COOH
 - $(2) NO_2$
 - (3) CN
 - $(4) OCH_3$
- **Q.82** The purity of an organic compound is determined by
 - (1) chromatography
 - (2) crystallisation
 - (3) melting or boiling point
 - (4) both (1) and (3)
- Q.83 Which is a pair of geometrical isomers

$$(4) \quad \stackrel{\text{Me}}{\text{H}} C = C \stackrel{\text{Ph}}{\swarrow} \text{ and } \stackrel{\text{H}}{\text{Me}} C = C \stackrel{\text{Ph}}{\swarrow} \stackrel{\text{Ph}}{\longleftarrow} C = C \stackrel{\text{Ph}}{\swarrow} \stackrel{\text{H}}{\longleftarrow} C = C \stackrel{\text{Ph}}{\longleftarrow} \stackrel{\text{H}}{\longleftarrow} C = C \stackrel{\text{H}}{\longleftarrow} \stackrel{\text{H}}{\longleftarrow} C = C \stackrel{\text{H}}{\longrightarrow} C = C \stackrel{\text{H}}{\longleftarrow} \stackrel{\text{H}}{\longleftarrow} C = C \stackrel{\text{H}}{\longleftarrow} \stackrel{\text{H}}{\longrightarrow} C = C \stackrel{\text{H}}{\longleftarrow} \stackrel{\text{H}}{\longleftarrow} C = C \stackrel{\text{H}}{\longleftarrow} \stackrel{\text{H}}{\longrightarrow} C = C \stackrel{\text{H}}{\longleftarrow} \stackrel{\text{H}}{\longleftarrow} C = C \stackrel{\text{H}}{\longleftarrow} \stackrel{\text{H$$

Q.84
$$CH_3 - \overset{2}{C} - \overset{3}{C} + \overset{4}{C} + \overset{4}{C} + \overset{1}{C} +$$

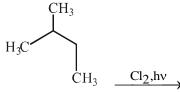
 $_{1}CH_{2}-H$

C₄–H the homolytic bond dissociation energy is in the order :

- (1) $C_2-H > C_3-H > C_4-H > C_1-H$
- $(2) \ C_1-H>C_4-H>C_2-H>C_3-H$
- (3) $C_2-H > C_3-H > C_1-H > C_4-H$
- $(4) \ C_1-H>C_4-H>C_3-H>C_2-H$
- Q.85 The number of different substitution products possible when bromine and ethane are allowed to react, is:-
 - (1) 6
 - (2) 8
 - (3) 7
 - (4) 9
- **Q.86** Isobutyl magnesium bromide with dry ether and absolute alcohol gives:-
 - (1) (CH₃)₂CH–CH₂OH and CH₃CH₂MgBr
 - (2) $(CH_3)_2CH-CH_2CH_2CH_3$ and Mg(OH)Br
 - (3) $(CH_3)_2CH$ -CH= CH_2 and Mg(OH)Br
 - (4) $CH_3 CH CH_3$ and CH_3CH_2 -OMgBr CH_3

Q.87 Consider the following reaction,

$$CH_3 - CH - CH - CH_3 \longrightarrow X + HBr$$


$$\downarrow \qquad \qquad \downarrow$$

$$D \qquad CH_3$$

Identify the structure of major product X:-

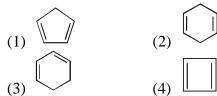
(1)
$$CH_3 - CH - CH - \dot{C}H_2$$

 $|$ $|$ CH_3

(3)
$$CH_3 - \dot{C} - CH - CH_3$$

 $\begin{vmatrix} & & & \\ & &$

Q.88 $\xrightarrow{\text{CH}_3} \xrightarrow{\text{Ci}_2,\text{nv}} \xrightarrow{\text{N (isomeric products)}}$


 $C_5H_{11}Cl \xrightarrow{\text{Fractional} \atop \text{distillation}} M \text{ (isomeric products)}$

Given the number of N and M:-

- (1) 6, 6
- (2) 6, 4
- (3) 4, 4
- (4) 3, 3
- **Q.89** Arrange the following according to the increasing order of stability:-

Propene (I), cis-but-2-ene (II), trans-but-2-ene(III), 2,3-dimethylbut-2-ene(IV), ethene(V)

- (1) V < IV < III < II < I
- (2) V < I < II < III < IV
- (3) V < IV < III < I < II
- $(4) \quad IV < III < II < I < V$
- **Q.90** The reaction of propene with HOCl proceeds via the addition of :-
 - (1) H^+ in the first step
 - (2) Cl⁺ in the first step
 - (3) OH⁻ in the first step
 - (4) Cl⁺ and OH⁻ in the single step
- **Q.91** Ozonolysis products of an olefin are OHC–CHO and OHC–CH₂–CHO, the olefin is:

- Q.92 On mixing a certain alkane with chlorine and irradiating it with ultraviolet light, it forms only one monochloroalkane. This alkane could be –
 - (1) Isopentane
 - (2) Neopentane
 - (3) Propane
 - (4) Pentane
- Q.93 Which of the following reactions will yield 2, 2-dibromopropane?
 - (1) $CH_3 C \equiv CH + 2HBr \rightarrow$
 - (2) $CH_3CH = CHBr + HBr \rightarrow$
 - (3) $CH \equiv CH + 2HBr \rightarrow$
 - (4) $CH_3 CH = CH_2 + HBr \rightarrow$
- Q.94 Acetylene does not react with -
- (1) NaNH₂
 - (2) NaOH
 - (3) Na metal
 - (4) Ammonical AgNO₃
- Q.95 Benzene reacts with CH₃Cl in the presence of anhydrous AlCl₃ to form:
 - (1) Chlorobenzene
 - (2) Benzylchloride
 - (3) Xylene
 - (4) Toluene
- Q.96 Liquid hydrocarbons can be converted to a mixture of gaseous hydrocarbons by –
 - (1) Oxidation
 - (2) Cracking
 - (3) Distillation under reduced pressure
 - (4) Hydrolysis
- **Q.97** Among the following compounds the one that is most reactive towards electrophilic nitration
 - (1) Benzoic Acid
 - (2) Nitrobenzene
 - (3) Toluene
 - (4) Benzene
- Benzene $\stackrel{a}{\longrightarrow}$ Q.98
 - a and b respectively are –
 - (1) Zn Hg + HCl,

(2)
$$Cl$$
, LiAlH₄
(3) Cl , NaBH₄

Q.99
$$CH_2=CH_2 \xrightarrow{PhCO_3H} A \xrightarrow{H_3O^{\oplus}} B \xrightarrow{PI_3,\Delta} C$$

Structure of C is

(2) $CH_2 = CH_2$

$$(3) CH_2-CH_2$$

Q.100 Match the column

Column I

(a)
$$(CH_3)_3CH \xrightarrow{?} (CH_3)_3C - OH$$

(b)
$$CH_3 - CH = CH_2 \xrightarrow{?} \frac{?}{NaOH} \rightarrow CH_3 - CHOH - CH_2OH$$


(c)
$$CH_2 = CH - CH_3 \xrightarrow{?} CH_2 = CH - CH_2 Br$$

Column II

(q) $KMnO_4$ (r) CrO_2Cl_2 (p) NBS

Choose the correct codes

- (1) (a) -q, (b) -q, (c) -p
- (2) (a) -p, (b) -q, (c) -r
- (3) (a) -r, (b) -q, (c) -p
- (4) (a) p, (b) r, (c) q
- $\mathbf{Q.101}$ When trans-2-butene is reacted with Br_2 then product formed is

- (3) Meso compounds (4) both (2) and (3)
- Q.102 The ozonolysis product(s) of the following reaction is(are) –

$$CH_3CH_2 - C \equiv CH \xrightarrow{(i) O_3} Product(s)$$

- (1) CH₃COCH₃
- (2) $CH_3COCH_3 + HCHO$
- (3) CH₃COOH + HCOOH
- (4) CH₃CH₂COOH + HCOOH

- Q.103 Identify the unknown compounds.
 - $\begin{array}{c}
 \xrightarrow{\text{HNO}_3} & \text{Hoo}_3 \\
 \xrightarrow{\text{H}_2\text{SO}_4} & \text{(S0°C)}
 \end{array}$ $\xrightarrow{\text{FeBr}_3} & \text{(B)} \xrightarrow{\text{Sn}} & \text{(C)}$
 - (1) A : Nitrobenzene, B : Dinitrobenzene, C : p-Bromoaniline
 - (2) A: C₆H₅SO₃H, B: m-Benzenesulphonic acid, C: m-Benzenesulphonate
 - (3) A: C₆H₅NO₂, B: m-Bromonitrobenzene, C: m-Bromoaniline
 - (4) A : p-Nitrobenzene, B : Trinitrobenzene, C : m-Bromoaniline
- **Q.104** The osmotic pressure of equimolar solutions of BaCl₂, NaCl and glucose follow the order:-
 - (1) BaCl₂ > NaCl > Glucose
 - (2) $Glucose > NaCl > BaCl_2$
 - (3) $NaCl > BaCl_2 > Glucose$
 - (4) NaCl > Glucose > BaCl₂
- Q.105 Each pair forms ideal solution except?
 - (1) C_2H_5Br and C_2H_5I
 - (2) C_6H_5Cl and C_6H_5Br
 - (3) C_6H_6 and $C_6H_5CH_3$
 - (4) C_2H_5I and C_2H_5OH
- **Q.106** The Freezing point of 1% aqueous solution of calcium nitrate will be:-
 - (1) 0° C
- (2) Above 0°C
- (3) 1°C
- (4) Below 0°C
- **Q.107** During depression of freezing point in a solution the following are in equilibrium:-
 - (1) Liquid Solvent, Solid Solvent
 - (2) Liquid Solvent, Solid Solute
 - (3) Liquid Solute, Solid Solute
 - (4) Liquid Solute, Solid Solvent
- **Q.108** A 0.001 molal solution of [Pt $(NH_3)_4Cl_4$] in water shows a freezing point depression of 0.0054°C. If K_f for water is 1.80, the correct formulation of the above compound is ?
 - (1) $[Pt(NH_3)_4Cl_3]Cl$
 - $(2) \quad [Pt(NH_3)_4Cl_2]Cl_2$
 - (3) [Pt(NH₃)₄Cl]Cl₃
 - (4) $[Pt(NH_3)_4Cl_4]$
- **Q.109** 20 g of naphthoic acid ($C_{11}H_8O_2$) dissolved in 50g of benzene (K_f =1.72Kgmol⁻¹) shows a depression in freezing point of 2 K. The Vant Hoff factor is?
 - (1) 0.5
 - (2) 0.1
 - (3) 2
 - (4) 3

- **Q.110** 50 g of antifreeze (ethylene glycol) is added to 200g water. What amount of ice will separate out at -9.3°C. ($K_f = 1.86 \text{ K Kg mol}^{-1}$):-
 - (1) 42 mg
- (2) 42 g
- (3) 38.71 g
- (4) 38.71 mg
- **Q.111** The values of observed and calculated molecular mass of silver nitrate are 92.64 and 170 respectively. The degree of dissociation of silver nitrate is:-
 - (1) 60%
- (2) 83.5%
- (3) 46.7%
- (4) 60.23%
- Q.112 Calculate the weight of non-volatile solute having molecular weight 40, which is dissolved in 57 g octane to reduce its vapour pressure by 20%
 - (1) 47.2 g
- (2) 5 g
- (3) 106.2 g
- (4) None of these
- **Q.113** $Cu^{2+} + 2e^{-} \rightarrow Cu$. On increasing $[Cu^{2+}]$ concentration, electrode potential:-
 - (1) Increases
 - (2) Decreases
 - (3) Will remain unchanged
 - (4) First increases, then decreases
- **Q.114** If hydrogen electrode is dipped in two solutions of pH = 3 & pH = 6 & salt bridge is connected, the emf of resulting cell is:-
 - (1) 0.177 V
- (2) 0.3 V
- (3) 0.052 V
- (4) 0.104 V
- Q.115 The emf of the cell reaction

 $Ag \mid Ag^{+}(0.1M) \parallel Ag^{+}(1M) \mid Ag \text{ at } 298 \text{ K is :-}$

- (1) 0.0059 V
- (2) 0.059 V
- (3) 5.9 V
- (4) 0.59 V
- **Q.116** An electrolytic cell contains solution of Ag_2SO_4 & has Platinum electrodes. A current is passed until 1.6g of O_2 is liberated at anode. The amount of silver deposited at cathode would be:-
 - (1) 107.88 g
 - (2) 1.6 g
 - (3) 0.8g
 - (4) 21.6 gm
- **Q.117** E° values of Mg²⁺/Mg, Zn²⁺/Zn and Fe²⁺/Fe are -2.37V, -0.76V and -0.44V respectively. Which of the following statements is correct:-
 - (1) Zn will reduce Fe²⁺
 - (2) Zn will reduce Mg^{2+}
 - (3) Mg oxidises Fe
 - (4) Zn oxidises Fe

Q.118 If the specific conductance of 1M H ₂ SO ₄	Q.12
solution is 26×10^{-2} S cm ⁻¹ , then the equivalent	
conductivity would be :-	
(1) $1.3 \times 10^2 \text{ S cm}^2 \text{ eq}^{-1}$	0.10
(2) $1.6 \times 10^2 \mathrm{S} \mathrm{cm}^2 \mathrm{eq}^{-1}$	Q.12
(3) $13 \text{ S cm}^2 \text{ mol}^{-1}$	
(4) $1.3 \times 10^3 \text{ S cm}^2 \text{ mol}^{-1}$	
Q.119 The expression which gives 1/4 th life of I st order	
,· - ·	

- reaction is:
 - (1) $\frac{K}{2.303} \log \frac{4}{3}$ (2) $\frac{2.303}{K} \log 3$ (3) $\frac{2.303}{\kappa} \log \frac{3}{4}$ (4) $\frac{2.303}{\kappa} \log \frac{4}{3}$
- Q.120 Azo isopropane decomposes according to the equation: $(CH_3)_2CHN = NCH(CH_3)_2(g)$

$$\xrightarrow{250-290^{\circ}\text{C}} \text{N}_{2}(g) + \text{C}_{6}\text{H}_{14}(g)$$

It is found to be a first order reaction. If initial pressure is P₀ and pressure of the mixture at time t is P_t the rate constant K would be

(1)
$$K = \frac{2.303}{t} \log \frac{P_0}{2P_0 - P_t}$$

(2)
$$K = \frac{2.303}{t} \log \frac{P_0 - P_t}{P_0}$$

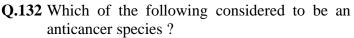
(3)
$$K = \frac{2.303}{t} \log \frac{P_0}{P_0 - P_t}$$

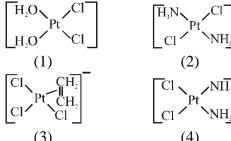
(4)
$$K = \frac{2.303}{t} \log \frac{2P_0}{2P_0 - P_t}$$

- Q.121 Mechanism of a hypothetical reaction $X_2 + Y_2 \rightarrow 2XY$ is given below:
 - (i) $X_2 \rightarrow X + X$ (fast)
 - (ii) $X + Y_2 \rightleftharpoons XY + Y \text{ (slow)}$
 - (iii) $X + Y \rightarrow XY$ (fast)

The overall order of the reaction will be:

- (1) 2
- (2) 0
- (3) 1.5
- (4) 1
- Q.122 A first order reaction will have rate constant $5.78 \times 10^{-5} \text{ sec}^{-1}$. How much part of reactant will remain after 10 hours :-
 - (1) 1/10
- (2) 1/16
- (3) 1/8
- (4) 1/5
- **Q.123** If $Cu^+ + e^- \to Cu$; $E^o = X_1$


 $Cu^{+2} + 2e^{-} \rightarrow Cu$; $E^{\circ} = X_{2}$ then the value of E° for $Cu^{+2} + e^{-} \rightarrow Cu^{+}$ will be :


- $\begin{array}{ccccc} (1) & 2X_2 X_1 & & & (2) & 2X_1 X_2 \\ (3) & X_2 X_1 & & (4) & X_1 X_2 \end{array}$

- 4 How many EDTA molecules are required to make an octahedral complex with a Ca²⁺ ion?
 - (1) Six
- (2) Three
- (3) One
- (4) Two
- 5 Which complex is most stable?
 - (1) $[Cu(CN)_2]^-$; $k_d = 1 \times 10^{-16}$
 - (2) $[Fe(CN)_6^-]^{-4}$; $k_d = 1 \times 10^{-37}$
 - (3) $[\text{Fe(CN)}_6]^{-3}$; $k_d = 1 \times 10^{-44}$
 - (4) $[Ag(CN)_2]^-$; $k_d = 1 \times 10^{-20}$

Where k_d = Dissociation constant

- **Q.126** The total no. of chelate rings in $[Ni(dmg)_2]$ are:
 - (1) 1
- (2) 2
- (3) 3
- (4) 4
- Q.127 In which of the following increasing order of splitting energy correct?
 - (1) $[CrCl_6]^{-4} < [Cr(H_2O)_6]^{+2} < [Cr(NH_3)_6]^{+2}$ $< [Cr(CN)_6]^{-4}$
 - (2) $[CrCl_6]^{-4} > [Cr(H_2O)_6]^{+2} > [Cr(NH_3)_6]^{+2}$ $> [Cr(CN)_6]^{-4}$
 - (3) $[Cr(H_2O)_6]^{+2} > [CrCl_6]^{-4} > [Cr(NH_3)_6]^{+2}$ $> [Cr(CN)_6]^{-4}$
 - (4) None of these
- Q.128 Value of CFSE, in tetrahedral complex having 3d⁴ configuration of metal ion, surrounded by weak field ligands, will be:
 - (1) $(-2/5) \Delta_t$
- (2) $(+2/5) \Delta_t$
- (3) $(-4/5) \Delta_t$
- (4) $(+3/5) \Delta_t$
- **Q.129** The IUPAC name for the complex [Co(NH₃)₅ (NO₂)]Cl₂ is :
 - (1) Nitrito-N-pentaammine (III)cobalt chloride
 - (2) Nitrito-N-pentaammine cobalt (II) chloride
 - (3) Pentaammine nitrito-N-cobalt (II) chloride
 - (4) Pentaammine nitrito-N-cobalt chloride
- **Q.130** When excess of ammonia is added to copper sulphate solution, the deep blue coloured complex is formed. The complex is
 - (1) tetrahedral and paramagnetic
 - (2) tetrahedral and diamagnetic
 - (3) square planar and diamagnetic
 - (4) square planar and paramagnetic
- Q.131 The overall complex dissociation equilibrium constant for the complex $[Cu(NH_3)_4]^{2+}$ ion will be (β_4 for this complex is 2.1×10^{13}) β_4 = association constant
 - (1) 4.7×10^{-14}
- (2) 2.1×10^{13}
- (3) 11.9×10^{-2}
- (4) 2.1×10^{-13}

- [Cr(H₂O₆)Cl₃] (a) and Q.133 Two complexes [Cr(NH₃)₆]Cl₃ (b) are violet and yellow coloured, respectively. The incorrect statement regarding them is:
 - (1) Δ_0 value of (a) is less than that of (b).
 - (2) Δ_0 value of (a) & (b) are calculated from the energies of violet and yellow light, respectively
 - (3) Both absorb energies corresponding to their complementary colours.
 - (4) Both are paramagnetic with three unpaired electrons.
- **Q.134** The highest value of the calculated spin only magnetic moment (in BM) among all the transition metal complex is:
 - (1) 5.92
- (2) 3.87
- (3) 6.93
- (4) 4.90
- Q.135 Observe the following statements,
 - Lanthanides actively participate in chemical reactions.
 - The basic nature of hydroxides of lanthanides increases from La(OH)3 to $Lu(OH)_3$.
 - Lanthanides do not form coordinate compounds as readily as d-block metals.

The correct statements are

- (1) 2 and 3
- (2) 1, 2 and 3
- (3) 1 and 3
- (4) 1 and 2
- Q.136 Which of these ions is expected to be coloured in aqueous solution?
 - I. Fe^{3+} , II. Ni^{2+} , III. Al^{3+}
 - (1) I and II
- (2) II and III
- (3) I and III
- (4) I, II and III
- Q.137 Identify the correct order of wavelength of light absorbed for the following complex ions.
 - $I. \ [\text{Co(H}_2\text{O})_6]^{3+} \ ; \qquad \ II. \ \text{Co(CN)}_6]^{3-}$

 - III. $[Co(F)_6]^{3-}$ IV. $[Co(en)_3]^{3+}$
 - (1) III > I > IV > II (2) II > IV > I > III
 - $(3) \quad III > I > II > IV$
 - (4) I>III>IV>II

- Q.138 Total number of stereoisomers (i.e. geometrical as well as optical isomers) for the complex $[Pt(NH_3)_2 (NO_3)_2 ClBr]$ is:
 - (1) 2
- (3) 6
- (4) 8
- Q.139 Which of the following statements is not correct?
 - (1) Copper liberates hydrogen from acids.
 - (2) In higher oxidation states, manganese forms stable compounds with oxygen and fluorine.
 - (3) Mn³⁺ and Co³⁺ are oxidising agents in aqueous solution.
 - (4) Ti^{2+} and Cr^{2+} are reducing agents in aqueous solution.
- Q.140 Generally transition elements form coloured salts due to the presence of unpaired electrons. Which of the following compounds will be coloured in solid state?
 - (1) Ag₂SO₄
- (2) CuF₂
- (3) ZnF₂
- (4) Cu₂Cl₂
- **Q.141** Electronic configuration of $[Cu(NH_3)_6]^{2+}$ on the basis of crystal field splitting theory is

- (1) $t^4_{2g} e^5_g$ (2) $t^6_{2g} e^3_g$ (3) $t^9_{2g} e^0_g$ (4) $t^5_{2g} e^4_g$ **Q.142** In the silver plating of copper, K[Ag(CN)₂] is used instead of AgNO₃. The reason is
 - (1) A thin layer of Ag is formed on Cu.
 - (2) More voltage is required.
 - (3) Ag⁺ ions are completely removed from solution.
 - (4) Less availability of Ag⁺ ions, as Cu cannot displace Ag from $[Ag(CN)_2]^-$ ion.
- **Q.143** A brown ring is formed in the ring test for NO₃ ion. It is due to the formation of –
 - (1) $[Fe(H_2O)_5 (NO)]^{2+}$ (2) $FeSO_4.NO_2$
 - (3) $[Fe(H_2O)_4(NO)_2]^{2+}$ (4) $FeSO_4.HNO_3$
- Q.144 Ethylene dichloride and ethylidene chloride are isomeric compounds. Identify the statement which is not applicable to both of them:-
 - (1) They react with alcoholic KOH
 - (2) They are dihalides
 - (3) They react with aq. KOH and give the same product
 - (4) They are position isomers
- Q.145 The product obtained when ethyl alcohol is distilled with bleaching powder is :-
 - (1) Chloroform
- (2) Ethyl chloride
- (3) Acetaldehyde
- (4) Chloral

Q.146 $CH_2 - CHCH_3 + PCl_5 \rightarrow (a)$,

 $CH_3CH_2CHO + PCl_5 \rightarrow (b),$

- (a) and (b) are :-
- (1) gem-dihalides
- (2) (a) gem-dihalide, (b) Vic-dihalide
- (3) Vic-dihalides
- (4) (a) Vic-dihalide, (b) gem-dihalide
- **Q.147** Compound $C_4H_8Cl_2$ (a) on hydrolysis gives a compound C₄H₈O (b) which reacts with hydroxylamine and does not give any test with Tollen reagent. What are (a) and (b)?
 - (1) 1.1-Dichlorobutane and butanal
 - (2) 2,2-Dichlorobutane and butanal
 - (3) 1,1-Dichlorobutane and butanone
 - (4) 2,2-Dichlorobutane and butanone

Q.148 HC = CH
$$\xrightarrow{\text{HgSO}_4}$$
 $\xrightarrow{\text{CH}_3\text{MgBr}}$ $\xrightarrow{\text{P/Br}_2}$

- (X); (X) is :-
- (1) CH₃CH(Br)CH₃
- (2) CH₃CH₂CH₂Br
- (3) $H_2C=CH-Br$
- (4) BrCH=CH-CH₃
- Q.149 Match List I with II and pick the correct matching from the codes given below:-

List I (Haloalkane/arene) **Lits II(Application)**

- a. Iodoform
- 1. CF₄
- b. BHC
- 2. Antiseptic
- c. Freon-14
- 3. Moth repellent
- d. Halothanes
- 4. Inhalative anaesthetic
- e. p-Dichlorobenzene 5. Termite pesticide
- (1) a-2, b-4, c-5, d-3, d-1
- (2) a-2, b-5, c-1, d-4, d-3
- (3) a-3, b-4, c-2, d-1, d-5
- (4) a-1, B-3, c-5, d-2, d-4
- **Q.150** The following reaction is suppose to take place through S_N1 mechanism

$$\begin{array}{c} \text{Ph} \\ | \\ \text{CH}_3 - \text{C} - \text{OH} \\ | \\ \text{CH}_2 - \text{CH}_3 \end{array} \xrightarrow{\hspace{1cm} \text{HI} \hspace{1cm}} \text{products}$$

If the configuration of substrate is D, then configuration of products will be :-

- (1) D
- (2) L
- (3) 50% D & 50%L
- (4) May be D or L

Q.151 The main product of following reaction will be

$$(1) \bigcup_{\substack{\text{OH} \\ \text{NO}_2}}^{\text{NC}}$$

Q.152 Main product of following reaction will be:

$$\begin{array}{c}
\text{NaNO}_2 + \text{HCl} \\
\text{(0-5°C)}
\end{array}$$
 Product

$$(1) \bigcirc N_2CI$$

$$OH$$

$$OH$$

$$OO$$

$$OH$$

$$OO$$

$$NO$$

$$NO$$

$$NO$$

$$NO$$

$$(4) \bigcirc NO$$

- Q.153 Which of the following reaction involves the formation of carbene intermediate :-
 - (1) Reimer Tiemann reaction
 - (2) Carbyl amine reacction
 - (3) Hoffmann bromoimide reaction
 - (4) Both 1 & 2

Q.154 The main product of following reaction will be:-

$$CH_3 \xrightarrow{\text{(1 mol)}} Product$$

$$\begin{array}{c} \text{CH}_{3} \\ \text{(1)} \, \text{HO} - \text{CH}_{2} - \text{CH}_{2} - \text{CH}_{2} - \text{CH}_{2} - \text{CH}_{2} \\ \text{CH}_{3} \\ \text{CH}_{2} \end{array}$$

(2)
$$I-CH_2-CH_2-CH_2-CH_2-CH_2-C-OH_2$$
 CH_3 CH_3 CH_3

(3)
$$I-CH_2-CH_2-CH_2-CH_2-CH_2-CH_1$$

 CH_3

Q.155 Which of the following compound on hydration (addition of H₂O) with H₂SO₄/HgSO₄/H₂O give aldehyde as major product :-

(1)
$$\langle \overline{} \rangle - C \equiv CH$$
 (2) $CH_3 - C \equiv CH$

$$(2) \quad CH_3 - C \equiv CH$$

(3)
$$CH \equiv CH$$

$$(4) \quad CH_3 - C \equiv C - CH_3$$

Q.156 Suppose following reaction

$$\begin{array}{c}
CH_2 \\
B_2H_6/H_2O_2-OH^-
\end{array}$$
 Products

The major product will be :-

Q.157 In hydroboration reaction:-

- Syn addition takes place
- II. Reaction proceed through formation of cyclic transition state
- III. Markownikoff rule is followed in reaction
- IV. Anti addition takes place and anti markownikoff rule is followed.

Correct statement is/are :-

- (1) III
- (2) I, II, III
- (3) II,III,IV
- (4) All of them are correct

Q.158 In following reaction:-

$$CH_{3} CH_{3}$$

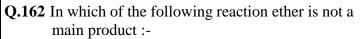
$$H_{3}C-C-C-OH \xrightarrow{Conc. H_{2}SO_{4}}$$

$$CH_{3} H$$

$$CH_{3} H$$

$$CH_{3} C=C \xrightarrow{CH_{3}} + H_{2}O$$

$$CH_{3} C=C$$


Which type of reaction intermediate is likely to

- (1) Carbocation
- (2) Carbanion
- (3) Crabon free radical
- (4) Carbene
- Q.159 In the anion HCOO⁻, the two carbon oxygen bonds are found to be equal length. What is the reason:-
 - (1) The C = O are weaker than the C-O bond.
 - (2) The anion is obtained by removal of proton from acid molecules.
 - (3) The anion has two equal contributing resonating structure.
 - (4) Carbon is present in sp^2 state of hybridisation
- Q.160 Which of the following does not give bicarbonate test with NaHCO₃:-

$$(1) \qquad \stackrel{\text{OH}}{\underset{\text{NO}_2}{\bigvee}} \qquad (2) \qquad \stackrel{\text{OH}}{\underset{\text{SO}_3H}{\bigvee}}$$

Q.161 Ether on heating at high temperature in Presence of air form explosive compound. The structure of this compound is:-

$$(4) \quad \mathop{\text{CH}_{3}-\text{CH}_{2}}_{\text{CH}_{2}-\text{O}-\text{CH}_{2}-\text{CH}_{3}}^{\text{H}}$$

$$(1) CH_3 - CH_2 - Cl \xrightarrow{CH_3ONa} \rightarrow$$

$$(2) CH_3 - Cl \xrightarrow{CH_3 - CH - ONa}$$

(3)
$$\langle \text{CH}_2\text{-Cl} \quad \xrightarrow{\text{CH}_3\text{-CH}_2\text{-ONa}} \rightarrow$$

$$(4) \quad CH_{3} \xrightarrow{CH_{3}} \xrightarrow{CH_{3}} \xrightarrow{CH_{3}-CH-ONa} \xrightarrow{CH_{3}}$$

$$\downarrow CH_{3}$$

Q.163 The main product of following reaction will be

$$\begin{array}{c}
OH \\
\hline
\begin{array}{c}
(i) CO_2 \\
NaOH \\
(ii)H^{\oplus}
\end{array}$$

$$\begin{array}{c}
(CH_3CO)_2O \\
\end{array}$$
Product

Q.164
$$CH_3 - CH - CH_3 \xrightarrow{HNO_2} A \xrightarrow{oxidation} B$$

 NH_2

$$\xrightarrow{\text{(i) CH}_3\text{MgI}} \text{C}$$

C is :-

(1) CH₃CH₂CH₂CH₂OH

(2)
$$CH_3 - CH_2 - CH - CH_3$$

OH

(3)
$$CH_3 - CH - CH_2 - OH$$

 CH_3
 CH_3

(4)
$$CH_3 - C - OH$$

 CH_3

$$0.165 \xrightarrow{\text{CrO}_3} \xrightarrow{\text{CH}_3\text{NH}_2} \xrightarrow{\text{H}_2/\text{Pd}} [X]$$

Product [X] of given reaction is :-

Q.166 CH₃COOH
$$\xrightarrow{\text{NH}_3}$$
 X $\xrightarrow{\text{NaOBR}}$ Y $\xrightarrow{\text{NaNO}_2+\text{HCl}}$ Z. What is Z?

(3) CH₃–O–CH₃ (4) CH₃–CH₂–Cl

Q.167 In which case alkylamine is not formed?

$$(1) R - X + NH_3 \rightarrow$$

(2)
$$R$$
— $CH = NOH + [4H] \xrightarrow{Na} C_2H_5OH$

(3)
$$R$$
— $CN + H_2O \xrightarrow{H^+}$

(4)
$$RCONH_2 + 4[H] \xrightarrow{LiAlH_4}$$

Q.168 In given reaction

$$\begin{array}{c}
NH_2 \\
\hline
NaNO_2 + HCl \\
0-5^{\circ}C
\end{array}
A \xrightarrow{CuCN} B$$

$$\xrightarrow{\text{H}_2\text{O/H}^+}$$
 C

The end product (C) is :-

$$\begin{array}{ccc}
CH_2 - NH_2 & COOH \\
\hline
O & (2) \\
CN & CN \\
\hline
O & (4)
\end{array}$$

Q.169
$$(CH_3)_2CH-C-NH_2 \xrightarrow{NaOH} A \xrightarrow{COCl_2} B$$

$$\downarrow \\ O$$

B is :-

(1) $(CH_3)_2CH-N=C=O$

$$\begin{array}{ccc} \text{(2)} & \text{CH}_3 - \text{CH} - \text{CH}_3 \\ & & | \\ & & \text{NH}_2 \end{array}$$

- (3) $(CH_3)_2CH-NH-COCH_3$
- (4) CH₃-CH₂-NHCOCH₃

Q.170 (A) and (B) in the following reactions are:

$$R - C - R' \xrightarrow{HCN} (A) \xrightarrow{(B)} R \xrightarrow{C} OH$$

$$O \xrightarrow{OH} (1) \quad (A) = RR'C \xrightarrow{CN} ; \quad (B) = LiAlH_4$$

(2) (A) = RR'C
$$\stackrel{OH}{\underset{COOH}{\text{COOH}}}$$
; (B) = NH₃

(3) (A) = RR'C
$$(B) = H_3O^+$$

(4)
$$(A) = RR'CH_2CN$$
; $(B) = NaOH$

Q.171 Identify 'X' in the following sequence of reaction:-

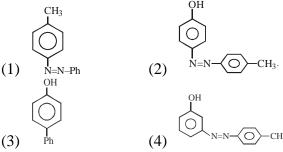
- (1) Benzoic acid
- (2) Phenyl acetic acid
- (3) Benzyl alcohol
- (4) Benzamide
- **Q.172** The final product (IV) obtained in the reaction sequence :

$$Toluene \xrightarrow{1. \text{KMnO}_4/\text{OH}^-} I \xrightarrow{SOCl_2} II$$

$$\xrightarrow{NH_3} II \xrightarrow{OBr}^- IV$$
 is:

- (1) $C_6H_5CONH_2$
- (2) $p-CH_3C_6H_4NO_2$
- (3) $C_6H_5CH_2NH_2$
- (4) $C_6H_5NH_2$

$$\mathbf{Q.173} \quad \xrightarrow{NH_2} \quad \xrightarrow{Br_2} \quad (A) \xrightarrow{\quad (i) \ NaNO_2/HCl} \quad (B)$$

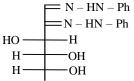

Product (B) in this reaction is :-

0.174

(3)

$$\begin{array}{c}
NH_2 \\
\hline
NaNO_2/HC1 \\
CH_3
\end{array}$$
(A) $\begin{array}{c}
O-H \\
\hline
(mild basic medium)
\end{array}$
(B),

Product (B) of this reaction is :-



- **Q.175** In a Lassaignes's test for sulphur in the organic compound with sodium nitroprusside solution the purple colour formed is due to-
 - (1) $[Fe(CN)_5 NOS]^{4-}$
 - (2) [Fe(CN)₅ S]²⁻
 - (3) $[Fe(CN)_5 NOS]^{2-}$
 - (4) None of these
- Q.176 Method by which Aniline cannot be prepared is
 - (1) reduction of nitrobenzene with H_2/Pd in ethanol.
 - (2) potassium salt of phthalimide treated with chlorobenzene followed by hydrolysis with aqueous NaOH solution.
 - (3) hydrolysis of phenylisocyanide with acidic solution.
 - (4) degradation of benzamide with bromine in alkaline solution.

Q.177 Carbon and hydrogen in an organic compound	Q.185 C_4 -epimer of glucose is :-
are detected as	(1) Allose (2) Mannose
(1) CaHCO ₃ , CaCO ₃	(3) Galactose (4) Fructose
(2) CaHCO ₃ , CuSO ₄ .5H ₂ O	Q.186 Glucose gives positive test with :-
(3) CaCO ₃ , CuSO ₄ .5H ₂ O	(1) Tollen reagent (2) Fehling solution
	(3) Benedict solution (4) All of these
(4) CaCO ₃ , Cu(OH) ₂	Q.187 Which amino acid does not contain chiral
Q.178 In the Hofmann mustard oil reaction of primary	centre:-
amines, the black precipitate is due to –	(1) Valine (2) Leucine
$\begin{array}{ccc} \text{(1)} & \text{HgS} & \text{(2)} & \text{Ag}_2\text{S} \\ \text{(2)} & \text{G}_2\text{G} & \text{(4)} & \text{Rg}_2\text{G} \end{array}$	(3) Glycine (4) Isoleucin
(3) CuS (4) BaS	Q.188 D-glucose and D-fructose can be differentiated
Q.179 Which of the following is incorrect?	by
(1) FeCl ₃ is used in detection of phenols.	(1) Fehling solution (2) Tollens reagent
(2) Fehling solution is used in detection of	(3) Benedict test (4) Br ₂ /H ₂ O
glucose. (3) Tollen's reagent is used in detection of	Q.189 Glucose does not react with:
unsaturation.	(1) Phenyl hydrazine (2) 2, 4–DNP
(4) NaHSO ₃ is used in detection of carbonyl	(3) CH ₃ –OH/HÅ (4) HCN/OH
compounds.	Q.190 Which one of the following is reducing sugar?
Q.180 An organic compound having carbon, hydrogen	(1) Starch (2) Cellulose (3) Glycogen (4) Fructose
and sulphur contains 4% of sulphur. The	Q.191 Scurvy is caused due to deficiency of vitamin:
minimum molecular weight of the compound is	(1) B_2 (2) B_{12}
(1) 200 (2) 400	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
(3) 600 (4) 800	Q.192 $X \leftarrow HI$ Glucose $\xrightarrow{HNO_3} Y$, What are X
Q.181 One percent composition of an organic	
compound A is, carbon 85.71% and hydrogen:	and Y?
14.29%. Its vapour density is 14. Consider the	(1) X-n-hexane, Y-Gluconic acid(2) X-Gluconic acid, Y-Saccharic acid
following reaction sequence	(3) X-n-hexanol, Y-Saccharic acid
$A \xrightarrow{\text{Cl}_2/\text{H}_2\text{O}} B \xrightarrow{\text{(i) KCN/EtOH}} C$. Identify C.	(4) X-n-hexane, Y-Saccharic acid
(1) $CH_3 - CH - CO_2H$	Q.193 α -D(+)- and β -D(+)-glucopyranoses are known
	as
OH	(1) epimers (2) anomers
(2) $HO - CH_2 - CH_2 - CO_2H$	(3) tautomers (4) enantiomers
$(3) HO - CH_2 - CO_2H$	Q.194 Choose the correct statement from the
$(4) CH_3 - CH_2 - CO_2H$	following.
Q.182 0.3780 g of an organic compound gave 0.5740	(1) All amino acids have a common isoelectric
g of silver chloride in Carius estimation.	point.
Calculate the percentage of chlorine present in	(2) All naturally occurring α-amino acids are
the compound. (1) 37.6% (2) 19.6%	optically active except glycine. (3) At pH = 0 all amino acids are present as
(3) 62.4% (4) 79.4%	their anions.
Q.183 In the estimation of sulphur by Carius method,	(4) In strongly basic solutions, all amino acids
0.468 g of an organic sulphur compound gave	are present as their cations.
0.668 g of barium sulphate. Find the percentage	Q.195 A certain compound gives negative test with
of sulphur in the given compound.	ninhydrin and positive test with Benedict's
(1) 37.6% (2) 19.6%	solution. The comp. is –
(3) 62.4% (4) 79.4%	(1) a protein
Q.184 D-glucose and L-glucose are:	(2) a monosaccharide
(1) Daistereomers (2) Enantiomers	(3) a lipid
(3) Epimer (4) Anomers	(4) an amino acid
	I and the second

- **Q.196** Which of the following pairs give positive Tollen's test?
 - (1) Glucose, sucrose
 - (2) Glucose, fructose
 - (3) Hexanal, acetophenone
 - (4) Fructose, sucrose
- **Q.197** How many tripeptides can be prepared by linking the amino acids glycine, alanine and phenyl alanine?
 - (1) One
- (2) Three
- (3) Six
- (4) Twelve
- **Q.198** Hydrolysis of sucrose with dilute aq. sulphuric acid yields
 - (1) 1:1 D-(+)-glucose; D-(-)-fructose
 - (2) 1:2 D-(+)-glucose; D-(-)-fructose
 - (3) 1:1 D-(-)-glucose; D-(+)-fructose
 - (4) 1:2 D-(-)-glucose; D-(+)-fructose

- Q.199 Glycogen is -
 - (1) a polymer of β -D-glucose units
 - (2) a structural polysaccharide
 - (3) structurally very much similar to amylopectin,
 - (4) structurally similar to amylopectin but extensively branched.
- **Q.200** The given osazone could be obtained from.

- (1) Glucose and galactose
- (2) Glucose and mannose
- (3) Galactose and fructose
- (4) Sucrose and Galactose

ANSWERS

Q. No.	Ans.								
1	2	41	2	81	4	121	3	161	3
2	4	42	2	82	4	122	3	162	4
3	4	43	4	83	4	123	1	163	3
4	1	44	4	84	4	124	3	164	4
5	2	45	2	85	4	125	3	165	4
6	3	46	3	86	4	126	4	166	3
7	3	47	2	87	2	127	1	167	3
8	1	48	3	88	2	128	1	168	2
9	3	49	4	89	2	129	4	169	1
10	3	50	2	90	2	130	4	170	1
11	4	51	4	91	3	131	1	171	3
12	3	52	4	92	2	132	4	172	4
13	4	53	1	93	1	133	2	173	2
14	4	54	4	94	2	134	1	174	2
15	4	55	1	95	4	135	3	175	1
16	3	56	2	96	2	136	1	176	2
17	1	57	1	97	3	137	1	177	3
18	2	58	2	98	4	138	4	178	1
19	1	59	1	99	2	139	1	179	3
20	2	60	2	100	1	140	2	180	4
21	2	61	3	101	4	141	2	181	2
22	1	62	3	102	4	142	4	182	1
23	4	63	1	103	3	143	1	183	2
24	3	64	2	104	1	144	3	184	2
25	2	65	2	105	4	145	1	185	3
26	3	66	3	106	4	146	4	186	4
27	3	67	3	107	1	147	4	187	3
28	4	68	2	108	2	148	1	188	4
29	4	69	4	109	1	149	2	189	2
30	3	70	2	110	3	150	3	190	4
31	4	71	3	111	2	151	2	191	3
32	3	72	3	112	2	152	3	192	4
33	2	73	2	113	1	153	4	193	2
34	3	74	1	114	1	154	1	194	2
35	2	75	2	115	2	155	3	195	2
36	1	76	1	116	4	156	1	196	2
37	4	77	4	117	1	157	2	197	3
38	4	78	2	118	1	158	1	198	1
39	1	79	4	119	4	159	3	199	4
40	4	80	2	120	1	160	3	200	2